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Abstract: Glucosinolates (GSLs) are sulphur- and nitrogen-containing secondary metabolites im-
plicated in the fitness of Brassicaceae and appreciated for their pungency and health-conferring
properties. In Indian mustard (Brassica juncea L.), GSL content and composition are seed-quality-
determining traits affecting its economic value. Depending on the end use, i.e., condiment or oil,
different GSL levels constitute breeding targets. The genetic control of GSL accumulation in Indian
mustard, however, is poorly understood, and current knowledge of GSL biosynthesis and regulation
is largely based on Arabidopsis thaliana. A genome-wide association study was carried out to dissect
the genetic architecture of total GSL content and the content of two major GSLs, sinigrin and glu-
conapin, in a diverse panel of 158 Indian mustard lines, which broadly grouped into a South Asia
cluster and outside-South-Asia cluster. Using 14,125 single-nucleotide polymorphisms (SNPs) as
genotyping input, seven distinct significant associations were discovered for total GSL content, eight
associations for sinigrin content and 19 for gluconapin. Close homologues of known GSL structural
and regulatory genes were identified as candidate genes in proximity to peak SNPs. Our results
provide a comprehensive map of the genetic control of GLS biosynthesis in Indian mustard, including
priority targets for further investigation and molecular marker development.

Keywords: Brassica juncea; genome-wide association studies; glucosinolates (GSL); seed quality

1. Introduction

Glucosinolates (GSLs) are a class of well-studied sulphur (S)- and nitrogen (N)- con-
taining secondary metabolites almost exclusively found in Brassicaceae, which include the
economically and nutritionally important crops B. napus (canola and rapeseed), B. juncea
(Indian mustard), B. oleracea (cabbage) and B. rapa (Chinese cabbage, turnip) [1–3]. Most
of our knowledge on GSL biosynthesis, its regulation and its links to other metabolic
pathways is based on the closely related model plant, Arabidopsis thaliana [1,4,5]. GSLs
are categorised into three major classes, depending on the amino acid they are derived
from: (i) aliphatic GSLs, predominantly derived from methionine and, to a lesser extent,
from leucine, isoleucine and valine; (ii) aromatic GSLs, mostly derived from phenylala-
nine or tyrosine and (iii) indolic GSLs, derived from tryptophan. The synthesis of GSLs
proceeds in three major steps: (i) chain elongation of precursor amino acids (only for
methionine and phenylalanine), (ii) GSL core structure formation and (iii) GSL side chain
modification. A recent comprehensive inventory from the literature and pathway databases
(KNApSAcK, KEGG and AraCyc) listed as many as 113 genes associated with GSLs in
Arabidopsis that were identified and characterised over the last two decades [4]. This in-
cludes 53 biosynthetic genes found in the KEGG or AraCyc databases, 32 experimentally
confirmed biosynthetic genes, 23 transcriptional components and five transporters. While
the GSL biosynthetic pathways are well understood in Arabidopsis, the respective regulatory
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and metabolic networks in the allotetraploid Brassica crops (B. napus and B. juncea) are
suggested to be much more complex due to their intricate evolutionary history [6].

Indian mustard is an economically important Brassica, cultivated for two distinct
markets. In India, Bangladesh, China and the Ukraine, and more recently in Canada and
Australia, it is grown as an oilseed crop [7]. On the other hand, in Europe, North America,
Argentina and China, it is primarily grown for condiment production (e.g., mustard and
“wasabi” paste). Both end uses rely on GSL content as a trait to be selected either for or
against during varietal improvement. “Canola” is a trademark term of the Canadian Canola
Association used to describe rape or oilseed cultivars with “double low” GSLs (<30 µmol/g
in defatted seed meal) and less than 2% erucic acid [8]. In B. juncea grown as a canola-type
oilseed crop, GSLs have largely been selected against, which enables seed meal to be used
for animal feed after oil extraction. Breeding for low-GSL B. juncea was spearheaded by
Canadian breeders through the introgression of low-GSL “Bronowski” alleles from canola
B. napus into an Indian high-GSL B. juncea line [9]. The resulting donor genotype for the
low-GSL trait has been extensively used in breeding for low GSLs in Canadian and Aus-
tralian germplasm [10]. As such, canola-quality B. juncea has become a viable alternative
oil crop [11–13]. For the condiment market, high GSL levels, high sinigrin in particular, are
desirable [14]. Sinigrin, when hydrolysed, produces allyl-isothiocyante (AITCs), including
sulphoraphane, responsible for the pungency of mustard and demonstrated to possess tu-
mour suppression properties [15,16]. Notably, Indian mustard predominantly accumulates
the aliphatic GSLs 2-propenyl-GSL (sinigrin) and 3-butenyl-GSL (gluconapin), and, to a
lesser extent, 2-hydroxy-3-butenyl-GSL (progoitrin) [14,17,18].

Enhancing the health-beneficial GSL levels in varieties aimed for vegetable or condi-
ment use and reducing the overall GSL and erucic acid levels, while increasing desirable
fatty acids in oilseed cultivars, remain among the key seed quality traits for B. juncea
variety improvement [17]. A better understanding of the genetic bases of trait variation and
corresponding beneficial alleles would aid in the development of molecular markers for
varietal improvement and an accelerated rate of genetic gain [19,20]. Earlier, classical QTL
mapping deciphered beneficial allelic variations for seed quality traits in B. juncea [21–23].
Recently, genome-wide association study (GWAS) has become the more popular choice
to dissect the genetic basis of these complex traits. Compared with classical quantitative
trait locus (QTL) mapping, which is generally confined to alleles and novel recombina-
tion within a bi-parental population, GWAS is able to tap into the allelic pool of broader
populations that have undergone natural and artifical selection throughout domestication
history. Since GWAS utilises a broader allelic pool, more variation is investigated. Fur-
thermore, actual causal variants tend to be much closer to detected associated markers in
GWAS, owing to the longer recombination history than in the case of a bi-parental popu-
lation. As a result, GWAS offers a higher mapping resolution of the underlying genomic
regions associated with the trait of interest. In Brassica crops, GWAS has been successfully
employed for dissecting the genetic architecture of seed quality traits such as GSL accumu-
lation, fatty acid composition and shattering resistance [24–28]. In B. juncea, high-density
single-nucleotide polymorphisms (SNPs) were identified through different strategies, in-
cluding double-digest restriction-associated DNA (dd-RAD) [29], RNA sequencing [30],
specific-locus amplified fragment sequencing (SLAF-seq) [31], genotyping-by-sequencing
(GBS) [29] and resequencing [17]. With these, GWAS has been utilised to investigate seed
GSL content using high-density SNPs [17,32]. Akhatar et al., 2020, employed GWAS for
seed quality traits including GSL content at varying nitrogen levels under field conditions,
while Yang et al., 2021, performed GWAS on a set of vegetable and oilseed B. juncea, in
conjunction with deploying two new genome sequences representing vegetable and oilseed
varieties. Among the candidate genes proposed in these studies, only a MYB28, a major
regulatory gene for aliphatic GSL biosynthesis, could be linked to the current inventory [4]
of GSL genes in Arabidopsis. This suggests that a large number of possible genetic mecha-
nisms may yet be uncovered through GWAS. Thus, the aim of this study was to perform
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GWAS on a set of oilseed Indian mustard to further elucidate the genetic basis and add to
the current understanding of seed GSL accumulation in Indian mustard.

2. Results
2.1. Genotype Data

A total of 69,594 SNP sites, with 61,931 (89%) anchored onto chromosomes, was
obtained from the variant calling. An initial filtering for SNPs anchored onto chromosomes
for 60% call rate, non-maf (minor allele frequency) filtered and 10% maximum marker
heterozygosity resulted in 15,263 SNPs (26% overall with missing SNP calls), and missing
states were imputed. Following imputation, a final set of 14,125 SNPs resulted from filtering
for 5% minor allele frequency and 20% maximum heterozygosity and was used for GWAS.

2.2. Cluster, Population Structure and Principal Component Analyses of B. juncea Diverse Panel

The diversity panel consisted of 158 accessions from 28 countries, representing South
Asia (53%, mostly from India and Pakistan), Asia (13%, other than South Asia), Europe (11%),
North America (6%), Australia (6%), Africa (6%) and unknown origin (8%) (Table S1). Three
approaches—(i) hierarchical clustering, (ii) population structure and (iii) PCA—revealed a
genetic structure composed of two population clusters broadly reflecting geographical origin.
UPGMA-based hierarchical clustering revealed one major cluster comprising accessions from
the South Asian countries of India and Pakistan (blue-coloured branches), while the other
major cluster contained accessions from outside of South Asia (green-coloured branches)
(Figure 1a). Not all lines, however, matched this trend, including a few accessions from India,
Nepal, Afghanistan and Bangladesh that located within the outside-South-Asia cluster and
a few entries from Europe, Zimbabwe and China that fell within the South Asia cluster. A
third minor cluster was largely composed of accessions from China and a few from Bhutan.
ADMIXTURE suggested a similar structure as UPGMA (Figure 1b). At K = 2, cluster 1 was
composed of accessions from India and Pakistan, while cluster 2 was mostly composed of
accessions from outside India and Pakistan, a trend consistent with a previous report [20].
Using a 70% membership probability cut-off at K = 2, 46% of accessions fell into cluster 1
while 37% of accessions fell into cluster 2, and the remaining 17% were classified as admixed
samples. The admixed samples comprised 13 South Asian (India, Bangladesh, Afghanistan,
Nepal and Bhutan) accessions and 14 accessions from outside South Asia. With increasing K
until K = 4, geographical origin was still traceable to clustering. At K = 3, accessions from India
and Pakistan were dispersed into clusters 1 and 2, while accessions from outside India and
Pakistan mostly constituted cluster 3. This was similar at K = 4, with further sub-structuring
of accessions from outside India and Pakistan comprising clusters 3 and 4. A ten-fold cross
validation error plot of ADMIXTURE runs using K = 1 to 12 (Figure 1c) showed that the error
started to plateau at K = 4, suggesting this as a sensible K choice, while the lowest error was
observed at K = 8. A PC plot reflecting the K = 2 assignment of ADMIXTURE clearly separated
the two clusters at PC1 with admix samples interspersed between the clusters (Figure 1d).
Further, only 18.7% of variation was explained by PC1, with succeeding PCs explaining less
than 5% of variation.

2.3. Variance Components, Basic Descriptive Statistics and Correlations between Total GSLs,
Sinigrin and Gluconapin

Residual distribution showed an approximately normal distribution with a mean of
zero for total GSLs, sinigrin and gluconapin (Figure S1). Sinigrin and gluconapin com-
bined accounted for ~95–99% of the total GSLs for nearly all samples in the diverse panel
(Supplemental File S1). Nearly the entire proportion of variation for total GSLs, sinigrin
and gluconapin concentrations was accounted for by the samples, based on variance com-
ponents analysis using Restricted Maximum Likelihood (REML) (Table S2). This was
further reflected by high broad heritability values of ~98% for the single major GLSs sin-
igrin and gluconapin, and a slightly lower value of ~88% for the total GSLs. Sinigrin
had a higher range of concentrations (1.61–225.09 µmol/g−1) compared to gluconapin
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(0.01–174.57 µmol/g−1). However, the gluconapin concentration was more variable, with
a coefficient of variation (CV) of 108% compared to sinigrin concentrations with a CV of
79.61%. Figure 2 reflects the distribution of raw values of total GSLs (Figure 2a), gluconapin
(Figure 2b) and sinigrin (Figure 2c) concentrations matched with the cluster assignment
from ADMIXTURE. Notably, accessions in different clusters accumulated different single
major GSLs (Figure 2b,c). As reflected in the distributions, cluster 1 and a few admixed
samples predominantly accumulated gluconapin, while the majority of cluster 2 and ad-
mixed samples lacked gluconapin. Contrastingly, cluster 2 and the majority of admixed
samples predominantly accumulated sinigrin, while most of cluster 1 still accumulated
sinigrin at the lower ranges (Figure 2c). Given this finding, we compared the correlations
of sinigrin and gluconapin with total GSLs in the full panel and within the clusters in
which it predominantly accumulated (Figure 2d–g). Gluconapin had a weak correlation
(r = 0.08, non-significant) with total GSLs in the full panel (Figure 2d) and a moderately
positive correlation (r = 0.56) in cluster 1 (Figure 2f). A few outlier points in cluster 1
(Figure 2f) accumulated high sinigrin as their major GSL. While there was only a moderate
correlation (r = 0.51) between sinigrin and total GSLs in the full panel (Figure 2e), a near
perfect positive correlation (r = 0.99) was observed in cluster 2 (Figure 2g). The five outlier
samples in cluster 2 (Figure 2g) comprised four accessions accumulating lower sinigrin
concentrations, although it was still their major GSL, and one accession that accumulated
high gluconapin as its major GSL. There were non-significant weak correlations of sinigrin
and gluconapin with total GSLs within the clusters where they were not predominantly
accumulated (Figure S2a,b). Sinigrin and gluconapin had significant negative correlations,
having the strongest negative value (r = −0.64) in the full panel and a weak (r = −0.37) to
moderate (r = −0.37) value within clusters 1 and 2, respectively (Figure S2c–e).

2.4. GWAS Using Multiple Models

Four GWAS models were tested and resulting q-q plots in each traits (Figure S3) were
compared to assess which models best limited spurious associations, due to structure and
relatedness. BLINK and FarmCPU returned a better correlation between observed and
expected −log10 p-values in the lower range and returned a limited number of deviations
at high log10 p-values. SUPER returned highly inflated −log10 p-values even in the lower
ranges, suggestive that many detected loci were from spurious associations, which might
also explain the exceptionally high number of significant SNPs detected under this model
(Supplemental File S2). MLMM, despite detecting the lowest number of associations, also
showed p-value inflation to some degree. The Manhattan plots from BLINK and FarmCPU
(Figure 3) displayed a number of single SNPs associated above the Bonferroni threshold for
total GSLs (Figure 3a), sinigrin (Figure 3b) and gluconapin (Figure 3c). BLINK detected
four associated SNPs with the total GSL concentration, two on A02 and one each on A10
and B06, while FarmCPU detected four, one each on chromosomes A02, B01 and B02 and
two on B08 (Figure 3a). One association at SNP A02_11235033 was detected in all four
models (−log10 (p) = 6.09–10.39). The association at B02_725738 from FarmCPU was the
strongest association (−log10 (p) = 9.38) for total GSLs considering only the BLINK and
FarmCPU models. For sinigrin concentration, five SNPs were associated in BLINK, one
SNP each on chromosomes A01, B01 and B08 and two on B04 (Figure 3b). FarmCPU also
detected five associated SNPs, one each on chromosomes A03, B01 and B06 and two on
B08 (Figure 3b). Two associations, at SNP B01_43311767 (−log10 (p) = 7.51–10.34) and at
SNP B08_24075810 (−log10 (p) = 6.02–7.68), were commonly detected by both models. The
strongest association (−log10 (p) = 10.34) was at SNP B01_43311767 in BLINK. Compared
to total GSLs and sinigrin, more SNPs were found to be significantly associated with
gluconapin concentration. BLINK detected a total of 14 associated SNPs, comprising one
SNP each on chromosomes A03, A06, A08, A10, B02, B03, B04 and B05, two on B01 and four
on A02. FarmCPU returned six associated SNPs on chromosomes A02, A06, A08, B02, B03
and B05. These associations were distinct, although the association at SNP B02_48309648 in
BLINK and SNP B02_48309753 in FarmCPU were only 105 bp apart. SNP B02_48309648
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in BLINK represented the strongest association (−log10 (p) = 17.47). FarmCPU appeared
the most suitable model for total GSLs and sinigrin with respect to the control of spurious
associations as most observed p-values correlated with expected p-values, with only a few
p-values deviating sharply at the tail end (Figure S2a,b). For gluconapin, BLINK associated
a higher number of SNPs, while controlling best for spurious associations (Figure S2c).
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Figure 1. (a) Cluster analysis based on genetic distance using an UPGMA tree with branches coloured
based on geographical origin: India and Pakistan and rest of South Asia (blue), rest of Asia, Europe,
North America, Africa and Australia (green) and unknown origin (yellow). (b) Population structure
as depicted by a sorted bar plot of ancestry proportions for K = 2–4, inferred with ADMIXTURE.
(c) Ten-fold cross-validation error of ADMIXTURE analyses of K = 1 to 12. (d) Principal component
analysis (PCA) coloured based on cluster assignment (threshold of 70% membership probability) at
K = 2 in ADMIXTURE. Orange triangles used for cluster 1, purple squares for cluster 2 and green
dots for admixture cluster.

2.5. Significant GWAS Hits Had Known and Potential GSL Genes in Their Vicinity

The LD decay plot based on 14,125 SNPs suggested no effective LD (threshold of
r2 = 0.1) at distances above 500 kb (Figure S4); hence, the search for potential candidate
genes (using the B. juncea var. tumida V1.5 annotation) proximal to the trait-associated
SNPs was limited to 250 kb upstream and downstream of the SNP position. Based on
their homology with Arabidopsis genes and respective annotation, candidate genes were
classified as known or potential GSL genes (Table 1).
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R = 0.56 , p = 2.5x 10-7R = 0.084, p = 0.29

R = 0.51, p = 1.3 x 10-11 R = 0.99, p < 2.2 x 10-16

Figure 2. Distribution of raw mean values of (a) total GSLs, (b) gluconapin and (c) sinigrin, reflecting
the ADMIXTURE cluster assignment at K = 2 of each accession (orange for cluster 1, purple for cluster
2 and green for admixture cluster). Correlations using log-transformed values of (d) gluconapin
and total GSLs and (e) sinigrin and total GSLs in the full diversity panel. Correlation using log-
transformed values of (f) gluconapin and total GSLs in cluster 1 and (g) sinigrin and total GSLs
in cluster 2. Orange used triangles for cluster 1, purple squares for cluster 2 and green dots for
admixture cluster.

For total GSLs, homologues of two known GSL genes were identified near SNP
A02_3567961, a significant SNP detected in BLINK and explaining around 7% of the ob-
served trait variation (phenotypic variation explained—PVE). These were GSTF11 [33–35]
at 39.61 kb upstream and SCPL17 [36] at 68.54 kb downstream. SNP A02_11235033, the
most reliable association detected in all four models and accounting for 6% PVE, was
located 128.81 kb upstream of a homologue of OBP2, encoding a known regulator of GSL
biosynthesis [37]. SNP B02_7295738, which was detected in both FarmCPU and SUPER
with 11% PVE, was found located near two potential GSL genes. Homologues to the poten-
tial GSL gene amino acid permease 4 (AAP4) at 213.38 kb upstream and SAL1 at 246.34 kb
were found. SNP B08_66155255, detected only in FarmCPU, albeit at 37% PVE, was a
genic SNP within a potential GSL gene, a putative CYP18-3. Moreover, at 17.56 kb, another
potential GSL gene, a putative 2-oxoglutarate-dependent dioxygenase gene was found.

For sinigrin, SNP A03_27702263 with 4% PVE, detected by FarmCPU and SUPER,
had homologues of several known GSL regulatory genes in proximity. These included a
putative MYB28 [38,39] at 118.32 kb upstream, as well as a putative MYB34 [40,41] and
a MAM1 [42,43] homologue at 115.48 kb and 160.65 kb downstream. SNP B04_9016612
with 7% PVE, significant in BLINK, was found close to a homologue of the known GSL
gene FMOGS-OX5 [44,45] at 1.51 kb upstream. B04_17138489 with 12% PVE, which was
significantly associated only in BLINK, was flanked by a potential GSL gene homologous
to phosphoserine aminotransferase 1 (PSAT1) at 12.75 kb.
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For gluconapin, SNP A02_34185026, detected by BLINK at 11% PVE, was found to
be flanking an LSU2 homologue, a potential GSL gene, at 5.75 kb downstream. SNP
A02_34995417 with 1% PVE, detected in BLINK, was found to be located near additional
homologues of MYB28 and MYB34 at 81.62 kb and 96.36 kb downstream, respectively. SNP
A10_999168, solely detected by BLINK, was flanked by potential GSL genes monothiol
glutaredoxin S11 (GRXS11) at 105.45 kb upstream and a UDP-glycosyltransferase 71C3
(UGT71C3) at 115.13 kb downstream. Variation within these two potential GSL genes may
have contributed to the 11% PVE of this SNP. With 7% PVE, SNP B01_44925254, detected
in BLINK and SUPER, was located near potential GSL genes RETICULATA-RELATED 3
(RER3) at 105.45 kb upstream and a Cysteine Synthase D1 (CYSD1) at 213.34 kb upstream.
The strongest association from both BLINK and FarmCPU was only 105 bp apart and was
considered the same association, SNP B02_48309648-753 with 3% PVE. This association was
180 kb upstream of a HY5 homologue, encoding a known regulator of GSL biosynthesis [46].
SNP B03_474869, detected in FarmCPU with 6% PVE, was located near a potential GSL
gene, SULPHUR DEFICIENCY-INDUCED 2 (SDI2), at 23.76 kb. On the other hand, SNP
B03_7408562, detected in BLINK and MLMM, was found to be near a potential GSL gene,
aldehyde dehydrogenase family 2 member B7 (ALDH2B7), located at 135.05 kb downstream.
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Table 1. Peak SNP characteristics and respective candidate genes homologous to known and potential Arabidopsis genes involved in GSL metabolism.

Trait a Peak SNP p-Value PVE b Model c Candidate Gene Homologous Gene
in Arabidopsis

% Amino Acid
Identity

Distance to
Peak SNP [kb] Arabidopsis ID Gene Description

TGSL A02_3567961 5.08 × 10−8 6.63 B BjuA041358 GSTF11 [33–35] 69.16 −39.61 AT3G03190.1 GSL core structure synthesis
BjuA041338 SCPL17 [36] 61.43 68.54 AT3G12203.3 GSL side-chain modification

A02_11235033 2.54 × 10−7 5.83 B, F, M, S BjuA045411 OBP2 [37] 84.92 −128.81 AT1G07640.1 GSL regulation
B02_7295738 4.09 × 10−10 11.41 F, S BjuB047551 AAP4 94.21 213.38 AT5G63850.1 potential GSL gene

BjuB047557 SAL1 64.76 246.34 AT5G63980.1 potential GSL gene
B08_66155255 1.90 × 10−7 37.03 F BjuB019211 CYP18-3 65.48 −0.7 AT4G38740.1 potential GSL gene

BjuB019215 Probable 2-ODD d 61.77 −17.56 AT5G05600.1 potential GSL gene

SIN A03_27702263 1.50 × 10−7 3.76 F, S BjuA042263 MYB28 [38,39] 79.95 −118.32 AT5G61420.2 GSL regulation
BjuA042229 MYB34 [40,41] 71.32 115.48 AT5G60890.1 GSL regulation
BjuA042223 MAM1 [42,43] 82.72 160.65 AT5G23010.3 GSL side-chain elongation

B04_9016612 5.04 × 10−6 6.84 B BjuB028146 FMOGS-OX5 [44,45] 69.41 −1.51 AT1G12140.3 GSL side-chain modification
B04_17138489 2.51 × 10−6 11.71 B BjuB028703 PSAT1 83.57 12.75 AT4G35630.1 potential GSL gene

GNP A02_34185026 1.64 × 10−7 11.24 B BjuA033112 LSU2 86.022 5.75 AT5G24660.1 potential GSL gene
A02_34995417 1.29 × 10−6 0.72 B BjuA002140 MYB28 [38,39] 67.46 81.62 AT5G61420.1 GSL regulation

BjuA001524 MYB34 [40,41] 72.00 96.36 AT5G60890.1 GSL regulation
A10_999168 6.85 × 10−7 10.72 B BjuA037371 GRXS11 96.97 −105.45 AT1G06830.1 potential GSL gene

BjuA037341 UGT71C3 79.19 115.13 AT1G07260.1 potential GSL gene
B01_44925254 1.38 × 10−17 7.15 B, S BjuB006588 RER3 78.44 −105.02 AT3G08640.1 potential GSL gene

BjuB006607 CYSD1 73.27 −213.34 AT3G04940.2 potential GSL gene
B02_48309648-753 3.35 × 10−18 2.80 B, F BjuB009816 HY5 [46] 89.94 180.71 AT5G11260.1 GSL regulation

B03_474869 2.49 × 10−6 6.03 F BjuB005751 SDI2 82.50 23.76 AT1G04770.1 potential GSL gene
B03_7408562 7.07 × 10−8 4.78 B, M BjuB003011 ALDH2B7 91.01 135.05 AT1G23800.1 potential GSL gene

a TGSL (Total GSLs), SIN (sinigrin), GNP (gluconapin). b Phenotypic variance explained by marker calculated in GAPIT. In case of co-detection with BLINK, PVEs obtained were from
BLINK; if otherwise, PVEs were from FarmCPU. c BLINK(B), FarmCPU (F), MLMM (M), SUPER (S). d Probable 2-oxoglutarate-dependent dioxygenase.
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3. Discussion
3.1. Population Structure

The population structure of a diversity panel can confound GWA analysis through
spurious associations [47]. Population clustering based on the UPGMA tree and ADMIX-
TURE (at K = 2) reflected a broad grouping based on geographical origin, with one group
composed mainly of genotypes from South Asia (India and Pakistan) and another group
from outside of South Asia (Figure 1a,b). Recent studies on population structure in Indian
mustard reported a similar trend, with optimal Ks in the range of K = 2–3 [20,48]. In our
study, ADMIXTURE K = 2 split the panel based on geographical origin (Figure 1b), with
further sub-structuring of the two broad clusters until K = 4, a sensible K choice based
on the cross-validation error (Figure 1c). The admixed samples may have resulted from
interbreeding of the two population groups in variety improvement efforts. PCA was also
concordant with the other methods (Figure 1d). The distribution of total GSLs, sinigrin
and gluconapin in our diversity panel resembled that of a different panel of 190 accessions
of diverse geographical origin, quantified for the same chemical traits [14] (Figure 2a–c).
ADMIXTURE clustering reflected in the distribution of sinigrin and gluconapin confirmed
previous reports on the correlations of GSL profiles with origin. Accessions from South
Asian countries India and Pakistan (cluster 1) contained mostly gluconapin and lower levels
of sinigrin, while accessions from outside of South Asia (cluster 2) mostly contained sini-
grin in seeds [49–52]. This structure depicts crop divergence leading to these two varietal
subgroups based on different end uses [18,53]. A strong selection for the health-beneficial
GSL in East-European-type mustard for leafy vegetable and condiment cultivation was
attributed to a predominant accumulation of sinigrin in samples originating from outside
of South Asia. On the other hand, in India, cultivation was geared towards edible oil
use, with yield and increasing the oil content as the main focus of selection for varietal
improvement and not for a specific GSL type [18,51]. Thus, accessions from the Indian
subcontinent, though predominantly accumulating gluconapin, also accumulated a lower
proportion of sinigrin in our panel, consistent with earlier reports [9,50,51]. As such, the
individual correlations of sinigrin and gluconapin with total GSLs were reflected more
accurately at subgroup level than in the full panel (Figure 2f,g). In cluster 1, a weaker
correlation between gluconapin and total GSLs reflected the presence of other GSLs in
the total GSLs in these accessions. Conversely, in cluster 2, an almost perfect correlation
was observed between sinigrin and total GSLs, attributed to higher homogeneity of the
GSL profile. While this structure and the inter-trait correlations might have confounding
effects on the GWAS, the resulting q-q plots for the two selected models suggested that
these covariates were well accounted for and corrected in our analysis.

3.2. Candidate Genes Identified in the Vicinity of Associated SNPs

With the development of newer models with improved statistical power, GWAS
recently incorporated multiple model approaches to maximise the power of QTL detec-
tion [25,54–56]. FarmCPU and BLINK are two of the newest models, with demonstrated
superiority in statistical power compared to earlier GWAS methods [57,58]. The single SNP
peaks observed from our GWAS using BLINK and FarmCPU were characteristic results for
these models. Compared with other earlier models that display large peaks with multiple
SNPs characteristic of “Manhattan” plots, these models highlight only the most significant
marker in each association [54,57,58]. We located several strong homologues of known
Arabidopsis GSL biosynthetic and regulatory genes, as well as potential GSL genes, in the
vicinity of most of the significantly associated SNPs (Table 1). The majority of SNPs showed
minor effects of around 10% PVE or less, as expected for a complex quantitative trait. An
exception was SNP B08_66155255, with 37.03% PVE for total GSLs. These known and po-
tential GSL genes were annotated as such in SuCCombase (https://plant-scc.org, accessed
on 7 September 2021) [59], a curated repository of genes involved in the metabolism of
sulphur-containing compounds including GSLs. While the “known” genes were listed in
the inventory of GSL biosynthetic pathways in Arabidopsis [4,5], the “potential GSL genes”

https://plant-scc.org
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were identified from published co-expression data, which pinpoint genes that might be
involved in GSL biosynthesis, yet lack experimental support.

Of the seven listed candidate genes for total GSL concentration, three were found
on chromosome A02, two on B02 and two on B08 (Table 1). BjuA041358 and BjuA041338
were homologues of two GSL structural genes, GSTF11 and SCPL17, respectively, and were
linked to SNP A02_3567961. GSTF11 encodes glutathione S-transferase F11, responsible for
converting the intermediate derivative aci-nitro compounds to reduced glutathione (GSH)
conjugates during aliphatic GSL core structure synthesis [33–35], making BjuA041358 the
stronger candidate. SCPL17, on the other hand, is involved in the production of benzoyloxy
GSLs in Arabidopsis [36], making BjuA041338 a less likely candidate. SNP A02_11235033
was a high-confidence association, considering that it was detected in all four models. The
only candidate gene in this region was BjuA045411, a homologue of OBP2 encoding a
DNA-binding-with-one-finger (DOF) transcription factor [60], demonstrated to regulate
indolic GSL in Arabidopsis [37]. Since nearly all GSLs in B. juncea are aliphatic, however,
this OBP2 homologue would need to have a divergent role to account for the total GSL
variation. The association at SNP B02_7295738, the SNP with the second highest PVE
(11%) for total GSLs, was linked to two potential GSL genes: BjuB047551, a homologue
of AAP4 encoding an amino acid permease 4, and BjuB047557, a homologue of SAL1
encoding an inositol polyphosphate 1-phosphatase [59]. Given the high predicted peptide
sequence similarity (94%), the AAP4 homologue was likely the better candidate gene
compared to the SAL1 homologue at 65% similarity. Despite an exceptionally high PVE
of 37.03% for total GSLs, no homologues to known GSL genes were found in the vicinity
of SNP B08_66155255. However, SNP B08_66155255 was located within the gene model
of BjuB019211, a homologue of CYP18-3, a putative peptidyl-prolyl cis-trans isomerase
potentially involved in GSL metabolism, as suggested by co-expression with known GSL
genes [59]. Furthermore, around 18 kb upstream, a probable 2-oxoglutarate-dependent
dioxygenase encoding gene was located. Known GSL genes AOP2 and AOP3 similarly
encode 2-oxoglutarate-dependent dioxygenases, which catalyse the side-chain oxygenation
in the aliphatic GSL core synthesis [61,62]. The high PVE of SNP B08_66155255 merits
further investigation.

Of the five candidate genes associated with sinigrin, homologues of three known GSL
regulatory genes were found in the vicinity of SNP A03_27702263. BjuA042263, BjuA042229
and BjuA042223 were homologues of MYB28, MYB34 and MAM1, respectively. MYB28, also
known as HAG1 (HIGH ALIPHATIC GLUCOSINOLATE 1), positively regulates aliphatic
GSLs [38,39], with gain-of-function and knock-down mutants showing contrasting levels
of aliphatic GSLs and transcript levels of corresponding biosynthetic genes [38]. MYB28
was further identified and validated through combined multi-omics approaches, including
GWAS, as the major gene controlling leaf and seed GSL content in B. napus [25], suggesting
that natural variation at this locus drives phenotypic variation. In oilseed B. juncea, tar-
geted silencing of a MYB28 orthologue led to the down-regulation of GSL biosynthesis [6],
making BjuA042263 a very strong candidate for this QTL region and a high priority for
our further validation efforts. On the other hand, MYB34 mainly exerts its role in the
roots to regulate indolic GSL synthesis [40,41] and MAM1 is a methylthioalkylmalate syn-
thase involved in the GSL side-chain elongation of short-chained aliphatic GSLs [42,43],
suggesting their respective B. juncea homologues to be less likely causal for the effects
associated with SNP A03_27702263. SNP B04_9016612, with 7% PVE, was a genic SNP
within BjuB028146, a homologue of FMOGS-OX5 encoding a flavin-containing monooxyge-
nase. FMOGS-OX5 functions in aliphatic GSL side-chain modification by S-oxygenation of
the basic aliphatic GSL derivatives [44,45], making BjuB028146 a high-priority candidate
gene. BjuB028703, homologous to the potential GSL gene PSAT1, was located near SNP
B04_17138489, with 12% PVE. PSAT encodes a putative phosphoserine aminotransferase
in the serine biosynthetic pathway [63]. Although this locus had a high PVE, PSAT1 has
not been directly associated with aliphatic GSL metabolism. However, serine is a substrate
for tryptophan biosynthesis, which in turn is a precursor for the production of indolic
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GSLs [64]. Furthermore, in Arabidopsis, it is regulated by MYB34 and MYB51, two activators
of indolic GSL biosynthesis [63].

Ten candidate genes, three known and seven potential GSL genes, can be speculated
to contribute to gluconapin variation. Among these, BjuA033112 a homologue of LSU2
(RESPONSE TO LOW SULPHUR 2), was found less than 6 kb from SNP A02_34185026.
While LSU proteins are of unknown function, they were demonstrated to be important
stress-related hubs [65] and considered marker genes of sulphur metabolism [66], making
BjuA033112 a good candidate to account for the considerable 11% PVE of this locus. Interest-
ingly, MYB28 and MYB34 homologues, additional copies of which were already implicated
in the variation in sinigrin concentration on chromosome A03, were found in the vicinity
of SNP A02_34995417, although this SNP contributed little to the observed gluconapin
variation. BjuA002140 was a homologue of MYB28, while BjuA001524 was a homologue of
MYB34. Copy number variation (CNV) of MYB28 homologues on different chromosomes
might have led to the divergence that specifically accounts for sinigrin and gluconapin
accumulation in different genetic backgrounds. Recently, CNV was uncovered on MYB28
loci through pairwise sequencing of a vegetable variety, T84-66, and an Australian oilseed
variety, AU213 [17]. Among the associations with high PVE (11%) was SNP A10_999168,
located near homologues of two potential GSL genes. BjuA037341 was a homologue of
UGT71C3 encoding an UDP-glycosyltransferase, and BjuA037371 a homologue of GRXS11
encoding monothiol glutaredoxin, implicated in nitrogen signalling [67]. The direct in-
volvement of UDP-glycosyltransferase UGT74B1 [68] and of UGT74C1 in aliphatic GSL
core synthesis [69] suggests that BjuA037341 is the higher-confidence candidate for this
association. Having been detected in BLINK and SUPER, SNP B01_44925254 was a reliable
and strong association (−log10 (p) = 16.86) for gluconapin. However, homologues of only
two potential GSL genes were found in proximity. These were BjuB006588, homologous
to RER3 encoding RETICULATA-RELATED 3, and BjuB006607, homologous to CYSD1, a
cysteine synthase and a member of the O-acetylserine(thiol)lyase (OASTL) gene family.
OASTLs include OASA1, an S assimilation pathway gene that catalyses the biosynthesis of
cysteine and a precursor for GSL formation [70].

A LONG HYPOCOTYL 5 (HY5) homologue, BjuB009816, was located near the high-
confidence gluconapin associations SNP B02_48309748-53 at a PVE of 3%. HY5, a tran-
scription regulator, was shown to partly control the light regulation of GSL biosynthetic
genes, as well as many genes in the sulphate assimilation pathway [46]. Additionally, hy5
Arabidopsis mutants showed altered expression of GSL biosynthetic genes and MYB TFs as-
sociated with aliphatic GSL regulation [46]. BjuB005751, a homologue of another potential
GSL gene, SDI2 encoding SULPHUR DEFICIENCY-INDUCED 2, was located near SNP
B03_474869. Under sulphur-limiting conditions in Arabidopsis, SDI2 acts as a repressor of
aliphatic GSL biosynthesis at transcript and metabolite levels [71]. Despite being detected
under non-limiting sulphur conditions, this B. juncea SDI2 homologue could affect GSL
composition. Lastly, BjuB003011 a homologue of a potential GSL gene ALDH2B7 encoding
an aldehyde dehydrogenase family 2 protein, was located near SNP B03_7408562. While
two models detected this association for gluconapin, no literature support was found for
the involvement of ALDH2B7 in GSL biosynthesis, aside from it being listed as a potential
GSL gene in SuCCombase [4,59].

We found no overlap in proposed candidate genes with the GWAS study by Akhatar
et al., 2020, probably owing to different aims, translating to differences in panel composition,
different methods of GSL quantification and differences in cultivation. Furthermore, they
limited the candidate gene search to a narrow window of 25 kb upstream and downstream
of peak SNPs. The Akhatar et al., 2020, study was conducted under field conditions, with
the aim to study the effects of various nitrogen levels. They used only 92 accessions, which
were phenotyped for GSL content using Near-Infrared Reflectance Spectroscopy (NIRS) on
intact seeds to predict total GSLs. In contrast, we phenotyped a larger, more diverse panel
grown under controlled conditions, using quantitative approaches for several specific GSLs.
Their study detected associations using a relaxed −log10 (p) ≥ 3 threshold and proposed
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proximate candidate genes encoding for shikimate kinases (chromosome A04), chorismate
mutase (chromosomes A06 and B04), jasmonate O-methyltransferase (chromosome B03),
branched-chain-amino-acid transaminase (chromosome B06), cytochrome P450 enzyme
CYP81G1 (chromosome B06) and MYB44 transcription factor (chromosome B06). Of these
candidates, only the CYP81G1 was listed as a potential GSL potential gene in SuCCombase
and no genes had homologues of known and validated function in GSL biosynthesis or
regulation. In contrast, our GWAS study used a controlled-environment growing condition,
coupled with HPLC-MS-based analysis for the accurate quantification of individual GSLs,
and applied a stringent Bonferroni threshold for the detection of associations. Yang et al.,
2021, identified only two major control loci in a panel of 183 mixed vegetable and oilseed
accessions phenotyped for individual GSLs using HPLC and genotyped at a density of
689,411 SNPs. MYB28 (chromosome A02 and A09) was highlighted as a priority candidate
gene, supporting the role of MYB28 as a key regulator of GSL accumulation in B. juncea.
Thus, our findings add value to previous studies and provide an exceptional resource
of novel candidate gene homologues to known structural and regulatory genes of GSL
metabolism. Further validation through allele mining and gene expression profiling is
warranted, especially for associations explaining high levels of phenotypic variation and
detected in multiple models.

4. Materials and Methods
4.1. Plant Materials and Growing Conditions

A diversity panel of 158 Indian mustard accessions from 28 countries, which had under-
gone two rounds of single seed descent (SSD) (Table S1), were grown in a CONVIRON® plant
growth chamber (model: PGCFLEX, Winnipeg, MB, Canada) at Southern Cross University
Lismore, New South Wales (28.8◦ S, 153.3◦ E), from March to mid-May 2020. Several seeds per
accession were sown at 5 mm depth in a 10-cm-diameter free-draining plastic pot filled with
commercial potting soil and thinned to one plant per pot two weeks after emergence. Each
accession was grown in triplicate in a complete randomised block design. Three-week-old
seedlings were supplied with 25 mL of diluted to half strength liquid fertiliser Canna A + B
(CANNA Australasia, Subiaco Western Australia, delivered through syringe plunger, per
pot. The growing conditions were set at 16 h of artificial lighting at 22 ◦C and eight hours of
dark at 16 ◦C. Harvesting was done when all siliques were dried, and harvested siliques were
further air-dried at 40 ◦C for 72 h before threshing.

4.2. Glucosinolate Analysis

In total, three biological replicates per accession (consisting of two individual seeds
each) were used for quantifying GSL concentrations, following the method by Borpa-
tragohain et al., 2019 [72]. In brief, two seeds per sample were placed in an Eppendorf
safe-lock tube, to which 1.5 mL of 70% methanol and a 5 mm stainless-steel bead was
added. The samples were then homogenised using a Qiagen Retsch MM 301 TissueLyser II
(Qiagen Retsch, Hilden, Germany)) at 30 Hz for 45 s. Next, the samples were centrifuged
for 15 min at 15,000 rpm at 7 ◦C using a Sigma laboratory tabletop centrifuge (Osterode
am Harz Germany). An aliquot of 200 µL was transferred from the supernatant solution
after centrifugation to a 2 mL Agilent HPLC screw-cap vial. The samples were then dried
down using Martin Christ Alpha RVC (Osterode am Harz Germany) at successively re-
duced pressure of 180, 120, 80, 50, 20 and 5 mbar each at one-hour intervals, while 5 mbar
was kept overnight. The dried samples were resuspended in 1.5 mL water containing
1.17 µmol mL−1 glucotropaeolin (a GSL not found in Brassicas) as internal standard. The
tubes were mixed by inverting several times. Eight individual GSLs were quantified, includ-
ing sinigrin (SIN), gluconapin (GNP), progroitrin (PGT), epi-pogroitrin (EPI), glucoiberin
(GIB), glucoraphanin (GRF), glucobrassicin (GBS) and gluconarturtiin (GNT), using an
Agilent 1260 Infinity II High Performance LC-MS instrument (Agilent Technologies, Palo
Alto, CA, USA). HPLC-MS parameters used are detailed in Supplemental File S3. Total
GSLs is the sum of the eight GSLs measured.
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4.3. Bioinformatic Analyses and Data Processing

Illumina’s FastQ sequence outputs were demultiplexed using Axe [73]. Both reads
from the paired-end data were aligned against the B. juncea var. tumida T84-66 V1.5 genome
reference (http://39.100.233.196:82/download_genome/Brassica_Genome_data/Braju_
tum_V1.5, accessed on 15 January 2022) [53]. SNP calling was carried out using the Stacks
pipeline [74], using default parameters and a low-level filter by looking for a minimum
allele frequency of 5% for an SNP to be considered. Among the duplicated samples, the
sample with the lower call rate was removed. Filtering of the resulting variant table for
SNPs with a 60% call rate, non-minor allele frequency filtered and 10% maximum marker
heterozygosity was done using TASSEL 5.2.73 [75]. Missing marker states for all remaining
unique genotypes were imputed using Beagle 5.2 [76] with default parameters and the
effective population size (Ne) set to 500,000.

4.4. Statistical Analysis

Residual distribution and quantile–quantile plots were visualised using Genstat 64-bit
Release 18.1 (VSN International Ltd., Hemel Hempstead, England UK) to assess the nor-
mality and homoscedasticity of the phenotype data. Data were log10 (x + 0.01) transformed
for subsequent estimation of the variance components and heritability values using REML
Restricted Maximum Likelihood (REML) implemented in Genstat 64, as well as input for
GWA. Best Linear Unbiased Predictions (BLUPs), calculated using genotype and replicate
effects in REML, were used as phenotype input in GWAS. Correlations among GSL traits
using raw mean values were computed using the ‘ggpubr’ package [77], implemented in
the R environment.

4.5. Genome-Wide Association Analysis

Marker–trait association was performed using the Genome Association and Prediction
Integrated Tool (GAPIT Version 3) [78,79]. To select the best models, an initial analysis using
the four most recommended models as discussed in the GAPIT manual based on statistical
power was conducted [79]. These were multiple locus mixed linear model (MLMM) [80],
Settlement of MLM Under Progressively Exclusive Relationship (SUPER) [81], Fixed and
random model circulating probability unification (FarmCPU) [57], Bayesian-information
and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) [58]. The best models were
selected based on the resulting q-q plots, which reflected how well each model accounted
for population structure and familial relatedness. Manhattan plots were visualised using R
package ‘CMplot’ [82].

4.6. Cluster, Population Structure and Principal Components Analysis

A separate set of 1174 higher-confidence SNPs imputed and filtered for >80% call rate,
5% minor allele frequency (maf) and 10% maximum heterozygosity, covering pseudochro-
mosomes, and linkage-disequilibrium (LD) pruned, was used for cluster, population and
principal components analyses. LD pruning was done using Plink [83] (version 1.07) with
the following parameters: window of 50 SNPs, step size of five markers and an r2 threshold
of 0.4 [84]. An UPGMA (unweighted pair group method with arithmetic mean) tree was
built for cluster analysis of all 158 lines. The genetic distance input for tree building was
simple matching coefficients calculated in TASSEL (version 5.2.72) [75] and UPGMA was
visualised using ITOLv6 (https://itol.embl.de/, accessed on 3 September 2021). A maxi-
mum likelihood estimate for population structure was carried out in ADMIXTURE [85] and
barplots for Q matrix (probability of group membership) were visualised using package
‘pophelper’ [86] implemented in the R environment. The analysis was done for K = 1 to
K = 10, and a ten-fold cross-validation procedure was used to determine the “best” K. PCA
was conducted in TASSEL (version 5.2.72) and plotted using the ‘ggplot2′ [87] R package.

http://39.100.233.196:82/download_genome/Brassica_Genome_data/Braju_tum_V1.5
http://39.100.233.196:82/download_genome/Brassica_Genome_data/Braju_tum_V1.5
https://itol.embl.de/
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4.7. Candidate Genes within Significant SNPs

Predicted candidate genes within 250 kb upstream and downstream of each signif-
icantly associated SNP were identified using the B. juncea BRAD v.1.5 annotation. The
BRAD V1.5 genes were annotated for putative function by alignment to the Arabidopsis
TAIR10 release using NCBI BLASTP [88,89], integrated into the in-house SCPS Galaxy
(http://lr-scps5-rh7v.scps.scu.edu.au:8080, accessed on 9 September 2021), and associating
the annotation of the Arabidopsis genes in the top-scoring hits. All these annotations and
genome information were integrated into the SCPS Galaxy. Next, we matched the Arabidop-
sis locus identifiers from our BLAST+ list and that of “known” and “potential GSL genes”
curated in SuCCombase (https://plant-scc.org, accessed on 7 September 2021) for listing
our candidate genes. Top hits identified as either “known” or “potential GSL genes” based
on SuCCombase were prioritised as candidate genes. In a few cases, we chose the “known”
or “potential GSL gene” even if they ranked second to third in BLASTP, provided that the
percent identity was more than 60% across more than 50% of the total length alignment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11030364/s1, Supplemental File S1. Glucosinolate mea-
surements of the accessions in the diversity panel; Table S1. List of accessions and country of origin
in the diversity panel; Figure S1. Residual distribution and normal plots for total GSLs, sinigrin and
gluconapin; Table S2. Variance components analysis and descriptive statistics for total GSLs, sinigrin
and gluconapin evaluated in 158 diverse B. juncea L. accessions; Figure S2. Correlations of major
GSLs, sinigrin and gluconapin, and total GSLs in ADMIXTURE clusters; Figure S3. Quantile–quantile
plots reflecting correspondence between observed and expected −log10 (p) values from association
analyses using four models (SUPER, MLMM, FarmCPU, BLINK) for total GSLs, sinigrin and glu-
conapin; Supplemental File S2. List of SNPs passing the Bonferroni threshold from four models;
Figure S4. Linkage disequilibrium (LD) depicted based on squared correlation coefficient of pairwise
markers in a sliding window of 100 SNP markers; Supplemental File S3. HPLC-MS parameters used
for glucosinolate analysis.
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