Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity
Abstract
:1. Introduction
2. Results
2.1. Plant Growth and Photosynthetic Pigments
2.2. Plant N Uptake and Nitrate Reductase Activity (NR)
2.3. Crop Phenology
2.4. Photochemical Efficiency Traits and SPAD-Chlorophyll Values
2.5. Seed Yield and Its Attributes
2.6. Seed Protein Contents
3. Discussion
4. Materials and Methods
4.1. Experimental Details
4.2. Determination of Plant Growth, Nitrogen Uptake, Utilization Efficiency and Seed Protein Contents
4.3. Measurement of Nitrate Reductase Activity
4.4. Determination of Phenological Traits
4.5. Measurement of Photosynthetic Efficiency and SPAD-Chlorophyll Value
4.6. Seed Yield and Its Related Traits
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, E.A.; Veas, E.; Jorquera, C.; San Martín, R.; Jara, P. Re-introduction of quínoa into arid Chile: Cultivation of two lowland races under extremely low irrigation. J. Agron. Crop. Sci. 2009, 195, 1–10. [Google Scholar] [CrossRef]
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Lutz, M.; Bascuñán-Godoy, L. The Revival of Quinoa: A Crop for Health. In Superfood and Functional Food—An Overview of Their Processing and Utilization; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Schulte, E.G.; Kaul, H.-P.; Kruse, M.; Aufammer, W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J. Agron. 2005, 22, 95–100. [Google Scholar] [CrossRef]
- Razzaghi, F.; Plauborg, F.; Jacobsen, S.; Jense, C.; Andersen, M. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric. Water Manag. 2012, 109, 20–29. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Reguera, M.; Abdel-Tawab, Y.M.; Blumwald, E. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa willd. Planta 2016, 243, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Kansomjet, P.; Thobunluepop, P.; Lertmongkol, S.; Sarobol, E.; Kaewsuwan, P.; Junhaeng, P.; Pipattanawong, N.; Iván, M.T. Response of physiological characteristics, seed yield and seed quality of quinoa under difference of nitrogen fertilizer management. Am. J. Plant Physiol. 2017, 12, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Curti, R.N.; Sanahuja, M.D.C.; Vidueiros, S.M.; Pallaro, A.N.; Bertero, H.D. Trade-off between seed yield components and seed composition traits in sea level quinoa in response to sowing dates. Cereal Chem. 2018, 95, 734–741. [Google Scholar] [CrossRef]
- Kakabouki, Ι.P.; Dimitra, H.; Ioannis, R.; Papastylianou, P.; Sestras, A.F.; Bilalis, D.J. Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.). J. Soil Sci. Plant Nutr. 2018, 18, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Kakabouki, I.; Roussis, I.E.; Papastylianou, P.; Kanatas, P.; Hela, D.; Katsenios, N.; Fuentus, F. Growth analysis of quinoa (Chenopodium quinoa Willd.) in response to fertilization and soil tillage. Not. Bot. Horti Agrobot. 2019, 47, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimikia, M.; Moeini, M.J.; Marvi, H.; Hasheminejhad, Y.; Ganjehie, M.G. Agro-physiological response of quinoa (Chenopodium quinoa Willd.) to the nitrogen application rate and split application method. J. Soil Sci. Plant Nutr. 2021, 21, 3437–3450. [Google Scholar] [CrossRef]
- Gómez, M.B.; Aguirre Castro, P.; Mignone, C.; Bertero, H.D. Can yield potential be increased by manipulation of reproductive partitioning in quinoa? Evidence from giberellic acid synthesis inhibition using Paclobutrazol. Funct. Plant Biol. 2011, 38, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Geren, H.; Kavut, Y.; Fakültesi, M. Altınbaș—Eg. effect of different row spacings on the grain yield and some yield characteristics of quinoa (Chenopodium quinoa Wild.) under Bornova ecological conditions. Turk. J. F. Cr. 2015, 20, 59–64. [Google Scholar]
- Shams, A.S. Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proceedings of the 13th International Conference of Agronomy, Benha, Egypt, 9–10 September 2012; pp. 195–205. [Google Scholar]
- Nosengo, N. Fertilized to death. Nature 2003, 425, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Malhi, S.S.; Oliver, E.; Mayerle, G.; Kruger, G.; Gill, K.S. Improving effectiveness of seed row-placed urea with urease inhibitor and polymer coating for durum wheat and canola. Commun. Soil Sci. Plant Anal. 2003, 34, 1709–1727. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Misselbrook, T.H.; Arce, A.; Mingot, J.I.; Diez, J.A.; Vallejo, A. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under mediterranean conditions. Agric. Ecosyst. Environ. 2008, 126, 243–249. [Google Scholar] [CrossRef]
- Schwab, G.J.; Murdock, L.W. Nitrogen Transformation Inhibitors and Controlled Release Urea; Department of Plant and Soil Sciences, Cooperative extension service, University of Kentucky, College of Agriculture: Lexington, KY, USA, 2010. [Google Scholar]
- Dougherty, W.; Collins, D.; Zwieten, L.V.; Rowlings, D. Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate. Soil Res. 2016, 54, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. Scope and strategies for regulation of nitrification in agricultural systems—Challenges and opportunities. Rev. Plant Sci. 2007, 2, 303–335. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Nguyen, M.L.; Blennerhassett, J.D.; Quin, B.F. Reducing NH3, N2O and NO3--N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol. Fertil. Soils 2008, 44, 693–705. [Google Scholar] [CrossRef]
- Kim, D.G.; Saggar, S.; Roudier, P. The effect of nitrification inhibitors on soil ammonia emissions in nitrogen managed soils: A meta-analysis. Nutr. Cycl. Agroecosyst. 2012, 93, 51–64. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, C.H.; Li, Q.L.; Li, B.; Zhu, Y.Y.; Xiong, Z.Q. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015, 201, 43–50. [Google Scholar] [CrossRef]
- Gao, J.; Luo, J.; Lindsey, S.; Shi, Y.; Wei, Z.; Wang, L.; Zhang, L. Effects of boric acid on urea-N transformation and DMPP efficiency. J. Sci. Food Agric. 2020, 101, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Margon, A.; Parente, G.; Piantanida, M.; Cantone, P.; Leita, L. Novel investigation on ammonium thiosulphate (ATS) as an inhibitor of soil urease and nitrification. Agric. Sci. 2015, 6, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar] [CrossRef]
- Kong, X.; Duan, Y.; Schramm, A.; Eriksen, J.; Petersen, S.O. 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on nontarget soil microorganisms and functions. Appl. Soil Ecol. 2016, 105, 67–75. [Google Scholar] [CrossRef]
- Linquist, B.A.; Lijun, L.; van Kessel, C.; van Groenigen, K.J. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Cr. Res. 2013, 154, 246–254. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Bai, M.; Walker, C.; Davies, R.; Mosier, A.R.; Chen, D. Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Sci. Total Environ. 2018, 644, 1531–1535. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Khan, M.A.; Shah, Z.; Rab, A.; Arif, M.; Shah, T. Effect of urease and nitrification inhibitors on wheat yield. Sarhad J. Agric. 2013, 29, 371–378. [Google Scholar]
- Glibert, P.M.; Harrison, J.; Heil, C.; Seitzinger, S. Escalating worldwide use ofurea–a global change contributing to coastal eutrophication. Biogeochemestry 2006, 77, 441–463. [Google Scholar] [CrossRef]
- Rehman, H.; Basra, S.M.A.; Wahid, A. Optimizing nitrogen-split application time to improve dry matter accumulation and yield in dry direct seeded rice. Int. J. Agric. Biol. 2013, 15, 1560–8530. [Google Scholar]
- Kawakami, E.M.; Oosterhuis, D.M.; Snider, J.L.; Mozaffari, M. Physiological and yield responses of field-grown cotton to application of urea with the urease inhibitor NBPT and the nitrification inhibitor DCD. Eur. J. Agron. 2012, 43, 147–154. [Google Scholar] [CrossRef]
- Buscaglia, H.; Varco, J. Early detection of cotton leaf nitrogen status using leaf reflectance. J. Plant Nutr. 2002, 25, 2067. [Google Scholar] [CrossRef]
- Bondada, B.R.; Oosterhuis, D.M. Canopy photosynthesis, specific leaf weight, and yield components of cotton under varying nitrogen supply. J. Plant Nutr. 2001, 24, 469–477. [Google Scholar] [CrossRef]
- Garg, B.K.; Burman, U.; Kathju, S. Influence of thiourea on photosynthesis, nitrogen metabolism and yield of cluster bean (Cyamopsis tetragonoloba (L.) Taub under rainfed conditions of Indian arid zone. Plant Growth Regul. 2006, 48, 237–245. [Google Scholar] [CrossRef]
- Zaman, M.; Zaman, S.; Nguyen, M.L.; Smith, T.J.; Nawaz, S. The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: A two-year study. Sci. Total Environ. 2013, 465, 97–106. [Google Scholar] [CrossRef]
- Pettigrew, W. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci. 2001, 41, 1108–1111. [Google Scholar] [CrossRef] [Green Version]
- Guardia, G.; Sanz-Cobena, A.; Sanchez-Martín, L.; Fuertes-Mendizábal, T.; González-Murua, C.; Álvarez, J.M.; Chadwick, D.; Vallejo, A. Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agric. Ecosys. Environ. 2018, 265, 421–431. [Google Scholar] [CrossRef]
- Artola, E.; Cruchaga, S.; Ariz, I.; Moran, J.F.; Garnica, M.; Houdusse, F.; Garcia Mina, J.M.; Irigoyen, I.; Lasa, B.; Aparicio-Tejo, P.M. Effect of N-(n-butyl) thiophosphoric triamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L. Plant Growth Regul. 2011, 63, 73–79. [Google Scholar] [CrossRef]
- Cruchaga, S.; Lasa, B.; Jauregui, I.; González-Murua, C.; Aparicio-Tejo, P.M.; Ariz, I. Inhibition of endogenous urease activity by NBPT application reveals differential N metabolism responses to ammonium or nitrate nutrition in pea plants: A physiological study. Plant Soil 2013, 373, 813–827. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Mendizábal, T.; González-Torralba, J.; Arregui, L.M.; González-Murua, C.; González-Moro, M.B.; Estavillo, J.M. Ammonium as sole N source improves grain quality in wheat. J. Sci. Food Agric. 2013, 93, 2162–2171. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.L.; Li, Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Chang. Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Chatterjee, A.; Awale, R.; McGranahan, D.A.; Daigh, A. Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta-analysis. Soil Sci. Soc. Am. J. 2016, 80, 1121–1134. [Google Scholar] [CrossRef]
- Xue, C.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Gupta, A.; Gaur, V.; Kumar, A. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs. Sci. World J. 2012, 2012, 625731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bascuñán-Godoy, L.; Sanhueza, C.; Pinto, K.; Cifuentes, L.; Reguera, M.; Briones, V.; Zurita-Silva, A.; Álvarez, R.; Morales, A.; Silva, H. Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae). Sci. Rep. 2018, 8, 17524. [Google Scholar] [CrossRef] [PubMed]
- Masclaux-Daubresse, C.; Françoise, D.-V.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basra, S.M.A.; Iqbal, S.; Afzal, I. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. Int. J. Agric. Biol. 2014, 16, 886–892. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual; ICARDA: Beirut, Lebanon, 2001. [Google Scholar]
- Mérigout, P.; Gaudon, V.; Quilleré, I.; Briand, X.; Vedele, F.D. Urea use efficiency of hydroponically grown maize and wheat. J. Plant Nutr. 2008, 31, 427–443. [Google Scholar] [CrossRef]
- Wang, J.; Dun, X.; Shi, J.; Wang, X.; Liu, G.; Wang, H. Genetic dissection of root morphological traits related to nitrogen use efficiency in Brassica napus L. under two contrasting nitrogen conditions. Front. Plant Sci. 2017, 8, 1709. [Google Scholar] [CrossRef] [Green Version]
- Abd-El Baki, G.K.; Siefritz, F.; Man, H.M.; Weiner, H.; Kaldenhoff, R.; Kaiser, W.M. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 2000, 23, 515–521. [Google Scholar] [CrossRef]
- Kaiser, J.J.; Lewis, O.A.M. Nitrate reductase and glutamine synthetase activity in leaves and roots of nitrate-fed Helianthus annuus L. Plant Soil. 1984, 77, 127–130. [Google Scholar] [CrossRef]
- Sosa-Zuniga, V.; Brito, V.; Fuentes, F.; Steinfort, U. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 2017, 171, 117–124. [Google Scholar] [CrossRef]
Quinoa Genotypes | Shoot Fresh Weight (g) | Root Fresh Weight (g) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |
UAF-Q7 | 6.10 d | 12.35 b | 18.10 a | 12.18 A | 0.30 bc | 0.40 ab | 0.53 a | 0.41 A |
EMS line | 9.27 c | 4.73 d | 11.50 bc | 8.50 B | 0.33 bc | 0.10 d | 0.40 ab | 0.28 B |
JQH-1 | 4.20 d | 12.77 b | 16.20 a | 11.06 A | 0.17 cd | 0.33 bc | 0.33 bc | 0.28 B |
Means N | 6.52 A | 9.95 B | 15.27 A | 0.27 B | 0.28 B | 0.42 A | ||
HSD | G = 1.36, N = 1.36, G × N = 2.36 | G = 0.10, N = 0.10, G × N = 0.18 | ||||||
Quinoa Genotypes | Shoot Dry Weight (g) | Root Dry Weight (g) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1%NI | Means Genotypes | |
UAF-Q7 | 0.82 cde | 1.17 abc | 1.48 a | 1.15 | 0.06 b | 0.08 ab | 0.11 a | 0.08 A |
EMS line | 0.10 bcd | 0.49 e | 1.24 ab | 0.90 | 0.06 b | 0.02 c | 0.07 b | 0.05 B |
JQH-1 | 0.60 de | 1.33 ab | 1.51 a | 1.15 | 0.02 b | 0.06 b | 0.08 ab | 0.06 B |
Means | 0.80 B | 0.10 B | 1.41 A | 0.05 B | 0.05 B | 0.09 A | ||
HSD | G = n.s., N = 0.24, G × N = 0.42 | G = 0.02, N = 0.02, G × N = 0.03 | ||||||
Quinoa Genotypes | Shoot Length (cm) | Root Length (cm) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |
UAF-Q7 | 16.00 e | 23.80 b | 24.15 b | 21.31 B | 5.50 e | 6.80 de | 11.50 a | 7.93 |
EMS line | 21.77 bc | 6.67 de | 23.50 b | 20.64 B | 8.30 c | 7.05 cd | 7.40 cd | 7.58 |
JQH-1 | 19.60 cd | 28.00 a | 29.00 a | 25.53 A | 9.80 b | 7.85 cd | 8.10 cd | 8.58 |
Means | 19.12 c | 22.8 B | 25.55 A | 7.88 B | 7.23 B | 9.00 A | ||
HSD | G = 1.81, N = 1.80, G × N = 3.12 | G = n.s., N = 0.86, G ×N = 1.49 | ||||||
Quinoa Genotypes | SPAD-Chlorophyll Values | Plant N Uptake (mg N Plant−1) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 +1%NI | Means Genotypes | |
UAF-Q7 | 40.60 | 44.40 | 45.10 | 43.37 AB | 1.71 d | 3.31 c | 6.84 a | 3.95 |
EMS line | 46.00 | 44.55 | 45.73 | 45.43 A | 3.00 c | 1.67 d | 4.99 b | 3.22 |
JQH-1 | 35.90 | 44.03 | 43.47 | 41.13 B | 1.12 d | 3.58 c | 5.92 ab | 3.53 |
Means | 40.83 B | 44.33 A | 44.77 A | 1.94 C | 2.82 B | 5.92 A | ||
HSD | G = 2.96, N = 2.96, G × N = n.s. | G = n.s., N = 0.66, G × N = 1.15 | ||||||
Quinoa Genotypes | NUtE (g DW per mg N) | |||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |||||
UAF-Q7 | 0.51 a | 0.38 bc | 0.26 e | 0.42 A | ||||
EMS line | 0.35 c | 0.31 d | 0.26 e | 0.36 B | ||||
JQH-1 | 0.39 b | 0.39 bc | 0.27 de | 0.26 C | ||||
Means | 0.39 A | 0.31 C | 0.35 B | |||||
HSD | G = 0.02, N = 0.02, G × N = 0.04 |
Quinoa Genotypes | Days to True Leaf | Days to Multiple Leaf | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |
UAF-Q7 | 19.67 a | 13.33 c | 14.00 c | 15.67 | 28.33 ab | 26.33 cde | 25.33e | 26.67 |
EMS line | 18.33 ab | 19.00 a | 15.67 bc | 17.67 | 29.33 a | 28.00 abc | 26.00 de | 27.78 |
JQH-1 | 18.33 ab | 18.00 ab | 13.33 c | 16.56 | 26.67 bcde | 27.00 bcde | 27.67 abcd | 27.11 |
Means N | 18.78 A | 16.78 B | 14.33 C | 28.11 A | 27.11 AB | 26.33 C | ||
HSD | G = n.s., N = 1.59, G × N = 2.75 | G = n.s., N = 1.08, G × N = 1.87 | ||||||
Quinoa Genotypes | Days to Bud Formation | Days to Panicle Emergence | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1%NI | Means Genotypes | |
UAF-Q7 | 40.33 | 40.00 | 40.33 | 40.22 A | 59.67 | 59.00 | 56.67 | 58.44 A |
EMS line | 40.00 | 39.67 | 36.67 | 38.78 B | 55.67 | 57.33 | 55.33 | 55.44 B |
JQH-1 | 37.33 | 38.67 | 36.33 | 37.44 C | 59.00 | 54.67 | 53.33 | 55.66 B |
Means | 39.22 A | 39.44 A | 37.78 B | 58.11 A | 55.44 B | 55.67 B | ||
HSD | G = 1.15, N = 1.15, G × N = n.s. | G = 1.82, N = 1.82, G ×N = n.s. | ||||||
Quinoa Genotypes | Days to Flowering | Days to Maturity | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |
UAF-Q7 | 79.33 | 77.67 | 77.00 | 78.00 | 127.67 | 125.33 | 121.67 | 124.89 |
EMS line | 79.33 | 78.00 | 76.00 | 77.78 | 128.00 | 124.00 | 122.67 | 124.89 |
JQH-1 | 78.00 | 77.00 | 75.33 | 76.78 | 125.33 | 126.00 | 122.67 | 124.67 |
Means | 78.88 A | 77.56 AB | 76.11 B | 127.00 A | 125.11 AB | 122.33 B | ||
HSD | G = n.s., N = 1.97, G × N = n.s. | G = n.s., N = 3.55, G × N = n.s. |
Quinoa Genotypes | SPAD-Chlorophyll | Photosynthetic Active Radiation (PAR) | ||||||
---|---|---|---|---|---|---|---|---|
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |
UAF-Q7 | 43.77 bc | 46.93 ab | 48.07 a | 46.26 A | 887.00 d | 584.70 ef | 1268.70 b | 913.44 A |
EMS line | 42.33 c | 34.90 d | 48.30 a | 41.84 B | 486.00 f | 584.70 ef | 1445.70 a | 838.78 B |
JQH-1 | 35.65 d | 47.97 a | 47.80 ab | 43.81 B | 657.00 e | 649.70 e | 1074.30 c | 793.67 B |
Means N | 40.58 C | 43.27 B | 48.06 A | 676.70 B | 606.30 C | 1262.90 A | ||
HSD | G = 2.42, N = 2.42, G × N = 4.19 | G = 67.743, N = 67.743, G × N = 117.33 | ||||||
Quinoa Genotypes | Electron Transport Rate (ETR) | Current Fluorescence Value (Ft) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1%NI | Means Genotypes | |
UAF-Q7 | 214.07 b | 169.07 bc | 176.97 bc | 186.70 AB | 471.67 bc | 607.33 a | 450.00 bc | 509.67 |
EMS line | 164.47 bc | 139.83 | 294.43 a | 199.58 A | 422.00 c | 423.33 c | 635.00 a | 493.44 |
JQH-1 | 126.87 c | 148.23 c | 184.13 bc | 153.08 B | 467.00 bc | 386.00 c | 556.33 ab | 469.78 |
Means | 168.47 B | 152.38 B | 218.51 A | 453.56 B | 472.22 B | 547.11 A | ||
HSD | G = 36.703, N = 36.703, G × N = 63.57 | G = n.s., N = 71.709, G × N = 124.20 | ||||||
Quinoa Genotypes | Quantum Yield (Y) | |||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |||||
UAF-Q7 | 0.62 a | 0.57 ab | 0.42 c | 0.54 | ||||
EMS line | 0.57 ab | 0.63 a | 0.50 bc | 0.57 | ||||
JQH-1 | 0.47 c | 0.60 a | 0.44 c | 0.51 | ||||
Means | 0.55 A | 0.6 A | 0.46 B | |||||
HSD | G = n.s., N = 0.0470, G × N = 0.0814 |
Quinoa Genotypes | Plant Height (cm) | Panicle Length (cm) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |
UAF-Q7 | 70 b | 81 a | 88 a | 80 A | 27 | 23 | 26 | 25 A |
EMS line | 41 c | 49 c | 43 c | 44 B | 15 | 15 | 13 | 14 C |
JQH-1 | 51 c | 49 c | 49 c | 50 B | 18 | 19 | 20 | 19 B |
Means N | 54 | 60 | 60 | 20 | 19 | 19 | ||
HSD | G = 5.61, N = n.s., G × N = 9.72 | G = 2.59, N = n.s., G × N = n.s. | ||||||
Quinoa Genotypes | 1000 Seed Yield (g) | Seed Yield Per Plant (g) | ||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1%NI | Means Genotypes | |
UAF-Q7 | 0.28 d | 0.44 bc | 0.53 a | 0.42 B | 1.16 | 2.32 | 2.92 | 2.13 C |
EMS line | 0.42 c | 0.47 abc | 0.54 a | 0.48 A | 2.46 | 3.17 | 3.93 | 3.19 B |
JQH-1 | 0.48 abc | 0.52 ab | 0.52 ab | 0.51 A | 3.40 | 3.54 | 5.33 | 4.09 A |
Means | 0.39 C | 0.48 B | 0.53 A | 2.34 C | 3.01 B | 4.06 A | ||
HSD | G = 0.05, N = 0.05, G × N = 0.08 | G = 0.60, N = 0.59, G × N = n.s. | ||||||
Quinoa Genotypes | Seed Protein Contents (%) | |||||||
CK (0 kg N ha−1) | 70 kg N ha−1 | 35 kg N ha−1 + 1% NI | Means Genotypes | |||||
UAF-Q7 | 10.16 d | 13.22 c | 15.66 b | 13.01 B | ||||
EMS line | 14.66 bc | 14.83 bc | 15.66 bc | 15.05 A | ||||
JQH-1 | 14.32 bc | 16.44 ab | 18.8 a | 16.53 A | ||||
Means | 13.05 A | 14.83 B | 16.7 A | |||||
HSD | G = 1.5758, N = 1.5758, G × N = 2.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, H.u.; Alharby, H.F.; Al-Zahrani, H.S.; Bamagoos, A.A.; Alsulami, N.B.; Alabdallah, N.M.; Iqbal, T.; Wakeel, A. Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity. Plants 2022, 11, 371. https://doi.org/10.3390/plants11030371
Rehman Hu, Alharby HF, Al-Zahrani HS, Bamagoos AA, Alsulami NB, Alabdallah NM, Iqbal T, Wakeel A. Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity. Plants. 2022; 11(3):371. https://doi.org/10.3390/plants11030371
Chicago/Turabian StyleRehman, Hafeez ur, Hesham F. Alharby, Hassan S. Al-Zahrani, Atif A. Bamagoos, Nadiah B. Alsulami, Nadiyah M. Alabdallah, Tahir Iqbal, and Abdul Wakeel. 2022. "Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity" Plants 11, no. 3: 371. https://doi.org/10.3390/plants11030371
APA StyleRehman, H. u., Alharby, H. F., Al-Zahrani, H. S., Bamagoos, A. A., Alsulami, N. B., Alabdallah, N. M., Iqbal, T., & Wakeel, A. (2022). Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity. Plants, 11(3), 371. https://doi.org/10.3390/plants11030371