Biophysical Equations and Pressure Probe Experiments to Determine Altered Growth Processes after Changes in Environment, Development, and Mutations
Abstract
:1. Introduction
- (i)
- Introduction,
- (ii)
- Objective,
- (iii)
- Pre-analysis employing the biophysical equations,
- (iv)
- Relevant experimental results and/or additional theoretical findings,
- (v)
- Post-analysis employing the biophysical equations,
- (vi)
- Discussion,
- (vii)
- Conclusions, and
- (viii)
- Recommendations.
2. Case 1: An Increase in Light Intensity Elicits an Increase in Growth Rate
2.1. Introduction
2.2. Objective
2.3. Pre-Analyses
2.4. Experimental Results
2.5. Post-Analyses
2.6. Discussion
2.7. Conclusions
2.8. Recommendations
3. Case 2: A Comparison of the Biophysical Variables for Two Different Stages of Development
3.1. Introduction
3.2. Objective
3.3. Pre-Analyses
3.4. Experimental Results and Theoretical Findings
3.5. Post-Analyses
3.6. Discussion
3.7. Conclusions
3.8. Recommendations
4. Case 3—A Decrease in Temperature Terminates Elongation Growth
4.1. Description
4.2. Objective
4.3. Pre-Analyses
4.4. Experimental Results
4.5. Post-Analyses
4.6. Discussion
4.7. Conclusions
4.8. Recommendations
5. Case 4—Growth Mutants
5.1. Description
5.2. Objective
5.3. Pre-Analyses
5.4. Experimental Results
5.5. Post-Analyses
5.6. Discussion
5.7. Conclusions
5.8. Recommendations
6. Discussion
6.1. Overview
6.2. Biological Meaning of the Biophysical Variables (πi, Lp, vT, φ, ε, and PC)
6.3. Systematic Method for Analyses of Expansive Growth of Walled Cells
6.4. Global and Local Equations
6.5. Analyses in Plant Tissue
6.6. Analyses with Dimensionless Numbers
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Definitions and Description of Individual Variables and Terms
area of the plasma membrane |
Ac cross-section area of a cylindrical cell |
of the plasma membrane |
time |
volume |
of the cell wall chamber |
of water in the cell |
of water lost through transpiration |
Appendix B. Calculations
Appendix B.1. Values for Interval 1 (T = 23 °C)
Appendix B.2. Values for Interval 2 (T = 8 °C)
Appendix B.3. Values for Interval 3 (T = 8 °C)
Appendix B.4. Values for Interval 4 (T = 8 °C)
Appendix C. Calculations of Πpv and Πev for Wild-Type, C149, and C216 Stage IV Sporangiophores
Appendix D. Additional Sets of Global Biophysical Equations That Can be Used with Pressure Probe Experiments
Appendix D.1. Set of Global Biophysical Equations, When P = Constant and vT Is Zero
Appendix D.2. Set of Dimensionless Global Biophysical Equations
Appendix D.3. Set of Global Biophysical Equations for Plant Tissue When the Pressure in the Cell Wall Is Not Zero
References
- Ortega, J.K.E. Governing equations for plant cell growth. Physiol. Plant. 1990, 79, 116–121. [Google Scholar] [CrossRef]
- Geitmann, A.; Ortega, J.K.E. Mechanics and modeling of plant cell growth. Trends Plant Sci. 2009, 14, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.K.E. Plant cell growth in tissue. Plant Physiol. 2010, 154, 1244–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steudle, E. Pressure probe techniques: Basic principles and application to studies of water and solute relations at the cell, tissue and organ level. In Water Deficits; Smith, J.A.C., Griffiths, H., Eds.; BIOS Scientific Publishers Limited: Oxford, UK, 1993; pp. 5–36. [Google Scholar]
- Ortega, J.K.E. Dimensional analysis of expansive growth of cells with walls. Res. Rev. J. Bot. Sci. 2016, 5, 17–24. [Google Scholar]
- Ortega, J.K.E. Dimensionless number is central to stress relaxation and expansive growth of the cell wall. Sci. Rep. 2017, 7, 3016. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.K.E. Dimensionless numbers for plant biology. Trends Plant Sci. 2018, 23, 6–9. [Google Scholar] [CrossRef]
- Ortega, J.K.E. Dimensionless numbers to analyze expansive growth processes. Plants 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Cerda-Olmedo, E.; Lipson, E.D. Phycomyces; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1987. [Google Scholar]
- Ortega, J.K.E.; Manica, K.J.; Keanini, R.G. Phycomyces: Turgor pressure behavior during the light and avoidance growth responses. Photobiol. Photochem. 1988, 48, 697–703. [Google Scholar] [CrossRef]
- Lockhart, J.A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 1965, 8, 264–275. [Google Scholar] [CrossRef]
- Ortega, J.K.E.; Zehr, E.G.; Keanini, R.G. In vivo creep and stress relaxation experiments to determine the wall extensibility and yield threshold for the sporangiophores of Phycomyces. Biophys. J. 1989, 56, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.K.E.; Keanini, R.G.; Manica, K.J. Pressure probe technique to study transpiration in Phycomyces sporangiophores. Plant Physiol. 1988, 87, 11–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proseus, T.; Ortega, J.K.E.; Boyer, J.S. Separating growth from elastic deformation during cell enlargement. Plant Physiol. 1999, 119, 775–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, C.M.; Ortega, J.K.E. Dimensionless numbers to study cell wall deformation of stiff mutants of Phycomyces blakesleeanus. Plant Direct 2019, 3, e00195. [Google Scholar] [CrossRef] [Green Version]
- Passioura, J.B.; Fry, S.C. Turgor and cell expansion: Beyond the Lockhart equation. Austral. J. Plant Physiol. 1992, 19, 565–576. [Google Scholar] [CrossRef]
- Ortega, J.K.E.; Truong, J.T.; Munoz, C.M.; Ramirez, D.G. Cell wall loosening in the fungus Phycomyces Blakesleeanus. Plants 2015, 4, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Herrera, J. Fungal Cell Wall: Structure, Synthesis, and Assembly, 2nd ed.; Taylor & Francis Group CRC Press: Boca Raton, FL, USA, 2012; pp. 1–183. [Google Scholar]
- Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.K.E. A quantitative biophysical perspective of expansive growth for cells with walls. In Recent Research Development in Biophysics; Pandalai, S.G., Ed.; Transworld Research Network: Kerala, India, 2004; Volume 3, pp. 297–324. [Google Scholar]
- Ortega, J.K.E.; Smith, M.E.; Erazo, A.J.; Espinosa, M.A.; Bell, S.A.; Zehr, E.G. A comparison of cell-wall-yielding properties for two developmental stages of Phycomyces sporangiophores: Determination by in-vivo creep experiments. Planta 1991, 183, 613–619. [Google Scholar] [CrossRef]
- Cosgrove, D.J.; Ortega, J.K.E.; Shropshire, W., Jr. Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores. Biophys. J. 1987, 51, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.K.E. Pressure probe methods to measure transpiration in single cells. In Water Deficits; Smith, J.A.C., Griffiths, H., Eds.; BIOS Scientific Publishers Limited: Oxford, UK, 1993; pp. 73–86. [Google Scholar]
- Proseus, T.E.; Zhu, G.L.; Boyer, J.S. Turgor, temperature and the growth of plant cells: Using Chara corallina as a model system. J. Exp. Bot. 2000, 51, 1481–1494. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.K.E.; Mohan, R.P.; Munoz, C.M.; Lalitha Sridhar, S.; Vernerey, F.J. Phycomyces: Helical growth during the phototropic and avoidance responses, and in stiff mutants. Sci. Rep. 2021, 11, 3653. [Google Scholar] [CrossRef]
- Bergman, K.; Eslava, A.P.; Cerda-Olmedo, E. Mutants of Phycomyces with abnormal phototropism. Mol. Gen. Genet. 1973, 123, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ootaki, T.; Fisher, E.P.; Lockhart, P. Complementation between mutants of Phycomyces with abnormal phototropism. Mol. Gen. Genet. 1974, 131, 233–246. [Google Scholar] [CrossRef]
- Ootaki, T.; Miyazaki, A. Genetic Nomenclature and Strain Catalogue of Phycomyces; Institute of Genetic Ecology, Tohoku University: Sendai, Japan, 1993. [Google Scholar]
- Ortega, J.K.E.; Munoz, C.M.; Blakley, S.E.; Truong, J.T.; Ortega, E.L. Stiff mutant genes of Phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate. Front. Plant Sci. 2012, 3, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, D.J. Plant cell wall extensibility: Connecting plant cell growth with cell wall structure, mechanics, and the action of wall modifying enzymes. J. Exp. Bot. 2016, 67, 463–476. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Diffuse growth of plant cell walls. Plant Physiol. 2018, 176, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 2000, 407, 321–326. [Google Scholar] [CrossRef]
- Zhou, J.; Kang, L.; Liu, C.; Niu, X.; Wang, X.; Liu, H.; Zhang, W.; Liu, Z.; Latgé, J.-P.; Yuan, S. Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinereal. Appl. Environ. Microbiol. 2019, 85, e00532-19. [Google Scholar] [CrossRef] [Green Version]
- Rayle, D.L.; Cleland, R.E. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 1992, 99, 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Proseus, T.E.; Boyer, J.S. Calcium deprivation disrupts enlargement of Chara corallina cells: Further evidence for the calcium pectate cycle. J. Exp. Bot. 2012, 63, 3953–3958. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.K.E.; Welch, S.W.J. Mathematical models for expansive growth of cells with walls. Math. Model. Nat. Phenom. 2013, 8, 35–61. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, S.L.; Ortega, J.K.E.; Vernerey, F.J. A statistical model of expansive growth in plant and fungal cells: The case of Phycomyces. Biophys. J. 2018, 115, 2428–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, D.J. Cell wall yield properties of growing tissue; evaluation by in vivo stress relaxation. Plant Physiol. 1985, 78, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, R.; Ortega, J.K.E. A new pressure probe method to determine the average volumetric elastic modulus of cells in plant tissue. Plant Physiol. 1995, 107, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geer, G.A.; Wold, M.P.; Bottger, B.; Gamow, R.I. Phycomyces: Control of transpiration and the anemotropic reversal. Exp. Mycol. 1990, 14, 268–273. [Google Scholar] [CrossRef]
- Cosgrove, D.J. How do plant cell walls extend? Plant Physiol. 1993, 102, 1–6. [Google Scholar] [CrossRef] [Green Version]
Variable (Units) | P. blakesleeanus (Stage I) Mean ± SE (n) | P. blakesleeanus (Stage IV) Mean ± SE (n) |
---|---|---|
v (h−1) | 0.021 ± 0.002 (17) | 0.068 ± 0.006 (20) |
P (MPa) | 0.48 ± 0.02 (17) | 0.32 ± 0.01 (20) |
PC (MPa) | 0.40 ± 0.03 (17) | 0.26 ± 0.01 (20) |
P − PC (MPa) | 0.08 ± 0.01 (17) | 0.05 ± 0.01 (20) |
ϕ (h−1 MPa−1) | 0.35 ± 0.06 (17) | 2.00 ± 0.33 (20) |
ε (MPa) | 68.9 ± 5.6 (27) | 60.9 ± 5.1 (27) |
Variable (Units) | P. blakesleeanus (Stage I) Mean ± SE (n) | P. blakesleeanus (Stage IV) Mean ± SE (n) |
---|---|---|
πi (MPa) | 1.15 ± 0.05 (16) * | 1.15 ± 0.05 (16) * |
Lp (cm s−1 bar−1) | 6.88 ± 0.5 × 10−6 (47) | 1.96 ± 0.5 × 10−6 (42) |
vT (h−1) | ---- | 0.12 |
Variable (Units) | T1 = 296 °K (23 °C) | T2 = 281 °K (8 °C) |
---|---|---|
v (h−1) | v1= vo | v2= 0 |
P (MPa) | P1 = Po | P2 ≈ (0.92) Po |
πi (MPa) | π1 = πo | π2 = (T2/T1) πo |
Lp (h−1 MPa−1) | Lp1 = Lpo | Lp2 = (0.77) Lpo |
Variable (Units) | T1 = 23 °C Interval 1 | T2 = 8 °C Interval 2 | T3 = 8 °C Interval 3 | T4 = 8 °C Interval 4 |
---|---|---|---|---|
v (h−1) | 0.013 | 0.0 | 0.004 | 0.006 |
P (MPa) | 0.57 | 0.52 | 0.60 | 0.65 |
PC (MPa) | ---- | 0.52 | 0.50 | 0.59 |
P – PC (MPa) | ---- | 0.0 | 0.10 | 0.06 |
ϕ (h−1 MPa−1) | ---- | 0.05 | 0.04 | 0.10 |
ε (MPa) | ---- | 41.0 | 31.0 | 37.0 |
Variable (Units) | Wild Type Mean ± SE (n) | C216 Mean ± SE (n) | C149 Mean ± SE (n) |
---|---|---|---|
v (h−1) | 0.07 ± 0.01 (20) | 0.07 ± 0.01 (18) | 0.06 ± 0.01 (8) |
P (MPa) | 0.32 ± 0.01 (20) | 0.40 ± 0.01 (18) | 0.41 ± 0.02 (8) |
PC (MPa) | 0.26 ± 0.01 (20) | 0.13 ± 0.05 (18) | 0.18 ± 0.08 (8) |
P − PC (MPa) | 0.05 ± 0.01 (20) | 0.27± 0.05 (18) | 0.23 ± 0.06 (8) |
ϕ (h−1 MPa−1) | 2.00 ± 0.33 (20) | 0.44 ± 0.08 (18) | 0.34 ± 0.06 (8) |
ε (MPa) | 60.9 ± 5.1 (27) * | 52.6 ± 4.4 (25) ** | 67.7 ± 7.3 (18) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, J.K.E. Biophysical Equations and Pressure Probe Experiments to Determine Altered Growth Processes after Changes in Environment, Development, and Mutations. Plants 2022, 11, 302. https://doi.org/10.3390/plants11030302
Ortega JKE. Biophysical Equations and Pressure Probe Experiments to Determine Altered Growth Processes after Changes in Environment, Development, and Mutations. Plants. 2022; 11(3):302. https://doi.org/10.3390/plants11030302
Chicago/Turabian StyleOrtega, Joseph K. E. 2022. "Biophysical Equations and Pressure Probe Experiments to Determine Altered Growth Processes after Changes in Environment, Development, and Mutations" Plants 11, no. 3: 302. https://doi.org/10.3390/plants11030302
APA StyleOrtega, J. K. E. (2022). Biophysical Equations and Pressure Probe Experiments to Determine Altered Growth Processes after Changes in Environment, Development, and Mutations. Plants, 11(3), 302. https://doi.org/10.3390/plants11030302