A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses
Abstract
:1. Introduction
2. Results
2.1. Distillation of the Essential Oil
2.2. Qualitative and Quantitative Analyses
2.3. Enantioselective Analysis
3. Discussion
3.1. The EOs of Genus Gynoxys
3.2. Biological Activities of the Main Components
3.3. Biological Properties of the Main Enantiomers
4. Materials and Methods
4.1. GC and GC-MS Analyses
4.2. Plant Material
4.3. Sample Preparation and EO Distillation
4.4. Qualitative Chemical Analysis
4.5. Quantitative Chemical Analysis
4.6. Enantioselective Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megadiverse Countries, UNEP-WCMC. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 5 December 2021).
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
- Chiriboga, X.; Gilardoni, G.; Magnaghi, I.; Vita Finzi, P.; Zanoni, G.; Vidari, G. New Anthracene Derivatives from Coussarea macrophylla. J. Nat. Prod. 2003, 66, 905. [Google Scholar] [CrossRef] [PubMed]
- Quílez, A.; Berenguer, B.; Gilardoni, G.; Souccar, C.; De Mendonça, S.; Oliveira, L.F.S.; Martin-Calero, M.J.; Vidari, G. Anti- secretory, Anti-inflammatory, and Anti-Helicobacter pylori Activities of Several Fractions Isolated from Piper carpunya Ruiz & Pav. J. Ethnopharmacol. 2010, 128, 583. [Google Scholar]
- Gilardoni, G.; Tosi, S.; Mellerio, G.; Maldonado, M.E.; Chiriboga, X.; Vidari, G. Lipophilic Components from the Ecuadorian Plant Schistocarpha eupatorioides. Nat. Prod. Commun. 2011, 6, 767. [Google Scholar] [CrossRef]
- Gilardoni, G.; Malagon, O.; Morocho, V.; Negri, R.; Tosi, S.; Guglielminetti, M.; Vidari, G.; Vita Finzi, P. Phytochemical Research and Antimicrobial Activity of Clinopodium nubigenum Kunth (Kuntze) Raw Extracts. Rev. Bras. Farmacogn. 2011, 21, 850. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, G.; Chiriboga, X.; Finzi, P.V.; Vidari, G. New 3,4-Secocycloartane and 3,4-Secodammarane Triterpenes from the Ecuadorian Plant Coussarea macrophylla. Chem. Biodivers. 2015, 12, 946. [Google Scholar] [CrossRef]
- Herrera, C.; Pérez, Y.; Morocho, V.; Armijos, C.; Malagón, O.; Brito, B.; Tacán, M.; Cartuche, L.; Gilardoni, G. Preliminary Phytochemical Study of the Ecuadorian Plant Croton elegans Kunth. (Euphorbiaceae). J. Chil. Chem. Soc. 2018, 63, 3788. [Google Scholar] [CrossRef] [Green Version]
- Morocho, V.; Valarezo, L.P.; Tapia, D.A.; Cartuche, L.; Cumbicus, N.; Gilardoni, G. A Rare Dirhamnosyl Flavonoid and Other Radical-scavenging Metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador. Chem. Biodivers. 2021, 16, e2100260. [Google Scholar] [CrossRef]
- Gilardoni, G.; Montalván, M.; Vélez, M.; Malagón, O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants 2021, 10, 2171. [Google Scholar] [CrossRef]
- Calvopiña, K.; Malagón, O.; Capetti, F.; Sgorbini, B.; Verdugo, V.; Gilardoni, G. A New Sesquiterpene Essential Oil from the Native Andean Species Jungia rugosa Less (Asteraceae): Chemical Analysis, Enantiomeric Evaluation, and Cholinergic Activity. Plants 2021, 10, 2102. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Andrade, M.D.; Vidari, G.; Gilardoni, G. Essential Oil and Major Non-Volatile Secondary Metabolites from the Leaves of Amazonian Piper subscutatum. Plants 2021, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramírez, J.; Sgorbini, B.; Bicchi, C.; Cumbicus, N.; Gilardoni, G. A Novel Chemical Profile of a Selective In Vitro Cholinergic Essential Oil from Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae), a Native Andean Species of Ecuador. Molecules 2021, 26, 45. [Google Scholar] [CrossRef] [PubMed]
- Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants 2020, 9, 1403. [Google Scholar] [CrossRef] [PubMed]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef]
- Tropicos.org. Missouri Botanical Garden. Available online: https://www.tropicos.org (accessed on 5 December 2021).
- Jorgensen, P.; Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; pp. 286–288. [Google Scholar]
- Jakupovic, J.; Zdero, C.; King, R.M. Furanoeremophilanes from Gynoxys Species. Phytochemistry 1995, 40, 1677. [Google Scholar] [CrossRef]
- Ordóñez, P.E.; Quave, C.L.; Reynolds, W.F.; Varughesea, K.I.; Berry, B.; Breena, P.J.; Malagón, O.; Smeltzer, M.S.; Compadre, C.M. Sesquiterpene Lactones from Gynoxys verrucosa and their Anti-MRSA Activity. J. Ethnopharmacol. 2011, 137, 1055. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, P.E.; Sharma, K.K.; Bystrom, L.M.; Alas, M.A.; Enriquez, R.G.; Malagón, O.; Jones, D.E.; Guzman, M.L.; Compadre, C.M. Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells. J. Nat. Prod. 2016, 79, 691. [Google Scholar] [CrossRef]
- Catalano, S.; Cioni, P.L.; Menichini, A.; Bilia, A.B.; Morelli, L.; De Feo, V. Kauranoid Diterpenes in Gynoxys oleifolia. Planta Med. 1993, 59, 278. [Google Scholar] [CrossRef]
- Bohlmann, F.; Grenz, M.; Suwita, A. Inhaltsstoffe aus Gynoxys- und Pseudogynoxys-arten. Phytochemistry 1977, 16, 774. [Google Scholar] [CrossRef]
- Zdero, C.; Bohlmann, F.; Robinson, H.; King, R.M. Neue Furanoeremophilane aus Gynoxys dielsiana. Phytochemistry 1980, 19, 975. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C. Ein Neues Furanoeremophilon-derivat aus Gynoxys psilophylla. Phytochemistry 1979, 18, 339. [Google Scholar] [CrossRef]
- Hernández, J.; Rojas-Fermina, L.B.; Amaro-Luis, J.; Pouységu, L.; Quideau, S.; Usubillaga, A. Chemical Composition of the Essential Oil of Gynoxys meridana from Mérida, Venezuela. Nat. Prod. Commun. 2015, 10, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valarezo, E.; Aguilera-Sarmiento, R.; Meneses, M.A.; Morocho, V. Study of Essential Oils from Leaves of Asteraceae Family Species Ageratina dendroides and Gynoxys verrucose. J. Essent. Oil-Bear. Plants 2021, 24, 400. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, M.G.; Wilson, M.A.; Gaskey, G.M. Characterization of Aroma Volatiles in Key Lime Essential Oils (Cirtrus aurantifolia Swingle). Flavour Fragr. J. 2003, 18, 106. [Google Scholar] [CrossRef]
- Elmore, J.S.; Nisyrios, I.; Mottram, D.S. Analysis of the Headspace Aroma Compounds of Walnuts (Juglans regia L.). Flavour Fragr. J. 2005, 20, 501. [Google Scholar] [CrossRef]
- Cozzani, S.; Muselli, A.; Desjobert, J.-M.; Bernardini, A.-F.; Tomi, F.; Casanova, J. Chemical Composition of Essential Oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour Fragr. J. 2005, 20, 436. [Google Scholar] [CrossRef]
- Hachicha, S.F.; Skanji, T.; Barrek, S.; Ghrabi, Z.G.; Zarrouk, H. Composition of the Essential Oil of Teucrium ramosissimum Desf. (Lamiaceae) from Tunisia. Flavour Fragr. J. 2007, 22, 101. [Google Scholar] [CrossRef]
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential Oil Composition of Achillea lingulata and A. umbellate. Flavour Fragr. J. 2007, 22, 184. [Google Scholar] [CrossRef]
- Saroglou, V.; Marin, P.D.; Rancic, A.; Veljic, M.; Skaltsa, H. Composition and Antimicrobial Activity of the Essential Oil of Six Hypericum Species from Serbia. Biochem. Syst. Ecol. 2007, 35, 146. [Google Scholar] [CrossRef]
- Muselli, A.; Rossi, P.-G.; Desjobert, J.-M.; Bernardini, A.-F.; Berti, L.; Costa, J. Chemical Composition and Antibacterial Activity of Otanthus maritimus (L.) Hoffmanns. Link Essential Oils from Corsica. Flavour Fragr. J. 2007, 22, 217. [Google Scholar] [CrossRef]
- Gonny, M.; Cavaleiro, C.; Salgueiro, L.; Casanova, J. Analysis of Juniperus communis subsp. alpina Needle, Berry, Wood and Root Oils by Combination of GC, GC/MS and 13C-NMR. Flavour Fragr. J. 2006, 21, 99. [Google Scholar]
- Skocibusic, M.; Bezic, N.; Dunkic, V. Phytochemical Composition and Antimicrobial Activities of the Essential Oils from Satureja subspicata Vis. Growing in Croatia. Food Chem. 2006, 96, 20. [Google Scholar] [CrossRef]
- Stashenko, E.; Wiame, H.; Dassy, S.; Martinez, J.R.; Shibamoto, T. Catalytic Transformation of Copaiba (Copaifera officinalis) Oil over Zeolite ZSM-5. J. High Res. Chromatogr. 1995, 18, 54. [Google Scholar] [CrossRef]
- Mazzoni, V.; Tomi, F.; Casanova, J. A Daucane-type Sesquiterpene from Faucus carota Seed Oil. Flavour Fragr. J. 1999, 14, 268. [Google Scholar] [CrossRef]
- Martinez, J.; Rosa, P.T.V.; Menut, C.; Leydet, A.; Brat, P.; Pallet, D.; Meireles, M.A.A. Valorization of Brazilian Vetiver (Vetiveria zizanioides (L.) Nash ex Small) Oil. J. Agric. Food Chem. 2004, 52, 6578. [Google Scholar] [CrossRef]
- Wong, K.C.; Lim, T.B.; Ali, D.M.H. Essential Oil of Homalomena sagittifolia Jungh. Flavour Fragr. J. 2006, 21, 786. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-1932633219. [Google Scholar]
- Gil, M.L.; Jimenez, J.; Ocete, M.A.; Zarzuelo, A.; Cabo, M.M. Comparative Study of Different Essential Oils of Bupleurum gibraltaricum Lamarck. Pharmazie 1989, 44, 284. [Google Scholar]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Wang, Z.P. Uptake, Distribution, and Elimination of alpha-Pinene in Man after Exposure by Inhalation. Scand. J. Work Environ. Health 1990, 16, 372. [Google Scholar] [CrossRef] [Green Version]
- Kose, E.O.; Deniz, I.G.; Sarikurkcu, C.; Aktas, O.; Yavuz, M. Chemical Composition, Antimicrobial and Antioxidant Activities of the Essential Oils of Sideritis erythrantha Boiss. and Heldr. (var. erythrantha and var. cedretorum P.H. Davis) Endemic in Turkey. Food Chem. Toxicol. 2010, 48, 2960. [Google Scholar] [PubMed]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological Activities of alpha-Pinene and beta-Pinene Enantiomers. Molecules 2012, 17, 6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, K.A.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.; Carneiro, S.M.; Carvalho, F.A. Syzygium cumini (L.) Skeels Essential Oil and Its Major Constituent alpha-Pinene Exhibit anti-Leishmania Activity through Immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, alpha-Pinene and beta-Caryophyllene from Plectranthus barbatus Essential Oil as Eco-friendly Larvicides against Malaria, Dengue and Japanese Encephalitis Mosquito Vectors. Parasitol. Res. 2016, 115, 807. [Google Scholar] [CrossRef] [PubMed]
- Perry, N.S.; Houghton, P.J.; Theobald, A.; Jenner, P.; Perry, E.K. In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulaefolia Essential Oil and Constituent Terpenes. J. Pharm. Pharmacol. 2000, 52, 895. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Yamafuji, C. Inhibition of Acetylcholinesterase Activity by Bicyclic Monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765. [Google Scholar] [CrossRef]
- Montalván, M.; Peñafiel, M.A.; Ramírez, J.; Cumbicus, N.; Bec, N.; Larroque, C.; Bicchi, C.; Gilardoni, G. Chemical Composition, Enantiomeric Distribution, and Sensory Evaluation of the Essential Oils Distilled from the Ecuadorian Species Myrcianthes myrsinoides (Kunth) Grifo and Myrcia mollis (Kunth) DC. (Myrtaceae). Plants 2019, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramírez, J.; Sgorbini, B.; Bicchi, C.; Gilardoni, G. Chemical, Enantioselective, and Sensory Analysis of a Cholinesterase Inhibitor Essential Oil from Coreopsis triloba S.F. Blake (Asteraceae). Plants 2019, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Jayaweera, S.L.D.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Kasuya, H.; Okada, N.; Kubohara, M.; Satou, T.; Masuo, Y.; Koike, K. Expression of BDNF and TH mRNA in the Brain Following Inhaled Administration of alpha-Pinene. Phytother. Res. 2015, 29, 43. [Google Scholar] [CrossRef]
- Satou, T.; Kasuya, H.; Maeda, K.; Koike, K. Daily Inhalation of alpha-Pinene in Mice: Effects on Behavior and Organ Accumulation. Phytother. Res. 2014, 28, 1284. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.F.; Brandão, M.S.; Moura, J.B.; Leitão, J.M.R.S.; Carvalho, F.A.A.; Miúra, L.M.C.V.; Leite, J.R.S.A.; Sousa, D.P.; Almeida, F.R.C. Antinociceptive Activity of the Monoterpene α-Phellandrene in Rodents: Possible Mechanisms of Action. J. Pharm. Pharmacol. 2012, 64, 283. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.C.; Santos, J.A.; Konkiewitz, E.C.; Oesterreich, S.A.; Nazari-Formagio, A.S.; Croda, J.; Ziff, E.B.; Leite-Kassuya, C.A. Antihyperalgesic and Antidepressive Actions of (R)-(+)-Limonene, α-Phellandrene, and Essential Oil from Schinus terebinthifolius Fruits in a Neuropathic Pain Model. Nutr. Neurosci. 2014, 18, 217. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Lin, J.H.; Hsu, S.C.; Weng, S.W.; Huang, Y.P.; Tang, N.Y.; Lin, J.G.; Chung, J.G. Alpha-phellandrene Promotes Immune Responses in Normal Mice Through Enhancing Macrophage Phagocytosis and Natural Killer Cell Activities. In Vivo 2013, 27, 809. [Google Scholar] [PubMed]
- Lin, J.J.; Wu, C.C.; Hsu, S.C.; Weng, S.W.; Ma, Y.S.; Huang, Y.P.; Lin, J.G.; Chung, J.G. Alpha-Phellandrene-Induced DNA Damage and Affect DNA Repair Protein Expression in WEHI-3 Murine Leukemia Cells In Vitro. Environ. Toxicol. 2015, 30, 1322. [Google Scholar] [CrossRef]
- Hsieh, L.C.; Hsieh, S.L.; Chen, C.T.; Chung, J.G.; Wang, J.J.; Wu, C.C. Induction of α-Phellandrene on Autophagy in Human Liver Tumor Cells. Am. J. Chin. Med. 2015, 43, 1. [Google Scholar] [CrossRef]
- Røstelien, T.; Borg-Karlson, A.K.; Fäldt, J.; Jacobsson, U.; Mustaparta, H. The Plant Sesquiterpene Germacrene D Specifically Activates a Major Type of Antennal Receptor Neuron of the Tobacco Budworm Moth Heliothis virescens. Chem. Senses 2000, 25, 141. [Google Scholar] [CrossRef] [Green Version]
- Mozuraitis, R.; Stranden, M.; Ramirez, M.I.; Borg-Karlson, A.K.; Mustaparta, H. (-)-Germacrene D Increases Attraction and Oviposition by the Tobacco Budworm Moth Heliothis virescens. Chem. Senses 2002, 27, 505. [Google Scholar] [CrossRef] [Green Version]
- Stranden, M.; Liblikas, I.; Koenig, W.A.; Almaas, T.J.; Borg-Karlson, A.K.; Mustaparta, H. (–)-Germacrene D Receptor Neurones in Three Species of Heliothine Moths: Structure-activity Relationships. J. Comp. Physiol. A 2003, 189, 563. [Google Scholar] [CrossRef]
- Müller, M.; Buchbauer, G. Essential Oil Components as Pheromones. A Review. Flavour Fragr. J. 2011, 26, 357. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463. [Google Scholar] [CrossRef]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID Quantification Technique without Authentic Samples Using Predicted Response Factors. Flavour Fragr. J. 2012, 27, 290. [Google Scholar] [CrossRef]
N. | Compounds | 5%-phenyl-methylpolysiloxane | polyethylene glycol | |||||||
---|---|---|---|---|---|---|---|---|---|---|
IRL a | IRL b | % | σ | IRL a | IRL c | Ref. | % | σ | ||
1 | tricyclene | 923 | 921 | 0.1 | 0.01 | 1013 | 1012 | [28] | 0.1 | 0.01 |
2 | α-pinene | 931 | 932 | 14.0 | 0.45 | 1025 | 1025 | [28] | 15.0 | 0.68 |
3 | sabinene | 969 | 969 | 1.3 | 0.04 | 1123 | 1122 | [28] | 1.4 | 0.06 |
4 | β-pinene | 974 | 974 | 1.7 | 0.05 | 1112 | 1110 | [28] | 1.8 | 0.09 |
5 | myrcene | 988 | 988 | 1.1 | 0.09 | 1203 | 1187 | [29] | 0.7 | 0.04 |
6 | α-phellandrene | 1007 | 1002 | 16.1 | 0.45 | 1166 | 1168 | [28] | 17.2 | 0.92 |
7 | α-terpinene | 1015 | 1014 | 0.5 | 0.01 | 1182 | 1178 | [28] | 0.5 | 0.03 |
8 | o-cymene | 1023 | 1022 | 2.4 | 0.07 | 1272 | 1276 | [30] | 2.4 | 0.12 |
9 | β-phellandrene | 1028 | 1025 | 3.3 | 0.09 | 1210 | 1209 | [28] | 2.8 | 0.15 |
10 | (E)-β-ocimene | 1044 | 1044 | 1.8 | 0.07 | 1254 | 1250 | [28] | 1.8 | 0.10 |
11 | ɣ-terpinene | 1055 | 1054 | 0.3 | 0.01 | 1245 | 1245 | [28] | 0.3 | 0.01 |
12 | camphenilone | 1081 | 1078 | 0.7 | 0.02 | 1177 | 1456 | [31] | 0.8 | 0.04 |
13 | terpinolene | 1082 | 1086 | 0.2 | 0.02 | 1282 | 1282 | [32] | 0.3 | 0.01 |
14 | linalool | 1101 | 1095 | 0.3 | 0.01 | 1565 | 1556 | [33] | 0.5 | 0.46 |
15 | n-nonanal | 1105 | 1100 | 0.5 | 0.01 | 1399 | 1387 | [34] | 0.3 | 0.04 |
16 | terpinen-4-ol | 1177 | 1174 | 0.2 | 0.01 | 1607 | 1601 | [28] | 0.2 | 0.02 |
17 | n-decanal | 1206 | 1201 | 0.2 | 0.01 | - | - | - | - | - |
18 | thymol methyl ether | 1228 | 1232 | 0.2 | 0.01 | 1596 | 1587 | [28] | 0.2 | 0.03 |
19 | 2-(E)-decenal | 1263 | 1260 | 0.5 | 0.04 | 1645 | 1640 | [28] | trace | - |
20 | carvacrol | 1306 | 1298 | 0.5 | 0.05 | 2213 | 2210 | [28] | 0.4 | 0.31 |
21 | α-cubebene | 1343 | 1348 | 0.3 | 0.01 | 1447 | 1460 | [28] | 0.5 | 0.05 |
22 | neryl acetate | 1361 | 1359 | 0.3 | 0.01 | 1734 | 1718 | [28] | 0.4 | 0.05 |
23 | α-copaene | 1370 | 1374 | 1.2 | 0.03 | 1476 | 1491 | [28] | 1.2 | 0.13 |
24 | modheph-2-ene | 1374 | 1382 | 0.2 | 0.01 | 1502 | 1496 | [35] | 0.3 | 0.03 |
25 | trans-myrtanol acetate | 1382 | 1385 | 8.8 | 0.24 | 1765 | 1746 | [36] | 8.8 | 1.44 |
26 | β-cubebene | 1383 | 1387 | 0.8 | 0.02 | 1526 | 1542 | [28] | 0.9 | 0.11 |
27 | β-elemene | 1385 | 1389 | 0.2 | 0.01 | - | - | - | - | - |
28 | α-gurjunene | 1399 | 1409 | 0.1 | 0.04 | 1512 | 1529 | [28] | 0.1 | 0.01 |
29 | (E)-β-caryophyllene | 1412 | 1417 | 3.1 | 0.08 | 1577 | 1578 | [37] | 2.0 | 0.39 |
30 | β-copaene | 1423 | 1430 | 0.4 | 0.04 | 1613 | 1631 | [38] | 0.2 | 0.04 |
31 | β-gurjunene | 1438 | 1431 | 0.2 | 0.02 | - | - | - | - | - |
32 | aromadendrene | 1444 | 1439 | 0.3 | 0.05 | 1622 | 1620 | [28] | 0.1 | 0.03 |
33 | α-humulene | 1448 | 1452 | 1.7 | 0.03 | 1650 | 1667 | [28] | 2.0 | 0.30 |
34 | allo-aromadendrene | 1452 | 1458 | 0.1 | 0.03 | 1624 | 1637 | [28] | 0.2 | 0.04 |
35 | (E)-β-farnesene | 1461 | 1454 | 0.8 | 0.01 | 1655 | 1664 | [28] | 1.0 | 0.14 |
36 | dauca-5,8-diene | 1467 | 1471 | 0.1 | 0.01 | 1644 | 1654 | [39] | 0.4 | 0.16 |
37 | germacrene D | 1476 | 1480 | 13.3 | 0.38 | 1690 | 1708 | [28] | 14.8 | 2.36 |
38 | ar-curcumene | 1478 | 1479 | 0.5 | 0.01 | 1767 | 1770 | [28] | 0.8 | 0.14 |
39 | cis-β-guaiene | 1482 | 1492 | 0.2 | 0.01 | 1677 | 1664 | [28] | trace | - |
40 | trans-muurola-4(14),5-diene | 1484 | 1493 | 0.3 | 0.01 | - | - | - | - | - |
41 | bicyclogermacrene | 1489 | 1500 | 1.9 | 0.06 | 1714 | 1730 | [28] | 1.8 | 0.26 |
42 | α-muurolene | 1493 | 1500 | 0.9 | 0.03 | 1709 | 1723 | [28] | 1.1 | 0.22 |
43 | (E,E)-α-farnesene | 1503 | 1505 | 0.2 | 0.01 | 1749 | 1744 | [28] | trace | - |
44 | δ-amorphene | 1510 | 1511 | 0.3 | 0.07 | 1702 | 1710 | [40] | 0.4 | 0.07 |
45 | δ-cadinene | 1514 | 1522 | 4.2 | 0.81 | 1743 | 1756 | [28] | 4.6 | 1.23 |
46 | β-sesquiphellandrene | 1520 | 1521 | 0.3 | 0.01 | 1759 | 1771 | [28] | trace | - |
47 | trans-cadina-1,4-diene | 1527 | 1533 | 0.1 | 0.01 | - | - | - | - | - |
48 | α-cadinene | 1531 | 1537 | 0.1 | 0.01 | 1774 | 1769 | [28] | 0.2 | 0.04 |
49 | (E)-nerolidol | 1561 | 1561 | 0.8 | 0.01 | 2057 | 2053 | [34] | 1.4 | 0.62 |
50 | trans-sesquisabinene hydrate | 1575 | 1577 | 0.2 | 0.02 | 2128 | 2092 | [28] | 0.5 | 0.16 |
51 | globulol | 1588 | 1590 | 0.3 | 0.02 | 2082 | 2082 | [28] | 0.6 | 0.15 |
52 | viridiflorol | 1597 | 1592 | 0.2 | 0.01 | 2023 | 2054 | [28] | 0.5 | 0.13 |
53 | junenol | 1613 | 1618 | 0.3 | 0.01 | 2052 | 2052 | [41] | trace | - |
54 | 1-epi-cubenol | 1624 | 1627 | 0.3 | 0.02 | 2062 | 2088 | [28] | 0.4 | 0.12 |
55 | epi-α-cadinol | 1640 | 1638 | 0.9 | 0.02 | 2176 | 2170 | [28] | 1.1 | 0.36 |
56 | epi-α-muurolol | 1642 | 1640 | 1.0 | 0.02 | 2192 | 2186 | [28] | 1.7 | 0.52 |
57 | α-muurolol | 1645 | 1644 | 0.3 | 0.01 | - | - | - | - | - |
58 | α-cadinol | 1654 | 1652 | 2.3 | 0.04 | 2230 | 2227 | [28] | 2.6 | 1.16 |
59 | cyperotundone | 1690 | 1695 | 0.1 | 0.01 | - | - | - | - | - |
Monoterpene hydrocarbons | 42.8 | 44.3 | ||||||||
Oxygenated monoterpenes | 11.0 | 11.3 | ||||||||
Sesquiterpene hydrocarbons | 31.8 | 32.6 | ||||||||
Oxygenated sesquiterpenes | 6.7 | 8.8 | ||||||||
Other compounds | 1.2 | 0.3 | ||||||||
Total identified | 93.5 | 97.3 |
N. | Enantiomers | 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin | ||
---|---|---|---|---|
LRI 1 | ED 2 (%) | ee3 (%) | ||
1 | (1R,5R)-(+)-α-pinene | 932 | 0.9 | 98.2 |
2 | (1S,5S)-(–)-α-pinene | 938 | 99.1 | |
3 | (1R,5R)-(+)-β-pinene | 993 | 44.1 | 11.9 |
4 | (1S,5S)-(–)-β-pinene | 995 | 55.9 | |
5 | (1R,5R)-(+)-sabinene | 999 | 57.0 | 14.0 |
6 | (1S,5S)-(–)-sabinene | 1001 | 43.0 | |
7 | (R)-(–)-α-phellandrene | 1027 | 100.0 | 100.0 |
8 | (R)-(–)-β-phellandrene | 1056 | 100.0 | 100.0 |
9 | (R)-(+)-germacrene D | 1499 | 4.5 | 91.0 |
10 | (S)-(–)-germacrene D | 1504 | 95.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagón, O.; Cartuche, P.; Montaño, A.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants 2022, 11, 398. https://doi.org/10.3390/plants11030398
Malagón O, Cartuche P, Montaño A, Cumbicus N, Gilardoni G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants. 2022; 11(3):398. https://doi.org/10.3390/plants11030398
Chicago/Turabian StyleMalagón, Omar, Patricio Cartuche, Angel Montaño, Nixon Cumbicus, and Gianluca Gilardoni. 2022. "A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses" Plants 11, no. 3: 398. https://doi.org/10.3390/plants11030398
APA StyleMalagón, O., Cartuche, P., Montaño, A., Cumbicus, N., & Gilardoni, G. (2022). A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants, 11(3), 398. https://doi.org/10.3390/plants11030398