Morphological, Biochemical, and Molecular Diversity of an Indian Ex Situ Collection of Pomegranate (Punica granatum L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characterization
2.2. Correlation among Quantitatively Scored Morphological Traits
2.3. Non-Hierarchical Clustering of the Accessions Based on the Morphological Traits
2.4. Analysis of the Biochemical Traits
2.5. Agglomerative Hierarchical Analysis of the Pomegranate Accessions Based on Morphological and Biochemical Data
2.6. Molecular Characterization of Pomegranate Accessions
2.7. Relationship between the Clusters Based on Morpho-Biochemical and Molecular Diversity
3. Materials and Methods
3.1. Experimental Site and Plant Material
3.2. Biochemical Analysis
3.2.1. Total Phenol Content
3.2.2. Anthocyanin Content
3.2.3. Total Antioxidant Activity
3.2.4. Ascorbic Acid Content
3.3. DNA Isolation and Molecular Characterization
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkhosh, A.; Yavari, A.M.; Zamani, Z. The Pomegranate: Botany, Production and Uses; CABI: Wallingford, UK, 2020. [Google Scholar]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Kandylis, P.; Kokkinomagoulos, E. Food applications and potential health benefits of pomegranate and its derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.; Desai, N. Pomegranate the cash crop of India: A comprehensive review on agricultural practices and diseases. Int. J. Health Sci. Res. 2018, 8, 315–336. [Google Scholar]
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. 2 Pomegranate: Botany, horticulture, breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar]
- Kahramanoglu, I. Trends in pomegranate sector: Production, postharvest handling and marketing. Int. J. Agric. For. Life Sci. 2019, 3, 239–246. [Google Scholar]
- Brown, W.L. Genetic diversity and genetic vulnerability—an appraisal. Econ. Bot. 1983, 37, 4–12. [Google Scholar] [CrossRef]
- Melgarejo-Sánchez, P.; Nunez-Gomez, D.; Martínez-Nicolás, J.J.; Hernández, F.; Legua, P.; Melgarejo, P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: A review. Bioresour. Bioprocess. 2021, 8, 1–29. [Google Scholar] [CrossRef]
- Dhumal, S.; Karale, A.; Jadhav, S.; Kad, V. Recent advances and the developments in the pomegranate processing and utilization: A review. J. Agric. Crop Sci. 2014, 1, 1–17. [Google Scholar]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Verma, N.; Mohanty, A.; Lal, A. Pomegranate genetic resources and germplasm conservation: A review. Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 120–125. [Google Scholar]
- Parashuram, S.; Singh, N.; Roopasowjanya, P.; Babu, K.; Sangnure, V.; Singh, S.; Sharma, J.; Pal, R. Germplasm conservation and phenotypic characterization of pomegranate (Punica granatum L.) germplasm accessions for various morphological and physico-chemical characters. J. Pharm. Phytochem. 2018, 7, 114–118. [Google Scholar]
- Chandra, R.; Jadhav, V.T.; Sharma, J. Global scenario of pomegranate (Punica granatum L.) culture with special reference to India. Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 7–18. [Google Scholar]
- Singh, N.V.; Abburi, V.L.; Ramajayam, D.; Kumar, R.; Chandra, R.; Sharma, K.K.; Sharma, J.; Babu, K.D.; Pal, R.K.; Mundewadikar, D.M. Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India. Mol. Genet. Genom. 2015, 290, 1393–1402. [Google Scholar] [CrossRef]
- Narayanaswamy, P.; Ravi, H.; Simon, L.; Pampanna, Y. Morphological traits and DNA fingerprinting among traditional and commercial Indian pomegranate (Punica granatum L.) cultivars. Asian Australas. J. Plant Sci. Biotechnol. 1993, 2, 20–26. [Google Scholar]
- Patil, P.G.; Singh, N.V.; Parashuram, S.; Bohra, A.; Mundewadikar, D.M.; Sangnure, V.R.; Babu, K.D.; Sharma, J. Genome wide identification, characterization and validation of novel miRNA-based SSR markers in pomegranate (Punica granatum L.). Physiol. Mol. Biol. Plants 2020, 26, 683–696. [Google Scholar] [CrossRef]
- Gunnaiah, R.; Jagadeesha, R.C.; Cholin, S.; Prabhuling, G.; Govindaswamy Babu, A.; Fakrudin, B.; Pujer, P.; Murthy, S.B. Genetic diversity assessment and population structure analysis of pomegranate cultivars from different countries and Himalayan wild accessions. J. Hortic. Sci. Biotechnol. 2021, 96, 614–623. [Google Scholar] [CrossRef]
- Haldhar, S.M.; Kumar, R.; Corrado, G.; Berwal, M.K.; Gora, J.S.; Thaochan, N.; Samadia, D.K.; Hussain, T.; Rouphael, Y.; Kumar, P. A field screening of a pomegranate (Punica granatum) ex-situ germplasm collection for resistance against the false spider mite (Tenuipalpus punicae). Agriculture 2022, 12, 1686. [Google Scholar] [CrossRef]
- Perveen, N.; Cholin, S.S.; Hipparagi, K.; Peerjade, D. Diversity in Pomegranate (Punica granatum L.) Genotypes of India as Revealed by Principal Component Analysis and Cluster Analysis. Chem. Sci. Rev. Lett. 2020, 9, cs202050122. [Google Scholar] [CrossRef]
- Nafees, M.; Jaskani, M.J.; Naqvi, S.A.; Haider, M.S.; Khan, I.A. Evaluation of elite pomegranate genotypes of Balochistan based on morphological, biochemical and molecular traits. Int. J. Agric. Biol. 2018, 20, 1405–1412. [Google Scholar]
- Jafari, A.; Arzani, K.; Fallahi, E.; Barzegar, M. Optimizing fruit yield, size, and quality attributes in’Malase Torshe Saveh’pomegranate through hand thinning. J. Am. Pomol. Soc. 2014, 68, 89–96. [Google Scholar]
- Nanda, S.; Rao, D.S.; Krishnamurthy, S. Effects of shrink film wrapping and storage temperature on the shelf life and quality of pomegranate fruits cv. Ganesh. Postharvest Biol. Technol. 2001, 22, 61–69. [Google Scholar] [CrossRef]
- Yazici, K.; Şahin, A. Characterization of pomegranate (Punica granatum L.) hybridsand their potential use in further breeding. Turk. J. Agric. For. 2016, 40, 813–824. [Google Scholar] [CrossRef]
- Akbarpour, V.; Hemmati, K.; Sharifani, M. Physical and chemical properties of pomegranate (Punica granatum L.) fruit in maturation stage. Am. -Eurasian J. Agric. Environ. Sci. 2009, 6, 411–416. [Google Scholar]
- Mohammad Shafie, M.; Rajabipour, A.; Castro-García, S.; Jiménez-Jiménez, F.; Mobli, H. Effect of fruit properties on pomegranate bruising. Int. J. Food Prop. 2015, 18, 1837–1846. [Google Scholar] [CrossRef] [Green Version]
- Quilot, B.; Génard, M.; Kervella, J.; Lescourret, F. Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach. Theor. Appl. Genet. 2004, 109, 440–449. [Google Scholar] [CrossRef]
- Zheng, L.; Nie, J.; Yan, Z. Advances in research on sugars, organic acids and their effects on taste of fruits. J. Fruit Sci. 2015, 32, 304–312. [Google Scholar]
- Rajan, S.; Yadava, L.; Kumar, R.; Saxena, S. Genetic divergence in mango varieties and possible use in breeding. Indian J. Hort. 2009, 66, 7–12. [Google Scholar]
- Danner, M.A.; Citadin, I.; Sasso, S.A.Z.; Scariot, S.; Benin, G. Genetic dissimilarity among jabuticaba trees native to Southwestern Paraná, Brazil. Rev. Bras. De Frutic. 2011, 33, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Sant’Anna, I.D.C.; Gouvêa, L.R.L.; Martins, M.A.; Scaloppi Junior, E.J.; de Freitas, R.S.; Goncalves, P.d.S. Genetic diversity associated with natural rubber quality in elite genotypes of the rubber tree. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Layla, A. Pomegranate bioactive molecules and health benefits. In Bioactive Molecules in Food; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1253–1279. [Google Scholar]
- Jalikop, S. Pomegranate breeding. Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 26–34. [Google Scholar]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Gil, M.I.; García-Viguera, C.; Artés, F.; Tomás-Barberán, F.A. Changes in pomegranate juice pigmentation during ripening. J. Sci. Food Agric. 1995, 68, 77–81. [Google Scholar] [CrossRef]
- Currò, S.; Caruso, M.; Distefano, G.; Gentile, A.; La Malfa, S. New microsatellite loci for pomegranate, Punica granatum (Lythraceae). Am. J. Bot. 2010, 97, e58–e60. [Google Scholar] [CrossRef]
- Shahsavari, S.; Noormohammadi, Z.; Sheidai, M.; Farahani, F.; Vazifeshenas, M.R. Genetic structure, clonality and diversity in commercial pomegranate (Punica granatum L.) cultivars. Genet. Resour. Crop Evol. 2021, 68, 2943–2957. [Google Scholar] [CrossRef]
- Hasnaoui, N.; Buonamici, A.; Sebastiani, F.; Mars, M.; Zhang, D.; Vendramin, G.G. Molecular genetic diversity of Punica granatum L.(pomegranate) as revealed by microsatellite DNA markers (SSR). Gene 2012, 493, 105–112. [Google Scholar] [CrossRef]
- Ravishankar, K.V.; Chaturvedi, K.; Puttaraju, N.; Gupta, S.; Pamu, S. Mining and characterization of SSRs from pomegranate (Punica granatum L.) by pyrosequencing. Plant Breed. 2015, 134, 247–254. [Google Scholar] [CrossRef]
- Rebourg, C.; Gouesnard, B.; Charcosset, A. Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation. Heredity 2001, 86, 574–587. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, M.; Stefanelli, S.; Rotondo, F.; Tuberosa, R.; Sanguineti, M. Relationships among durum wheat accessions. I. Comparative analysis of SSR, AFLP, and phenotypic data. Genome 2007, 50, 373–384. [Google Scholar] [CrossRef]
- Burstin, J.; Charcosset, A. Relationship between phenotypic and marker distances: Theoretical and experimental investigations. Heredity 1997, 79, 477–483. [Google Scholar] [CrossRef]
- Corrado, G.; La Mura, M.; Ambrosino, O.; Pugliano, G.; Varricchio, P.; Rao, R. Relationships of Campanian olive cultivars: Comparative analysis of molecular and phenotypic data. Genome 2009, 52, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Pop, I.F.; Vicol, A.C.; Botu, M.; Raica, P.A.; Vahdati, K.; Pamfil, D. Relationships of walnut cultivars in a germplasm collection: Comparative analysis of phenotypic and molecular data. Sci. Hortic. 2013, 153, 124–135. [Google Scholar] [CrossRef]
- Corrado, G.; Forlani, M.; Rao, R.; Basile, B. Diversity and relationships among neglected apricot (Prunus armeniaca L.) landraces using morphological traits and SSR markers: Implications for agro-biodiversity conservation. Plants 2021, 10, 1341. [Google Scholar] [CrossRef]
- Bchir, B.; Besbes, S.; Karoui, R.; Paquot, M.; Attia, H.; Blecker, C. Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solution base. Food Bioprocess Technol. 2012, 5, 999–1009. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.; Ray, S. Determination of plasma ascorbic acid by 2, 6-dichlorophenol indophenol titration. Lancet 1935, 1, 1. [Google Scholar]
- Sadasivam, S.; Balasubramanian, T. Practical Manual in Biochemistry; Tamil Nadu Agricultural University: Coimbatore, India, 1987. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Rao, C.R. Advanced Statistical Methods in Biometric Research; John Wiley & Son: New York, NY, USA, 1952; p. 390. [Google Scholar]
- van de Velden, M.; Iodice D’Enza, A.; Markos, A. Distance-based clustering of mixed data. Wiley Interdiscip. Rev. Comput. Stat. 2019, 11, e1456. [Google Scholar] [CrossRef]
- Perrier, X.; Flori, A. Methods of data analysis. In Genetic Diversity of Cultivated Tropical Plants; CRC Press: Boca Raton, FL, USA, 2003; pp. 47–80. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar] [PubMed]
Character (Unit) | Mean | Min | Max | SD | CV (%) |
---|---|---|---|---|---|
Tree height (m) | 3.14 | 2.17 | 4.2 | 0.48 | 8.18 |
Canopy growth (m) | 3.49 | 2.17 | 4.62 | 0.61 | 9.51 |
Leaf blade length (cm) | 5.29 | 4.2 | 5.99 | 0.44 | 7.56 |
Leaf blade width (cm) | 1.51 | 1.34 | 1.74 | 0.10 | 7.84 |
Petiole length (mm) | 4.32 | 3.54 | 5.21 | 0.39 | 11.48 |
Petiole width (mm) | 0.91 | 0.63 | 1.22 | 0.12 | 17.60 |
Calyx length (mm) | 35.22 | 27.43 | 43.72 | 3.82 | 8.90 |
Calyx width (mm) | 12.18 | 9.03 | 14.25 | 1.42 | 8.59 |
Petal length (mm) | 21.06 | 14.82 | 25.1 | 2.14 | 7.44 |
Petal width (mm) | 15.60 | 10.55 | 18.33 | 1.72 | 9.37 |
Fruit weight (g) | 254.18 | 82.66 | 482.22 | 99.70 | 21.12 |
Fruit length (cm) | 7.23 | 5.05 | 9.22 | 1.11 | 7.70 |
Fruit diameter (cm) | 7.59 | 5.31 | 9.52 | 1.08 | 7.83 |
Fruit volume | 199.40 | 57.85 | 343.97 | 78.18 | 23.34 |
Crown length (mm) | 14.02 | 10.31 | 17.64 | 1.96 | 12.73 |
Aril % | 58.53 | 32.06 | 65.76 | 6.51 | 6.77 |
Fruit juiciness (%) | 38.92 | 17.06 | 47.83 | 5.66 | 9.82 |
Number of arils/fruit | 406.05 | 155.83 | 661.7 | 144.00 | 19.41 |
100 arils weight (g) | 36.89 | 19.39 | 46.55 | 7.10 | 9.05 |
Rind thickness (mm) | 2.98 | 2.1 | 4.36 | 0.50 | 14.03 |
Aril length (mm) | 10.60 | 8.54 | 11.81 | 0.81 | 4.41 |
Aril width (mm) | 7.12 | 6.1 | 7.92 | 0.46 | 6.73 |
Total soluble solids (°Brix) | 16.90 | 15.09 | 19.34 | 1.10 | 3.07 |
Acidity (%) | 1.36 | 0.3 | 3.32 | 0.97 | 18.66 |
100 seed weight (g) | 2.09 | 1.22 | 2.71 | 0.51 | 6.89 |
Seed length (mm) | 6.32 | 5.6 | 7.14 | 0.35 | 5.19 |
Seed width (mm) | 2.57 | 2.08 | 3.13 | 0.24 | 8.18 |
Fruit color (L*) | 64.46 | 27.75 | 80.45 | 10.21 | 9.98 |
Fruit color (a*) | 22.71 | 6.2 | 42.22 | 10.13 | 22.69 |
Fruit color (b*) | 33.24 | 18.8 | 43.2 | 6.40 | 13.65 |
Aril color (L*) | 45.74 | 19.13 | 57.94 | 8.72 | 8.36 |
Aril color (a*) | 17.00 | 5.93 | 31.43 | 7.00 | 19.55 |
Aril color (b*) | 18.55 | 11.23 | 23.68 | 2.60 | 11.19 |
Aril firmness (N) | 5.99 | 4.07 | 8.61 | 0.96 | 17.95 |
Seed texture (N) | 68.07 | 31.01 | 98.31 | 20.71 | 9.82 |
Cluster No. | No. of Accessions | Accession Name |
---|---|---|
Cluster I | 14 | IC-318720; IC-318723; IC-318734; IC-318762; IC-318754; IC-318779; IC-318790; IC-318705; IC-318753; IC-318728; IC-318703; IC-318724; IC-318706; IC-318707 |
Cluster II | 11 | P-16; P-26; G-137; Ganesh; P-13; KRS; P-23; Jallore seedless; Dholka; Jyoti; Muscat |
Cluster III | 5 | 1181; 1182; IC-318712; IC-318793; Acc no 1 |
Cluster IV | 3 | Co-white; Yercaud-1; IC-24685 |
Cluster V | 3 | Bhagawa; Phule Arakta; Ruby |
Cluster VI | 2 | Gul e Shah Red; Gul e Shah Rose Pink |
Cluster VII | 1 | IC-318749 |
Cluster VIII | 1 | Kabul Yellow |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | |
Cluster 1 | 51.48 | 436.24 | 195.24 | 337.36 | 697.73 | 322.51 | 296.95 | 280.10 |
Cluster 2 | 52.55 | 511.87 | 267.57 | 223.89 | 316.56 | 659.13 | 192.80 | |
Cluster 3 | 76.66 | 335.51 | 623.11 | 320.18 | 154.67 | 363.14 | ||
Cluster 4 | 100.70 | 416.07 | 267.25 | 431.94 | 217.86 | |||
Cluster 5 | 85.20 | 262.19 | 745.37 | 437.75 | ||||
Cluster 6 | 125.75 | 376.27 | 352.11 | |||||
Cluster 7 | - | 605.46 | ||||||
Cluster 8 | - |
Parameter (Unit) | Mean | Min | Max | SD | CV (%) |
---|---|---|---|---|---|
TAA (mg/100 mL AA eq) | 29.21 | 10.74 | 34.70 | 5.51 | 18.86 |
TP (mg/mL GA eq) | 1523.80 | 875.00 | 2919.00 | 333.31 | 21.87 |
ANT (mg/100 mL c3g eq) | 2.82 | 0.15 | 21.75 | 4.68 | 165.59 |
AA (mg/100 mL) | 12.25 | 5.00 | 20.00 | 3.01 | 24.60 |
SSR Locus | Na | PIC | Ho | SSR Locus | Na | PIC | Ho |
---|---|---|---|---|---|---|---|
PGKVR024 | 2 | 0.13 | 0.14 | PGKVR088 | 2 | 0.09 | 0.09 |
PGKVR025 | 2 | 0.19 | 0.21 | PGKVR092 | 2 | 0.13 | 0.14 |
PGKVR028 | 2 | 0.05 | 0.05 | PGKVR093 | 3 | 0.42 | 0.50 |
PGKVR030 | 2 | 0.05 | 0.05 | PGKVR098 | 3 | 0.34 | 0.41 |
PGKVR033 | 3 | 0.43 | 0.50 | PGKVR111 | 2 | 0.17 | 0.18 |
PGKVR035 | 2 | 0.31 | 0.38 | PGKVR114 | 2 | 0.19 | 0.22 |
PGKVR037 | 2 | 0.32 | 0.40 | PGKVR121 | 2 | 0.37 | 0.49 |
PGKVR038 | 2 | 0.13 | 0.14 | PGKVR123 | 2 | 0.13 | 0.14 |
PGKVR045 | 4 | 0.51 | 0.59 | PGKVR128 | 2 | 0.33 | 0.42 |
PGKVR048 | 3 | 0.56 | 0.63 | PGKVR131 | 3 | 0.10 | 0.10 |
PGKVR052 | 2 | 0.30 | 0.37 | PGKVR133 | 2 | 0.37 | 0.50 |
PGKVR053 | 2 | 0.09 | 0.10 | PGKVR135 | 2 | 0.19 | 0.22 |
PGKVR078 | 2 | 0.37 | 0.49 | PGKVR136 | 2 | 0.25 | 0.29 |
PGKVR081 | 3 | 0.40 | 0.47 | PGKVR142 | 2 | 0.23 | 0.26 |
PGKVR086 | 2 | 0.13 | 0.14 |
Number | Name | Accession Number | Type | Origin |
---|---|---|---|---|
1 | 1181 | IC-524027 | Feral | Nainital, Uttarakhand |
2 | 1182 | IC-524028 | Feral | Nainital, Uttarakhand |
3 | Acc. No. 1 | IC-599594 | Feral | Jammu, Jammu, and Kashmir |
4 | Phule Arakta | IC-565445 | Commercial variety | MPKV, Rahuri, Maharashtra |
5 | Bhagawa | IC-565446 | Commercial variety | MPKV, Rahuri, Maharashtra |
6 | Co-white | IC-595404 | Cultivated variety | TNAU, Tamil Nadu |
7 | Dholka | IC-418167 | Cultivated variety | Gujarat |
8 | G-137 | IC-418166 | Cultivated variety | MPKV, Rahuri, Maharashtra |
9 | Ganesh | IC-418154 | Commercial variety | MPKV, Rahuri, Maharashtra |
10 | Gul-e-Shah Red | - | Foreign variety | Russia (formerly USSR) |
11 | Gul-e-Shah Rose Pink | IC-418171 | Foreign variety | Russia (formerly USSR) |
12 | IC-24685 | IC-24685 | Indigenous cultivar | Banda, Uttar Pradesh |
13 | IC-318703 | IC-318703 | Feral | Mandi, Himachal Pradesh |
14 | IC-318705 | IC-318705 | Feral | Mandi, Himachal Pradesh |
15 | IC-318706 | IC-318706 | Feral | Mandi, Himachal Pradesh |
16 | IC-318707 | IC-318707 | Feral | Mandi, Himachal Pradesh |
17 | IC-318712 | IC-318712 | Feral | Mandi, Himachal Pradesh |
18 | IC-318720 | IC-318720 | Feral | Mandi, Himachal Pradesh |
19 | IC-318723 | IC-318723 | Feral | Mandi, Himachal Pradesh |
20 | IC-318724 | IC-318724 | Feral | Mandi, Himachal Pradesh |
21 | IC-318728 | IC-318728 | Feral | Mandi, Himachal Pradesh |
22 | IC-318734 | IC-318734 | Feral | Mandi, Himachal Pradesh |
23 | IC-318749 | IC-318749 | Feral | Shimla, Himachal Pradesh |
24 | IC-318753 | IC-318753 | Feral | Shimla, Himachal Pradesh |
25 | IC-318754 | IC-318754 | Feral | Shimla, Himachal Pradesh |
26 | IC-318762 | IC-318762 | Feral | Shimla, Himachal Pradesh |
27 | IC-318779 | IC-318779 | Feral | Solan, Himachal Pradesh |
28 | IC-318790 | IC-318790 | Feral | Solan, Himachal Pradesh |
29 | IC-318793 | IC-318793 | Feral | Solan, Himachal Pradesh |
30 | Jallore seedless | IC-418164 | Cultivated variety | CIAH, Bikaner, Rajasthan |
31 | Jyoti | IC-595403 | Cultivated variety | UAS, Bengaluru, Karnataka |
32 | Kabul Yellow | IC-418155 | Foreign variety | Afghanistan |
33 | KRS | IC-595401 | Local cultivar | Karnataka |
34 | Muscat | IC-418165 | Foreign variety | Muscat, Oman |
35 | P-13 | IC-595415 | Cultivated variety | MPKV, Rahuri, Maharashtra |
36 | P-16 | IC-595417 | Cultivated variety | MPKV, Rahuri, Maharashtra |
37 | P-23 | IC-418168 | Cultivated variety | MPKV, Rahuri, Maharashtra |
38 | P-26 | IC-418170 | Cultivated variety | MPKV, Rahuri, Maharashtra |
39 | Ruby | IC-418158 | Commercial variety | IIHR, Bengaluru, Karnataka |
40 | Yercaud-1 | IC-418172 | Cultivated variety | TNAU, Tamil Nadu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parashuram, S.; Singh, N.V.; Gaikwad, N.N.; Corrado, G.; Roopa Sowjanya, P.; Basile, B.; Devaraja, N.S.; Chandra, R.; Babu, K.D.; Patil, P.G.; et al. Morphological, Biochemical, and Molecular Diversity of an Indian Ex Situ Collection of Pomegranate (Punica granatum L.). Plants 2022, 11, 3518. https://doi.org/10.3390/plants11243518
Parashuram S, Singh NV, Gaikwad NN, Corrado G, Roopa Sowjanya P, Basile B, Devaraja NS, Chandra R, Babu KD, Patil PG, et al. Morphological, Biochemical, and Molecular Diversity of an Indian Ex Situ Collection of Pomegranate (Punica granatum L.). Plants. 2022; 11(24):3518. https://doi.org/10.3390/plants11243518
Chicago/Turabian StyleParashuram, Shilpa, Nripendra Vikram Singh, Nilesh Nivrutti Gaikwad, Giandomenico Corrado, P. Roopa Sowjanya, Boris Basile, Nitesh Shirur Devaraja, Ram Chandra, Karuppannan Dhinesh Babu, Prakash Goudappa Patil, and et al. 2022. "Morphological, Biochemical, and Molecular Diversity of an Indian Ex Situ Collection of Pomegranate (Punica granatum L.)" Plants 11, no. 24: 3518. https://doi.org/10.3390/plants11243518
APA StyleParashuram, S., Singh, N. V., Gaikwad, N. N., Corrado, G., Roopa Sowjanya, P., Basile, B., Devaraja, N. S., Chandra, R., Babu, K. D., Patil, P. G., Kumar, P., Singh, A., & Marathe, R. A. (2022). Morphological, Biochemical, and Molecular Diversity of an Indian Ex Situ Collection of Pomegranate (Punica granatum L.). Plants, 11(24), 3518. https://doi.org/10.3390/plants11243518