Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes
Abstract
:1. Introduction
2. Results
2.1. Age Models and Chronologies
2.2. The Botanical Composition of Peat
2.3. Charcoal Particles
2.4. Carbon and Nitrogen Contents
2.5. CPMAS 13C NMR Data
2.6. Concentration and Distribution of PAHs
3. Discussion
3.1. Peat Formation in the Context of Pyrogen History
3.2. Charcoal Particles as a Marker of Pyrogenesis
3.3. Fire Impact on Soil Organic Matter
3.4. Isotopic Composition and PAH Content as a Criterion for Assessing the Impact of Fire
4. Materials and Methods
4.1. Area Description and Soil Sampling
4.2. Botanical Composition
4.3. Charcoal Analysis and 14C Dating
4.4. Carbon and Nitrogen Analysis
4.5. 13C-NMR Spectroscopy
4.6. PAHs Extraction
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Depth, cm | 2-Rings | 3-Ring | 4-Ring | 5-Ring | 6-Ring | ∑ | ∑LP | ∑HP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | ACE | FL | PHE | ANT | FLA | PYR | BaA | CHR | BbF | BkF | BaP | DahA | BghiP | IcdP | ||||
FH-1 | ||||||||||||||||||
0–20 | 43 | 0 | 6 | 39 | 2 | 8 | 4 | 1 | 3 | 3 | 1 | 1 | 1 | 59 | 0 | 170 | 106 | 64 |
20–40 | 67 | 0 | 10 | 59 | 2 | 12 | 3 | 1 | 6 | 6 | 4 | 2 | 1 | 0 | 0 | 173 | 160 | 13 |
40–60 | 50 | 0 | 8 | 59 | 2 | 5 | 1 | 0 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 130 | 126 | 4 |
60–80 | 41 | 0 | 9 | 46 | 4 | 7 | 2 | 0 | 3 | 3 | 1 | 2 | 1 | 3 | 0 | 123 | 113 | 10 |
80–100 | 61 | 0 | 6 | 34 | 1 | 3 | 2 | 0 | 2 | 2 | 0 | 0 | 4 | 2 | 0 | 117 | 109 | 8 |
100–120 | 64 | 0 | 9 | 43 | 2 | 3 | 5 | 0 | 2 | 3 | 0 | 0 | 1 | 2 | 0 | 133 | 127 | 7 |
120–140 | 42 | 0 | 7 | 39 | 1 | 3 | 4 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 101 | 98 | 3 |
140–160 | 60 | 0 | 6 | 32 | 1 | 3 | 2 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 109 | 106 | 3 |
160–180 | 50 | 0 | 5 | 35 | 1 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 99 | 99 | 0 | |
180–200 | 42 | 0 | 6 | 34 | 2 | 4 | 0 | 1 | 2 | 0 | 0 | 0 | 13 | 11 | 56 | 171 | 90 | 81 |
200–220 | 140 | 0 | 35 | 190 | 10 | 26 | 21 | n.d. | 8 | 11 | n.d. | 1 | 19 | 7 | 28 | 496 | 431 | 65 |
220–240 | 110 | 0 | 32 | 170 | 10 | 37 | 63 | n.d. | 15 | 13 | n.d. | 2 | 18 | 15 | 160 | 646 | 438 | 209 |
240–260 | 340 | 11 | 80 | 490 | 27 | 49 | 34 | n.d. | 20 | n.d. | n.d. | 3 | 160 | 170 | 760 | 2142 | 1049 | 1093 |
260–280 | 230 | 10 | 63 | 350 | 22 | 63 | 45 | n.d. | 17 | 12 | 1 | 2 | 12 | 24 | 200 | 1051 | 799 | 252 |
280–300 | 200 | 9 | 57 | 330 | 20 | 66 | 70 | n.d. | n.d. | n.d. | n.d. | 1 | 7 | n.d. | 12 | 772 | 752 | 20 |
300–330 | 390 | 13 | 91 | 530 | 27 | 100 | 90 | 10 | 30 | 11 | 2 | 5 | n.d. | 9 | 14 | 1323 | 1282 | 41 |
330–360 | 200 | n.d. | 47 | 210 | 12 | 39 | 47 | n.d. | 21 | 9 | 1 | 4 | 590 | 510 | 1020 | 2710 | 576 | 2134 |
360–380 | 70 | n.d. | 21 | 150 | 8 | 28 | 46 | n.d. | 15 | 140 | 3 | 2 | 58 | 37 | 810 | 1390 | 338 | 1051 |
380–400 | 260 | n.d. | 50 | 260 | 14 | 30 | 56 | n.d. | 21 | 16 | 2 | 3 | 210 | 490 | 1700 | 3114 | 692 | 2422 |
400–420 | 320 | 11 | 86 | 400 | 27 | 54 | 48 | n.d. | 20 | 100 | 42 | 2 | 510 | 750 | 2000 | 4370 | 966 | 3404 |
FH-2 | ||||||||||||||||||
0–20 | 33 | 0 | 4 | 22 | 1 | 8 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 71 | 70 | 2 |
20–40 | 63 | 0 | 6 | 30 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 5 | 0 | 111 | 106 | 6 |
40–60 | 70 | 0 | 4 | 33 | 1 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 16 | 9 | 30 | 169 | 114 | 55 |
60–80 | 74 | 0 | 5 | 35 | 2 | 3 | 2 | 0 | 5 | 6 | 1 | 1 | 12 | 0 | 74 | 221 | 128 | 94 |
80–100 | 83 | 0 | 5 | 23 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 7 | 57 | 0 | 318 | 501 | 118 | 383 |
100–120 | 77 | 0 | 8 | 43 | 2 | 6 | 3 | 0 | 2 | 0 | 0 | 0 | 41 | 0 | 182 | 364 | 141 | 223 |
120–140 | 55 | 0 | 8 | 42 | 2 | 7 | 7 | 0 | 3 | 3 | 1 | 1 | 21 | 0 | 14 | 164 | 123 | 41 |
140–160 | 94 | 0 | 10 | 57 | 5 | 5 | 6 | 0 | 0 | 2 | 1 | 1 | 84 | 0 | 391 | 656 | 178 | 479 |
160–180 | 144 | 0 | 11 | 65 | 4 | 9 | 7 | 0 | 0 | 23 | 2 | 6 | 30 | 0 | 558 | 858 | 239 | 619 |
180–200 | 627 | 0 | 10 | 60 | 16 | 12 | 7 | 0 | 0 | 51 | 3 | 19 | 126 | 0 | 1043 | 1974 | 733 | 1241 |
200–230 | 130 | 0 | 10 | 62 | 4 | 10 | 9 | 0 | 0 | 18 | 3 | 3 | 15 | 0 | 865 | 1127 | 224 | 903 |
230–235 | 545 | 0 | 9 | 64 | 5 | 8 | 2 | 0 | 28 | 38 | 1 | 13 | 18 | 0 | 638 | 1370 | 662 | 708 |
235–240 | 192 | 0 | 26 | 99 | 7 | 16 | 17 | 2 | 14 | 2 | 1 | 3 | 5 | 0 | 0 | 384 | 373 | 11 |
Depth, cm | PHE/ANT | ANT/178 | ANT/(ANT+PHE) | FLA/PYR | FLA/(FLA+PYR) | BaA/(BaA+CHR) | IcdP/(IcdP+BghiP) | FL/PYR | (PYR+FLA)/(CHR+PHE) | (PYR+BaP)/CHR+PHE) |
---|---|---|---|---|---|---|---|---|---|---|
<10 | >0.1 | >0.1 | <1.4 | >0.5 | >0.35 | >0.5 | >1 | >0.5 | >0.1 | |
FH-1 | ||||||||||
0–20 | 20 | 0.0 | 0.0 | 2.1 | 0.7 ** | 0.28 | 0.0 | 2 ** | 0.3 | 0.1 * |
20–40 | 24 | 0.0 | 0.0 | 4.2 | 0.8 ** | 0.16 | 0.0 | 3 ** | 0.2 | 0.1 * |
40–60 | 25 | 0.0 | 0.0 | 3.3 | 0.8 ** | 0.15 | 0.0 | 6 ** | 0.1 | 0.0 |
60–80 | 13 | 0.0 | 0.1 * | 3.3 | 0.8 ** | 0.16 | 0.0 | 4 ** | 0.2 | 0.1 * |
80–100 | 27 | 0.0 | 0.0 | 1.6 | 0.6 ** | 0.15 | 0.0 | 3 ** | 0.1 | 0.1 * |
100–120 | 25 | 0.0 | 0.0 | 0.5 ** | 0.3 | 0.11 | 0.0 | 2 ** | 0.2 | 0.1 * |
120–140 | 28 | 0.0 | 0.0 | 0.7 ** | 0.4 | 0.00 | 0.0 | 2 ** | 0.2 | 0.1 * |
140–160 | 27 | 0.0 | 0.0 | 1.6 | 0.6 ** | 0.00 | 0.0 | 3 ** | 0.1 | 0.1 * |
160–180 | 31 | 0.0 | 0.0 | 1.2 ** | 0.6 ** | 0.00 | 0.0 | 2 ** | 0.2 | 0.1 * |
180–200 | 22 | 0.0 | 0.0 | 0.0 | 1.0 ** | 0.24 | 0.8 ** | 0 | 0.1 | 0.0 |
200–220 | 18 | 0.1 * | 0.1 * | 1.2 ** | 0.5 ** | 0.00 | 0.8 ** | 2 ** | 0.2 | 0.1 * |
220–240 | 17 | 0.1 * | 0.1 * | 0.6 ** | 0.4 | 0.00 | 0.9 ** | 1 * | 0.5 | 0.4 ** |
240–260 | 18 | 0.1 * | 0.1 * | 1.4 | 0.6 ** | 0.00 | 0.8 ** | 2 ** | 0.2 | 0.1 * |
260–280 | 16 | 0.1 * | 0.1 * | 1.4 | 0.6 ** | 0.00 | 0.9 ** | 1 * | 0.3 | 0.1 * |
280–300 | 16 | 0.1 * | 0.1 * | 0.9 ** | 0.5 ** | 0.00 | 1.0 ** | 1 * | 0.4 | 0.2 ** |
300–330 | 19 | 0.2 ** | 0.0 | 1.1 ** | 0.5 ** | 0.24 | 0.6 ** | 1 * | 0.3 | 0.2 ** |
330–360 | 17 | 0.1 * | 0.1 * | 0.8 ** | 0.5 ** | 0.00 | 0.7 ** | 1 * | 0.4 | 0.2 ** |
360–380 | 19 | 0.0 | 0.0 | 0.6 ** | 0.4 | 0.00 | 1.0 ** | 0 | 0.4 | 0.3 ** |
380–400 | 18 | 0.1 * | 0.1 * | 0.5 ** | 0.4 | 0.00 | 0.8 ** | 1 * | 0.3 | 0.2 ** |
400–420 | 15 | 0.2 ** | 0.1 * | 1.1 ** | 0.5 ** | 0.00 | 0.7 ** | 2 ** | 0.2 | 0.1 * |
FH-2 | ||||||||||
0–20 | 28 | 0.0 | 0.0 | 8.3 | 0.9 ** | 0.33 | 0.0 | 4 ** | 0.4 | 0.1 * |
20–40 | 21 | 0.0 | 0.0 | 1.7 | 0.6 ** | 0.00 | 0.0 | 5 ** | 0.1 | 0.1 * |
40–60 | 56 | 0.0 | 0.0 | 1.7 | 0.6 ** | 0.00 | 0.8 ** | 2 ** | 0.1 | 0.1 * |
60–80 | 18 | 0.0 | 0.1 * | 1.5 | 0.6 ** | 0.05 | 1.0 ** | 2 ** | 0.1 | 0.1 * |
80–100 | 21 | 0.0 | 0.0 | 0.5 ** | 0.3 ** | 0.00 | 1.0 ** | 2 ** | 0.1 | 0.4 ** |
100–120 | 25 | 0.0 | 0.0 | 1.9 | 0.7 ** | 0.13 | 1.0 ** | 3 ** | 0.2 | 0.1 * |
120–140 | 21 | 0.0 | 0.0 | 1.0 ** | 0.5 ** | 0.12 | 1.0 ** | 1 * | 0.3 | 0.2 ** |
140–160 | 12 | 0.0 | 0.1 * | 0.9 ** | 0.5 ** | 1.00 ** | 1.0 ** | 2 ** | 0.2 | 0.1 * |
160–180 | 17 | 0.0 | 0.1 * | 1.2 ** | 0.5 ** | 0.00 | 1.0 ** | 1 * | 0.3 | 0.2 ** |
180–200 | 4 ** | 0.1 * | 0.2 ** | 1.7 ** | 0.6 ** | 0.00 | 1.0 ** | 1 * | 0.3 | 0.4 ** |
200–230 | 16 | 0.0 | 0.1 * | 1.1 ** | 0.5 ** | 1.00 ** | 1.0 ** | 1 * | 0.3 | 0.2 ** |
230–235 | 12 | 0.0 | 0.1 * | 3.4 | 0.8 ** | 0.00 | 1.0 ** | 4 ** | 0.1 | 0.2 ** |
235–240 | 14 | 0.0 | 0.1 * | 1.0 ** | 0.5 ** | 0.15 | 0.0 | 2 ** | 0.3 | 0.2 ** |
–pyrogenic origin –boundary value |
References
- Dymov, A.A.; Gabov, D.N.; Milanovskii, E.Y. 13C-NMR, PAHs, WSOC and repellence of fire affected soils (Albic Podzols, Russia). Environ. Earth Sci. 2017, 76, 275. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gorbach, N.M.; Goncharova, N.N.; Karpenko, L.V.; Gabov, D.N.; Kutyavin, I.N.; Startsev, V.V.; Mazur, A.S.; Grodnitskaya, I.D. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia. Catena 2022, 217, 106449. [Google Scholar] [CrossRef]
- Borisova, O.K. Landscape and climatic changes in the Holocene. Izvestia Russ. Acad. Sci. Ser. Is Geogr. 2015, 2, 5–20. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Vompersky, S.E.; Tsyganova, O.P.; Kovalev, A.G.; Glukhova, T.V.; Valyaeva, N.A. Swampiness of the territory of Russia as a factor of atmospheric carbon binding. In Global Changes in the Natural Environment and Climate; Russian Academy of Science: Moscow, Russia, 1999; pp. 124–145. [Google Scholar]
- Yu, Z. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Egli, M.; Mastrolonardo, G.; Seiler, R.; Raimondi, S.; Favilli, F.; Crimi, V.; Krebs, R.; Cherubin, P.; Certini, G. Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily. Catena 2012, 88, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Barhoumi, C.; Peyron, O.; Joannin, S.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Girardin, M.P.; Brossier, B.; Paradis, L.; Pastor, T.; et al. Alleaume, S. Gradually increasing forest fire activity during the Holocene in the northern Ural region (Komi Republic, Russia). Holocene 2019, 29, 1906–1920. [Google Scholar] [CrossRef]
- Gorbach, N.M.; Kutyavin, I.N.; Startsev, V.V.; Dymov, A.A. Dynamics of fires in the northeast of the European part of Russia in the Holocene. Theor. Appl. Ecol. 2021, 3, 104–110. [Google Scholar] [CrossRef]
- Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.; Lynch, E.A.; Calcote, R.; Hotchkiss, S.C. Interpretation of charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: Do different plant fuel sources produce distinctive charcoal morphotypes? Holocene 2007, 17, 907–915. [Google Scholar] [CrossRef]
- Simon, G.H. Correlations among Charcoal Records of Fires from the Past 16,000 Years in Indonesia, Papua New Guinea, and Central and South America. Quat. Res. 2001, 55, 97–104. [Google Scholar] [CrossRef]
- Nosova, M.B.; Severova, E.E.; Volkova, O.A. Anthropogenic influence on vegetation of Polistovo-Lovatskaya mire system: Palynological data. Bull. Mosc. Soc. Nat. Testers. Dep. Biol. 2017, 122, 87–95. [Google Scholar]
- Grodnitskaya, I.D.; Karpenko, L.V.; Pashkeeva, O.E.; Goncharova, N.N.; Startsev, V.V.; Baturina, O.A.; Dymov, A.A. Impact of forest fires on the microbiological properties of oligotrophic peat soils and gleyed peat podzols of bogs in the northern part of the Sym-dubches interfluve, Krasnoyarsk region. Eurasian Soil Sci. 2022, 55, 460–473. [Google Scholar] [CrossRef]
- Schulze, E.D.; Lapshina, E.; Filippov, I.; Kuhlmann, I.; Mollicone, D. Carbon dynamics in boreal peatlands of the Yenisey region, western Siberia. Biogeosciences 2015, 12, 7057–7070. [Google Scholar] [CrossRef] [Green Version]
- Gidrometizdat. Marshes of Western Siberia, Their Structure and Hydrological Regime; Gidrometizdat: Leningrad, Russia, 1976; pp. 169–192. (In Russian) [Google Scholar]
- Romanova, E.A. Brief landscape-morphological characteristics of the marshes of the West Siberian lowland. Proc. Hydrol. Inst. 1965, 5, 96–112. [Google Scholar]
- Trofimova, I.E.; Balybina, A.S. Zoning of the West Siberian plain according to the thermal regime of soils. Geogr. Nat. Resour. 2015, 3, 27–38. [Google Scholar]
- Karpenko, L.V.; Grenaderova, A.V.; Mikhailova, A.B.; Podobueva, O.V. Reconstruction of Holocene local fires according to the macrocharcoals content from the peat deposits in the Dubches river valley. Sib. Lesn. Zurnal Sib. J. For. Sci. 2022, 4, 3–13, (In Russian with English abstract). [Google Scholar] [CrossRef]
- Karpenko, L.V.; Prokushkin, A.S. Genesis and history of the post-glacial evolution of forest bog in the valley of the Dubches river. Sib. Lesn. Zurnal Sib. J. For. Sci. 2018, 5, 33–44, (In Russian with English abstract). [Google Scholar] [CrossRef]
- Smith, L.C.; MacDonald, G.M.; Velichko, A.A.; Beilman, D.W.; Borisova, O.K.; Kremenetski, K.V.; Sheng, Y. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 2004, 303, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Feurdean, A.; Vannière, B.; Finsinger, W.; Warren, D.; Connor, S.C.; Forrest, M.; Hickler, T. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 2020, 17, 1213–1230. [Google Scholar] [CrossRef] [Green Version]
- Barhoumi, C.; Ali, A.A.; Peyron, O.; Dugerdil, L.; Borisova, O.; Golubeva, Y.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Ryzhkova, N.; et al. Did long-term fire control the coniferous boreal forest composition of the northern Ural region (Komi Republic, Russia). J. Biogeogr. 2020, 47, 2426–2441. [Google Scholar] [CrossRef]
- Oechel, W.C.; Vourlitis, G.L.; Hastings, S.J.; Bochkarev, S.A. Effects of Arctic CO2 Flux over Two Decades: Effects of Climate Change at Barrow. Alsk. Ecol. Appl 1995, 5, 846–855. [Google Scholar] [CrossRef]
- Heikkinen, J.E.; Virtanen, T.; Huttunen, J.T.; Elsakov, V.; Martikainen, P.J. Carbon balance in East European tundra. Glob. Biogeochem. Cycles 2004, 18, 1–14. [Google Scholar] [CrossRef]
- Barhoumi, C.; Vogel, M.; Dugerdil, L.; Limani, H.; Joannin, S.; Peyron, O.; Ali, A.A. Holocene Fire Regime Changes in the Southern Lake Baikal Region Influenced by Climate-Vegetation-Anthropogenic Activity Interactions. Forests 2021, 12, 978. [Google Scholar] [CrossRef]
- Liss, O.L.; Abramova, L.I.; Avetov, N.A.; Berezina, N.A.; Inisheva, L.I.; Kurnishkova, T.V.; Shvedchikova, N.K. Swamp Systems of Western Siberia and Their Environmental Significance; GRIF and Co: Tula, Russia, 2001; 584p. (In Russian) [Google Scholar]
- Volkova, V.S.; Levina, T.P. Holocene as a standard for studying the interglacial epochs of Western Siberia. Palinostratigr. Mesoz. Cenozoic Sib. 1985, 620, 74–84. (In Russian) [Google Scholar]
- Volkova, V.S.; Bakhareva, V.A.; Levina, T.P. Vegetation and climate of the Holocene of Western Siberia. In Paleoclimates of the Late Glacial and Holocene; Nauka: Moscow, Russia, 1989; pp. 90–95. (In Russian) [Google Scholar]
- Koshkarova, V.L. Holocene climate change in Yenisei Siberia (according to paleocarpological data). In Paleoclimates of the Late Glacial and Holocene; Nauka: Moscow, Russia, 1989; pp. 96–98. [Google Scholar]
- Khotinsky, N.A. Debatable problems of reconstruction and correlation of Holocene paleoclimates. In Paleoclimates of the Late Glacial and Holocene; Nauka: Moscow, Russia, 1989; pp. 12–17. [Google Scholar]
- Blyakharchuk, T.A. The history of vegetation in the south-east of Western Siberia in the Holocene according to the data of botanical and spore-pollen analysis of peat. Sib. Ecol. J. 2000, 5, 659–668. [Google Scholar]
- Kuzmin, S.B.; Belozertseva, I.A.; Shamanova, S.I. Paleogeographic events of the Baikal region in the Holocene. Successes Mod. Nat. Sci. 2014, 12, 62–75. [Google Scholar]
- Heikkilä, M.; Seppä, H. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat. Sci. Rev. 2003, 22, 541–554. [Google Scholar] [CrossRef]
- Molinari, C.; Carcaillet, C.; Bradshaw, R.H.; Hannon, G.E.; Lehsten, V. Fire-vegetation interactions during the last 11,000 years in boreal and cold temperate forests of Fennoscandia. Quat. Sci. Rev. 2020, 241, 106408. [Google Scholar] [CrossRef]
- Kupriyanov, D.A.; Novenko, E.Y. Reconstruction of the Holocene dynamics of forest fires in the central part of Mesherskaya lowlands according to antracological analysis. Contemp. Probl. Ecol. 2019, 12, 204–212. [Google Scholar] [CrossRef]
- Rudaya, N.; Krivonogov, S.; Słowiński, M.; Cao, S.; Zhilich, S. Postglacial history of the Steppe Altai: Climate, fire and plant diversity. Quat. Sci. Rev. 2020, 249, 106616. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Kupryanov, D.A.; Mazei, N.G.; Prokushkin, A.S.; Phelps, L.N.; Buri, A.; Davis, B.A. Evidence that modern fires may be unprecedented during the last 3400 years in permafrost zone of Central Siberia. Russia. Environ. Res. Lett 2022, 17, 025004. [Google Scholar] [CrossRef]
- Loiko, S.V.; Raudina, T.V.; Lim, A.G.; Kuzmina, D.M.; Kulizhskiy, S.P.; Pokrovsky, O.S. Microtopography controls of carbon and related elements distribution in the West Siberianfrozen bogs. Geosciences 2019, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Tolonen, K.; Turunen, J. Carbon accumulation in mires in Finland. North. Peatl. Glob. Clim. Change 1996, 1, 250–255. [Google Scholar]
- Beilman, D.W.; MacDonald, G.M.; Smith, L.C.; Reimer, P.J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Glob. Biogeochem. Cycles 2009, 23, 1–12. [Google Scholar] [CrossRef]
- Vitt, D.H.; Halsey, L.A.; Bauer, I.E.; Campbell, C. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can. J. Earth Sci. 2000, 37, 683–693. [Google Scholar] [CrossRef]
- Lapshina, E.D.; Pologova, N.N. Carbon accumulation. In Carbon Storage and Atmospheric Exchange by West Siberian Peatlands; Utrecht University: Utrecht, The Netherlands, 2001; pp. 37–46. [Google Scholar]
- Prokushkin, A.S.; Karpenko, L.V.; Tokareva, I.V.; Korets, M.A.; Pokrovskii, O.S. Carbon and nitrogen in the bogs of the northern part of the Sym-Dubches interfluve. Geogr. Nat. Resour. 2017, 2, 114–123. [Google Scholar]
- Damman, A.W.H. Regulation of nitrogen removal and retention in sphagnum bogs and other peatlands. Oikos 1988, 3, 291–305. [Google Scholar] [CrossRef]
- Efremova, T.T.; Efremov, S.P.; Melent’eva, N.V. Nitrogen in Russian bog. Eurasian Soil Sci. 2000, 33, 934–946. [Google Scholar]
- Inisheva, L.I. Peat soils: Genesis and classification. Eurasian Soil Sci. 2006, 39, 699–704. [Google Scholar] [CrossRef]
- Clymo, R.S. A model of peat bog growth. Ecol. Stud. 1978, 27, 187–223. [Google Scholar]
- Clymo, R.S. The limits of peat bog growth. Philos. Trans. R. Soc. Lond. B 1984, 303, 605–654. [Google Scholar]
- Zaccone, C.; Plaza, C.; Ciavatta, C.; Miano, T.M.; Shotyk, W. Advances in the determination of humification degree in peat since Achard (1786): Applications in geochemical and paleoenvironmental studies. Earth Sci. Rev. 2018, 185, 163–178. [Google Scholar] [CrossRef]
- Reisser, M.; Purves, R.S.; Schmidt, M.W.I.; Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 2016, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Santín, C.; Doerr, S.H.; Jones, M.W.; Merino, A.; Warneke, C.; Roberts, J.M. The relevance of pyrogenic carbon for carbon budgets from fires: Insights from the FIREX experiment. Glob. Biogeochem. Cycles 2020, 34, e2020GB006647. [Google Scholar] [CrossRef]
- Vaganov, E.A.; Vedrova, E.F.; Verkhovets, S.V.; Efremov, S.P.; Efremova, T.T.; Kruglov, V.B.; Chibisova, O.B. Forests and swamps of Siberia in the global carbon cycle. Sib. Ecol. J. 2005, 4, 631–649. [Google Scholar] [CrossRef]
- Loisel, J.; Garneau, M.; Helie, J.F. Modern Sphagnum delta C-13 signatures follow a surface moisture gradient in two boreal peat bogs, James Bay lowlands, Quebec. J. Quat. Sci. 2009, 24, 209–214. [Google Scholar] [CrossRef]
- Dyakonov, K.N.; Novenko, E.Y.; Mironenko, I.V.; Kuprijanov, D.A.; Bobrovsky, M.V. The role of fires in the Holocene landscape dynamics of the southeastern part of Meshchera lowlands. Dokl. Earth Sci. 2017, 477, 1336–1342. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Mazei, N.G.; Kupriyanov, D.A.; Volkova, E.M.; Tsyganov, A.N. Holocene dynamics of vegetation and ecological conditions in the center of the East European plain. Russ. J. Ecol. 2018, 49, 218–225. [Google Scholar] [CrossRef]
- Kruger, J.P.; Leifeld, J.; Glatzel, S.; Szidat, S.; Alewell, C. Biogeochemical indicators of peatland degradation-a case study of a temperate bog in northern Germany. Biogeosciences 2015, 12, 2861–2871. [Google Scholar] [CrossRef] [Green Version]
- Andersson, R.A.; Meyers, P.; Hornibrook, E.; Kuhry, P.; Mörth, C.-M. Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic. J. Quat. Sci. 2012, 27, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Prokushkin, A.S.; Novenko, E.Y.; Kupryanov, D.A.; Karpenko, L.V.; Mazei, N.G.; Serikov, S.I. Carbon, nitrogen and their stable isotope (δ13C and δ15N) records in two peat deposits of Central Siberia: Raised bog of middle taiga and palsa of forest-tundra ecotone. IOP Conf. Ser. Earth Environ. Sci. 2022, 1093, 012007. [Google Scholar] [CrossRef]
- Vasil’chuk, Y.K.; Belik, A.D.; Budantseva, N.A.; Gennadiev, A.N.; Vasil’chuk, A.C.; Vasil’chuk, J.Y.; Zavgorodnyaya, Y.A.; Ginzburg, A.P.; Bludushkina, L.B. Polycyclic Aromatic Hydrocarbons and Carbon Isotopes in a Palsa Peat (Bol’shezemel’skaya Tundra). Eurasian Soil Sci. 2021, 54, 999–1006. [Google Scholar] [CrossRef]
- Zaccone, C.; Said-Pullicino, D.; Gigliotti, G.; Miano, T.M. Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humic acid fraction. Org. Geochem. 2008, 39, 830–838. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A.V.; Amesbury, M.J.; Magnan, G.; Anshari, G.; Beilman, D.W.; Wu, J. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 2021, 11, 70–77. [Google Scholar] [CrossRef]
- Zubkov, V.S. Tendencies in the distribution and hypotheses of the genesis of condensed naphthides in magmatic rocks from various geodynamic environments. Geochem. Int. 2009, 8, 741–757. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Liu, S. Different distribution of polycyclic aromatic hydrocarbons (PAHs) between Sphagnum and Ledum peat from an ombrotrophic bog in Northeast China. J. Soils Sediments 2019, 19, 1735–1744. [Google Scholar] [CrossRef]
- Yakovleva, E.V.; Gabov, D.N.; Vasilevich, R.S.; Dubrovskiy, Y.A. Polycyclic aromatic compounds in plants and peat in the peatlands of the European part of Russian Arctic. Plant Soil 2022, 475, 581–603. [Google Scholar] [CrossRef]
- Belis, C.A.; Offenthaler, I.; Weiss, P. Semivolatiles in the forest environment: The case of PAHs. Plant Ecophysiol. Org. Xenobiotics Plants 2001, 1, 47–73. [Google Scholar]
- Blomqvist, P.; Persson, B.; Simonson, M. Fire emissions of organics into the atmosphere. Fire Technol. 2007, 43, 213–231. [Google Scholar] [CrossRef]
- Tsibart, A.S.; Gennadiev, A.N. Polycyclic aromatic hydrocarbons in soils: Sources, behavior, and indication significance (a review). Eurasian Soil Sci. 2013, 46, 728–741. [Google Scholar] [CrossRef]
- Di Donato, N.; Chen, H.; Waggoner, D.; Hatcher, P.G. Potential origin and formation for molecular components of humic acids in soils. Geochim. Cosmochim. Acta 2016, 178, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Soclo, H.H.; Garrigues, P.; Ewald, M. Origin of Polycyclic Aromatic Hydrocarbons in Coastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) Areas. Maine Pollut. Bull. 2000, 40, 387–396. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Perra, G.; Renzi, M.; Guerranti, C.; Focardi, S.E. Polycyclic Aromatic Hydrocarbons pollution in sediments: Distribution and sources in a Lagoon System (Orbetello Central Italy). Transit. Waters Bull. 2009, 3, 45–58. [Google Scholar]
- Emoyan, O.O.; Agbaire, P.O.; Akporido, S.O. Variability in Polycyclic Aromatic Hydrocarbons (PAHs) Isomer Pair Ratio: Source Identification Concern. Int. J. Environ. Monit. Anal. 2015, 3, 111. [Google Scholar] [CrossRef] [Green Version]
- Boom, A.; Marsalek, J. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in an urban snowpack. Sci. Total Environ. 1988, 74, 133–148. [Google Scholar] [CrossRef]
- Ping, L.F.; Luo, Y.M.; Zhang, H.B.; Li, Q.B.; Wu, L.H. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environ. Pollut. 2007, 147, 358–365. [Google Scholar] [CrossRef]
- Agarwal, T.; Khillare, P.S.; Shridhar, V.; Ray, S. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J. Hazard. Mater. 2009, 163, 1033–1039. [Google Scholar] [CrossRef]
- Rongguang, S.; Mengmeng, X.; Aifeng, L.; Yong, T.; Zongshan, Z. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin. China Environ. Monit. Assess. 2017, 189, 558. [Google Scholar] [CrossRef]
- Kutenkov, S.A. Korpi software for plotting stratigraphic diagrams of peat composition. Proc. Karelian Sci. Cent. Russ. Acad. Sci. 2013, 6, 171–176. (In Russian) [Google Scholar]
- Dombrovskaya, F.V.; Koreneva, M.M.; Prison, S.N. Atlas of Plant Residues Found in Peat; State Energet, Publishing House: Moscow, Russia, 1959; 90p. (In Russian) [Google Scholar]
- Katz, N.Y.; Katz, S.V.; Skobeeva, E.I. Atlas of Plant Residues in Peat; Nedra: Moscow, Russia, 1977; 376p. (In Russian) [Google Scholar]
- Mooney, S.; Tinner, W. The analysis of charcoal in peat and organic sediments. Mires Peat 2011, 7, 1–18. [Google Scholar]
- Hiederer, R.; Köchy, M. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database; EUR 25225 EN; Publications Office of the European Union: Luxembourg, 2011; 79p. [Google Scholar] [CrossRef]
- Goncalves, C.N.; Dalmolin, S.D.; Dick, D.P.; Knicker, H.; Klamt, E.; Kögel-Knabner, I. The effect of 10 % HF treatment on resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols. Geoderma 2003, 116, 373–392. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Rumpel, C.; Forte, C.; Doerr, S.H.; Certini, G. Abudance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma 2015, 245–246, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Miesel, J.R.; Hockaday, W.C.; Townsend, P.A. Soil organic composition and quality across fire severity gradients in coniferous and deciduous forest of the southern boreal region. J Geophys. Res. Biogeosci. 2015, 120, 1124–1141. [Google Scholar] [CrossRef]
Laboratory Sample Number | Sampling Depth, cm | 14C Age, Years | Age, Cal. Years BP (1σ) |
---|---|---|---|
FH-1 | |||
IMCES-14C1920 | 40–60 | 418 ± 65 | 497 (400–594) |
IMCES-14C1930 | 100–120 | 1363 ± 65 | 1367 (1324–1410) |
IMCES-14C1929 | 140–160 | 2040 ± 80 | 2165 (2146–2183) |
IMCES-14C1925 | 180–200 | 2405 ± 95 | 2592 (2416–2768) |
IMCES-14C2108 | 320–333 | 6157 ± 130 | 7137 (6959–7315) |
IMCES-14C2113 | 420–432 | 8370 ± 195 | 9356 (9105–9606) |
FH-2 | |||
IMCES-14C1925 | 60–70 | 1430 ± 120 | 1105 (1589–620) |
IMCES-14C1920 | 107–108 | 2915 ± 115 | 3120 (2960–3280) |
IMCES-14C1924 | 120–130 | 4125 ± 95 | 4743 (4600–4886) |
IMCES-14C1890 | 160–170 | 4690 ± 130 | 5512 (5361–5662) |
IMCES-14C1897 | 239–240 | 7535 ± 120 | 8381 (8267–8495) |
Horizon | Depth, cm | C | N | C/N | WSOC | WSON | C/NWS | δ 13C | δ 15N | Cstock | Nstock |
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | mg g−1 | ‰ | kg m–2 | ||||||||
FH-1 | |||||||||||
T1 | 0–20 | 479 ± 17 | 6.7 ± 0.7 | 83 | 1.36 | 0.07 | 23 | −27.84 | –2.35 | 1.9 | 0.03 |
T2 | 20–40 | 493 ± 17 | 8.3 ± 0.9 | 69 | 1.78 | 0.05 | 41 | −26.57 | 0.29 | 2.0 | 0.03 |
T3 | 40–60 | 460 ± 16 | 8.4 ± 0.9 | 64 | 1.96 | 0.05 | 43 | −27.00 | 1.63 | 7.4 | 0.13 |
T4 | 60–80 | 453 ± 16 | 6.7 ± 0.7 | 79 | 2.15 | 0.07 | 35 | −26.73 | –0.08 | 7.2 | 0.11 |
T5 | 80–100 | 477 ± 17 | 8.3 ± 0.9 | 67 | 1.21 | 0.04 | 38 | −27.41 | 0.05 | 7.6 | 0.13 |
T6 | 100–120 | 500 ± 18 | 9.8 ± 1.1 | 60 | 1.65 | 0.06 | 31 | −27.47 | –0.34 | 8.0 | 0.16 |
T7 | 120–140 | 456 ± 16 | 5.6 ± 1.1 | 95 | 1.55 | 0.06 | 31 | −26.69 | –1.89 | 7.3 | 0.09 |
T8 | 140–160 | 472 ± 16 | 7.8 ± 0.9 | 71 | 1.41 | 0.05 | 30 | −27.07 | –1.05 | 7.6 | 0.12 |
T9 | 160–180 | 463 ± 16 | 7.2 ± 0.8 | 75 | 1.61 | 0.07 | 27 | −26.74 | –1.62 | 7.4 | 0.12 |
T10 | 180–200 | 480 ± 17 | 8.0 ± 0.9 | 70 | 1.73 | 0.08 | 26 | −26.66 | –1.82 | 7.7 | 0.13 |
T11 | 200–220 | 512 ± 18 | 26.3 ± 2.9 | 19 | – | – | – | −25.54 | –1.17 | 8.2 | 0.42 |
T12 | 220–240 | 503 ± 18 | 35.5 ± 4.5 | 14 | – | – | – | −26.53 | –0.91 | 8.0 | 0.57 |
T13 | 240–260 | 551 ± 19 | 22.8 ± 2.4 | 24 | – | – | – | −28.04 | 0.70 | 8.8 | 0.36 |
T14 | 260–280 | 546 ± 19 | 23.7 ± 2,5 | 23 | – | – | – | −28.03 | 0.39 | 8.7 | 0.38 |
T15 | 280–300 | 541 ± 19 | 22.2 ± 2,4 | 24 | – | – | – | −27.98 | 0.22 | 8.7 | 0.36 |
T16 | 300–330 | 563 ± 20 | 17.7 ± 1.8 | 32 | – | – | – | −28.24 | 0.53 | 9.0 | 0.28 |
T17 | 330–360 | 537 ± 19 | 20.4 ± 2.3 | 26 | – | – | – | −27.93 | 0.19 | 8.6 | 0.33 |
T18 | 360–380 | 525 ± 18 | 17.6 ± 1.8 | 30 | – | – | – | −26.95 | –1.06 | 8.4 | 0.28 |
T19 | 380–400 | 531 ± 19 | 19.5 ± 1.9 | 27 | – | – | – | −27.49 | 0.27 | 8.5 | 0.31 |
T20 | 400–420 | 544 ± 19 | 20.2 ± 2.3 | 27 | – | – | – | −28.21 | 1.14 | 8.7 | 0.32 |
149.7 | 4.7 | ||||||||||
FH-2 | |||||||||||
T1 | 0–20 | 478 ± 17 | 7.1 ± 0.8 | 79 | 1.18 | 0.03 | 42 | −27.50 | –4.60 | 1.9 | 0.03 |
T2 | 20–40 | 498 ± 17 | 15.5 ± 1.7 | 37 | 1.46 | 0.07 | 26 | −26.82 | 1.00 | 14.9 | 0.47 |
T3 | 40–60 | 507 ± 18 | 14.4 ± 1.6 | 41 | 0.99 | 0.04 | 27 | −27.14 | –0.37 | 17.2 | 0.49 |
T4 | 60–80 | 519 ± 18 | 14.1 ± 1.6 | 43 | 1.32 | 0.06 | 27 | −27.19 | –1.48 | 16.6 | 0.45 |
T5 | 80–100 | 518 ± 18 | 17.2 ± 1.9 | 35 | 1.28 | 0.06 | 24 | −26.88 | –0.57 | 18.6 | 0.62 |
T6 | 100–120 | 525 ± 18 | 20.6 ± 2.3 | 30 | 1.35 | 0.08 | 20 | −26.59 | –0.67 | 16.8 | 0.66 |
T7 | 120–140 | 528 ± 18 | 26.6 ± 2.9 | 23 | 1.63 | 0.17 | 11 | −25.31 | –0.86 | 15.8 | 0.80 |
T8 | 140–160 | 528 ± 18 | 28 ± 3 | 22 | 1.21 | 0.10 | 15 | −24.79 | –1.26 | 16.9 | 0.90 |
T9 | 160–180 | 523 ± 18 | 31 ± 3 | 20 | 1.23 | 0.11 | 13 | −24.07 | –0.98 | 16.7 | 0.99 |
T10 | 180–200 | 515 ± 18 | 27 ± 3 | 22 | 1.11 | 0.10 | 12 | −26.37 | –1.04 | 16.5 | 0.86 |
T11 | 200–230 | 535 ± 19 | 27 ± 3 | 23 | 0.90 | 0.13 | 8 | −25.14 | –1.37 | 25.7 | 1.30 |
T12 | 230–235 | 533 ± 19 | 20.6 ± 2.3 | 30 | 0.60 | 0.08 | 9 | −27.72 | 0.12 | 4.3 | 0.16 |
Tpyr | 235–240 | 258 ± 26 | 8.8 ± 1.0 | 34 | 0.32 | 0.03 | 13 | −28.04 | 1.51 | 2.1 | 0.07 |
G | 240–260 | 27 ± 4 | 1.31 ± 0.26 | 24 | 0.09 | 0.02 | 7 | nd | nd | nd | nd |
184.1 | 7.8 |
Depth, cm | Alkyl C | O-Alkyl C | Aryl C | Carboxyl C/ Amide/Easter | Alkyl/O,N-alkyl | Aromaticity (fa) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CAlk-H | CCH3-O | CAlk-O | CO-Alk-O | CAr-H(C) | CAr-O,N | CCOOH(R) | CC=0 | ||||
0–45 | 45–60 | 60–95 | 95–110 | 110–145 | 145–165 | 165–185 | 185–220 | ||||
FH-1 | |||||||||||
0–20 | 16.6 | 6.8 | 41.4 | 12.1 | 12.8 | 5.8 | 3.8 | 0.7 | 0.3 | 18.6 | |
20–40 | 25.9 | 7.4 | 35.9 | 10.3 | 10.8 | 5.1 | 4.4 | 0.3 | 0.5 | 15.9 | |
40–60 | 17.9 | 6.2 | 47.5 | 11.3 | 9.7 | 3.4 | 4.0 | 0.0 | 0.3 | 13.2 | |
60–80 | 15.4 | 6.3 | 51.2 | 11.4 | 9.4 | 3.3 | 3.1 | 0.0 | 0.2 | 12.6 | |
80–100 | 20.9 | 6.5 | 46.0 | 10.4 | 10.2 | 3.0 | 3.1 | 0.0 | 0.3 | 13.2 | |
100–120 | 24.5 | 6.0 | 39.2 | 9.9 | 12.4 | 4.4 | 3.7 | 0.0 | 0.4 | 16.7 | |
120–140 | 17.5 | 5.2 | 46.2 | 11.8 | 11.4 | 4.4 | 3.6 | 0.0 | 0.3 | 15.7 | |
140–160 | 16.8 | 5.6 | 46.7 | 11.2 | 11.9 | 4.1 | 3.5 | 0.0 | 0.3 | 16.0 | |
160–180 | 18.2 | 6.5 | 44.0 | 10.8 | 13.3 | 4.6 | 2.7 | 0.0 | 0.3 | 17.8 | |
180–200 | 19.9 | 6.1 | 42.8 | 10.6 | 12.8 | 4.4 | 3.3 | 0.0 | 0.3 | 17.3 | |
200–220 | 21.6 | 8.9 | 32.5 | 8.4 | 14.4 | 5.7 | 6.6 | 1.9 | 0.4 | 20.1 | |
220–240 | 23.9 | 9.3 | 29.0 | 7.7 | 14.2 | 5.6 | 8.0 | 2.3 | 0.5 | 19.8 | |
240–260 | 32.7 | 8.3 | 23.3 | 6.0 | 14.8 | 6.0 | 6.5 | 2.4 | 0.9 | 20.8 | |
260–280 | 30.5 | 8.7 | 24.6 | 6.4 | 15.7 | 6.0 | 5.9 | 2.2 | 0.8 | 21.6 | |
280–300 | 26.6 | 8.6 | 25.8 | 7.2 | 17.1 | 6.9 | 5.7 | 2.1 | 0.6 | 24.0 | |
300–330 | 28.5 | 9.5 | 21.3 | 6.4 | 19.4 | 7.8 | 5.0 | 2.1 | 0.8 | 27.2 | |
330–360 | 28.1 | 8.2 | 25.0 | 7.0 | 17.1 | 6.8 | 5.8 | 1.9 | 0.7 | 23.9 | |
360–380 | 24.7 | 7.1 | 29.4 | 8.0 | 16.3 | 7.0 | 5.5 | 2.2 | 0.6 | 23.2 | |
380–400 | 24.4 | 7.6 | 26.2 | 7.7 | 18.1 | 7.6 | 5.9 | 2.5 | 0.6 | 25.7 | |
400–420 | 27.3 | 8.2 | 23.2 | 7.3 | 18.7 | 7.8 | 5.5 | 2.0 | 0.7 | 26.5 | |
FH-2 | |||||||||||
0–20 | 16.2 | 6.9 | 41.4 | 12.2 | 13.5 | 6.2 | 3.5 | 0.0 | 0.3 | 19.7 | |
20–40 | 24.0 | 8.0 | 37.4 | 9.8 | 12.1 | 4.2 | 4.5 | 0.0 | 0.4 | 16.3 | |
40–60 | 26.2 | 8.0 | 33.7 | 9.7 | 13.8 | 4.6 | 3.9 | 0.0 | 0.5 | 18.4 | |
60–80 | 26.8 | 7.8 | 31.9 | 9.4 | 15.0 | 5.4 | 3.8 | 0.0 | 0.5 | 20.3 | |
80–100 | 25.7 | 8.2 | 30.5 | 9.0 | 16.2 | 6.0 | 4.4 | 0.0 | 0.5 | 22.2 | |
100–120 | 26.5 | 8.9 | 29.2 | 8.7 | 16.7 | 5.4 | 4.7 | 0.0 | 0.6 | 22.1 | |
120–140 | 27.7 | 9.9 | 27.4 | 7.9 | 16.9 | 5.3 | 4.9 | 0.0 | 0.6 | 22.3 | |
140–160 | 25.0 | 9.6 | 30.6 | 8.7 | 15.7 | 4.8 | 5.6 | 0.0 | 0.5 | 20.5 | |
160–180 | 25.8 | 10.2 | 28.2 | 8.4 | 16.6 | 5.3 | 5.6 | 0.0 | 0.6 | 21.9 | |
180–200 | 27.2 | 9.6 | 26.9 | 8.4 | 17.0 | 5.8 | 5.0 | 0.0 | 0.6 | 22.8 | |
200–230 | 30.1 | 11.5 | 25.4 | 8.2 | 16.9 | 4.6 | 3.3 | 0.0 | 0.7 | 21.5 | |
230–235 | 32.6 | 9.9 | 20.8 | 7.1 | 19.5 | 6.0 | 4.2 | 0.0 | 0.9 | 25.5 | |
235–240 | 37.6 | 6.8 | 12.6 | 5.3 | 26.4 | 6.3 | 4.9 | 0.0 | 1.5 | 32.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Startsev, V.; Gorbach, N.; Mazur, A.; Prokushkin, A.; Karpenko, L.; Dymov, A. Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes. Plants 2022, 11, 3478. https://doi.org/10.3390/plants11243478
Startsev V, Gorbach N, Mazur A, Prokushkin A, Karpenko L, Dymov A. Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes. Plants. 2022; 11(24):3478. https://doi.org/10.3390/plants11243478
Chicago/Turabian StyleStartsev, Viktor, Nikolay Gorbach, Anton Mazur, Anatoly Prokushkin, Lyudmila Karpenko, and Alexey Dymov. 2022. "Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes" Plants 11, no. 24: 3478. https://doi.org/10.3390/plants11243478
APA StyleStartsev, V., Gorbach, N., Mazur, A., Prokushkin, A., Karpenko, L., & Dymov, A. (2022). Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes. Plants, 11(24), 3478. https://doi.org/10.3390/plants11243478