Crop Adaptation to Elevated CO2 and Temperature
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavelienė, V.; Jurkonienė, S.; Jankovska-Bortkevič, E.; Švegždienė, D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. Plants 2022, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Gardi, M.W.; Malik, W.A.; Haussmann, B.I.G. Impacts of Carbon Dioxide Enrichment on Landrace and Released Ethiopian Barley (Hordeum vulgare L.) Cultivars. Plants 2021, 10, 2691. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Barbero, E.L.; Pérez, P.; Martínez-Carrasco, R.; Arellano, J.B.; Morcuende, R. Screening for Higher Grain Yield and Biomass among Sixty Bread Wheat Genotypes Grown under Elevated CO2 and High-Temperature Conditions. Plants 2021, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Jurkonienė, S.; Jankauskienė, J.; Mockevičiūtė, R.; Gavelienė, V.; Jankovska-Bortkevič, E.; Sergiev, I.; Todorova, D.; Anisimovienė, N. Elevated Temperature Induced Adaptive Responses of Two Lupine Species at Early Seedling Phase. Plants 2021, 10, 1091. [Google Scholar] [CrossRef] [PubMed]
- Barickman, T.C.; Olorunwa, O.J.; Sehgal, A.; Walne, C.H.; Reddy, K.R.; Gao, W. Yield, Physiological Performance, and Phytochemistry of Basil (Ocimum basilicum L.) under Temperature Stress and Elevated CO2 Concentrations. Plants 2021, 10, 1072. [Google Scholar] [CrossRef] [PubMed]
- Ben Mariem, S.; Soba, D.; Zhou, B.; Loladze, I.; Morales, F.; Aranjuelo, I. Climate Change, Crop Yields, and Grain Quality of C3 Cereals: A Meta-Analysis of [CO2], Temperature, and Drought Effects. Plants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-T.; Setter, T.L. Role of Tuber Developmental Processes in Response of Potato to High Temperature and Elevated CO2. Plants 2021, 10, 871. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, D.M.; Heckathorn, S.A.; Rajanayake, K.K.; Boldt, J.K.; Isailovic, D. Elevated Carbon Dioxide and Chronic Warming Together Decrease Nitrogen Uptake Rate, Net Translocation, and Assimilation in Tomato. Plants 2021, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Bourgault, M.; Tausz-Posch, S.; Greenwood, M.; Löw, M.; Henty, S.; Armstrong, R.D.; O’Leary, G.L.; Fitzgerald, G.J.; Tausz, M. Does Elevated [CO2] Only Increase Root Growth in the Topsoil? A FACE Study with Lentil in a Semi-Arid Environment. Plants 2021, 10, 612. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Devi, M.J.; Reddy, V.R.; Song, L.; Gao, H.; Cao, B. Cloning and Characterization of Three Sugar Metabolism Genes (LBGAE, LBGALA, and LBMS) Regulated in Response to Elevated CO2 in Goji Berry (Lycium barbarum L.). Plants 2021, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, F. Effects of Elevated CO2 and Heat on Wheat Grain Quality. Plants 2021, 10, 1027. [Google Scholar] [CrossRef]
- Ziska, L.H. Crop Adaptation: Weedy and Crop Wild Relatives as an Untapped Resource to Utilize Recent Increases in Atmospheric CO2. Plants 2021, 10, 88. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunce, J. Crop Adaptation to Elevated CO2 and Temperature. Plants 2022, 11, 453. https://doi.org/10.3390/plants11030453
Bunce J. Crop Adaptation to Elevated CO2 and Temperature. Plants. 2022; 11(3):453. https://doi.org/10.3390/plants11030453
Chicago/Turabian StyleBunce, James. 2022. "Crop Adaptation to Elevated CO2 and Temperature" Plants 11, no. 3: 453. https://doi.org/10.3390/plants11030453
APA StyleBunce, J. (2022). Crop Adaptation to Elevated CO2 and Temperature. Plants, 11(3), 453. https://doi.org/10.3390/plants11030453