The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues
Abstract
:1. Introduction
2. Results
2.1. Original Gossan Wastes and Analysis of the Amended Gossan Wastes
2.2. Element Distribution in Plants
2.3. Plant Establishment and Growth
2.4. Hydrogen Peroxide, Pigments and Antioxidants
2.5. Antioxidative Enzyme Activity
3. Discussion
3.1. Effect of the Amendments on the Properties of the Technosols
3.2. Cistus salviifolius Growth in Gossan Wastes and Technosols
3.3. Oxidative Stress and Antioxidant Response
4. Materials and Methods
4.1. Study Area and Characteristics of the Gossan Wastes and Amendments
4.2. Seeds and Plant Growth
4.3. Gossan and Technosols Analyses
4.4. Plant Chemical Analyses
4.5. Plant Physiological Analyses
4.6. Quantification of Enzyme Activities
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Vieira, A.; Matos, J.X.; Lopes, L.; Martins, R. Evaluation of the mining potential of the São Domingos mine wastes, Iberian Pyrite Belt, Portugal. Comun. Geol. 2020, 107, 91–100. [Google Scholar]
- De Oliveira, D.; Batista, M.J.; Matos, J.X.; Silva, T.P. Mineral sustainability of the Portuguese sector of the Iberian Pyrite Belt. Comun. Geol. 2020, 107, 11–20. [Google Scholar]
- Olías, M.; Nieto, J.M. Background Conditions and Mining Pollution throughout History in the Río Tinto (SW Spain). Environments 2015, 2, 295–316. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, First Update 2015; World Soil Resources Reports No. 106 2015; FAO: Rome, Italy, 2015; pp. 51–66. [Google Scholar]
- Abreu, M.M.; Magalhães, M.C.F. Phytostabilization of Soils in Mining Areas. Case Studies from Portugal. In Soil Remediation; Aachen, L., Eichmann, P., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 297–344. [Google Scholar]
- Abreu, M.M.; Batista, M.J.; Magalhães, M.C.F.; Matos, J.X. Acid Mine Drainage in the Portuguese Iberian Pyrite Belt. In Mine Drainage and Related Problems; Robinson, B.C., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 71–118. [Google Scholar]
- Santos, E.S.; Abreu, M.M.; Macías, F. Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere 2019, 224, 765–775. [Google Scholar] [CrossRef]
- Santos, E.S.; Arán, D.; Abreu, M.M.; de Varennes, A. Engineered Soils Using Amendments for In Situ Rehabilitation of Mine Lands. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 131–146. [Google Scholar] [CrossRef]
- Abreu, M.; Santos, E.; Magalhães, M.; Fernandes, E. Trace elements tolerance, accumulation and translocation in Cistus populifolius, Cistus salviifolius and their hybrid growing in polymetallic contaminated mine areas. J. Geochem. Explor. 2012, 123, 52–60. [Google Scholar] [CrossRef]
- Abreu, M.; Santos, E.; Ferreira, M.; Magalhães, M. Cistus salviifolius a promising species for mine wastes remediation. J. Geochem. Explor. 2012, 113, 86–93. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Santos, E.S.; Carvalho, L.C.; Abreu, M.M.; Andrade, M.L. Cistus monspeliensis L. as a potential species for rehabilitation of soils with multielemental contamination under Mediterranean conditions. Environ. Sci. Pollut. Res. 2018, 25, 7. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Blanco, P.; Rodriguez, M.J.; Morales, M.A.; Ortuno, M.F.; Torrecillas, A. Comparative growth and water relations of Cistus albidus and Cistus monspeliensis plants during water deficit conditions and recovery. Plant Sci. 2002, 162, 107–113. [Google Scholar] [CrossRef]
- Escudero, J.C.; Núñez-Olivera, E.; Martínez-Abaigar, J.; Novo, F.G. A comparative study of Cistus ladanifer shrublands in Extremadura (CW Spain) on the basis of woody species composition and cover. Vegetatio 1995, 117, 123–132. [Google Scholar] [CrossRef]
- Santos, E.; Abreu, M.; Macías, F.; de Varennes, A. Improvement of chemical and biological properties of gossan mine wastes following application of amendments and growth of Cistus ladanifer L. J. Geochem. Explor. 2014, 147, 173–181. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.M.; Pérez-López, R.; Matos, J.; Capitán, M.A.; Nieto, J.M.; Sáez, R.; Delgado, J.; Caraballo, M. Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a chemical and mineralogical characterization. Environ. Earth Sci. 2008, 55, 1797–1809. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Carvalho, L.C.; Vieira, C.; Abreu, M.M.; Magalhães, C. Physiological response of Cistus salviifolius L. to high arsenic concentrations. Environ. Geochem. Health 2020, 42, 2305–2319. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Amlinger, F.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability—A review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Businelli, D.; Massaccesi, L.; Said-Pullicino, D.; Gigliotti, G. Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil. Sci. Total Environ. 2009, 407, 1426–1435. [Google Scholar] [CrossRef]
- Mingorance, M.; Franco, I.; Rossini-Oliva, S. Application of different soil conditioners to restorate mine tailings with native (Cistus ladanifer L.) and non-native species (Medicago sativa L.). J. Geochem. Explor. 2017, 174, 35–45. [Google Scholar] [CrossRef]
- Figlioli, F.; Memoli, V.; Maisto, G.; Spagnuolo, V.; Giordano, S.; Leidi, E.O.; Oliva, S.R. Uptake of Micro and Macronutrients in Relation to Increasing Mn Concentrations in Cistus salvifolius L. Grown in Hydroponic Cultures. J. Environ. Account. Manag. 2018, 6, 355–363. [Google Scholar] [CrossRef]
- Kidd, P.; Diez, J.; Martínez, C.M. Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. subsp. ladanifer. Plant Soil 2004, 258, 189–205. [Google Scholar] [CrossRef]
- Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Reeves, R.D.; van der Ent, A.; Baker, A.J.M. Global Distribution and Ecology of Hyperaccumulator Plants. In Agromining: Farming for Metals; van der Ent, A., Echevarria, G., Baker, A.J.M., Morel, J.L., Eds.; Springer: Cham, Switzerland, 2018; pp. 75–92. [Google Scholar] [CrossRef]
- Gunes, A.; Söylemezoğlu, G.; Inal, A.; Bagci, E.; Coban, S.; Sahin, O. Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Sci. Hortic. 2006, 110, 279–284. [Google Scholar] [CrossRef]
- Maleki, M.; Ghorbanpour, M.; Kariman, K. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene 2017, 11, 247–254. [Google Scholar] [CrossRef]
- Cho, U.-H.; Seo, N.-H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci. 2005, 168, 113–120. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Carvalho, L.; Santos, E.; Abreu, M.M. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. Ecotoxicol. Environ. Saf. 2016, 129, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Márquez-García, B.; Cordoba, F. Antioxidative system and oxidative stress markers in wild populations of Erica australis L. differentially exposed to pyrite mining activities. Environ. Res. 2009, 109, 968–974. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Saraiva, J.A. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes. Environ. Pollut. 2016, 213, 43–52. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Carvalho, L.; Vidigal, P.; Amã¢Ncio, S. Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Front. Environ. Sci. 2015, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Cózatl, D.; Loza-Tavera, H.; Hernández-Navarro, A.; Moreno-Sanchez, R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 2005, 29, 653–671. [Google Scholar] [CrossRef] [Green Version]
- Schmöger, M.E.; Oven, M.; Grill, E. Detoxification of Arsenic by Phytochelatins in Plants. Plant Physiol. 2000, 122, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Konig, J.; Baier, M.; Horling, F.; Kahmann, U.; Harris, G.; Schurmann, P.; Dietz, K.-J. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. USA 2002, 99, 5738–5743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofo, A.; Scopa, A.; Nuzzaci, M.; Vitti, A. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. Int. J. Mol. Sci. 2015, 16, 13561–13578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quental, L.; Bourguignon, A.; Sousa, A.J.; Batista, M.J.; Brito, M.G.; Tavares, T.; Abreu, M.M.; Vairinho, M.M.; Cottard, F. MINEO Southern Europe Environment Test Site: Contamination Impact Mapping and Modelling: Final Report. MINEO Project-Assessing and Monitoring the Environmental Impact of Mining in Europe Using Advanced Earth Observation Techniques; Information Society Technologies, EU: Luxembourg, 2002. [Google Scholar]
- Pérez-López, R.; Álvarez-Valero, A.M.; Nieto, J.M.; Sáez, R.; Matos, J.X. Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Appl. Geochem. 2008, 23, e3452–e3463. [Google Scholar] [CrossRef]
- Póvoas, I.; Barral, M.F. Métodos de análise de solos. Comunicações do Instituto de Investigação Científica Tropical: Serie Ciências Agrárias, 10; Ministério do Planeamento e da Administração do Território, Secretaria de Estado da Ciência e Tecnologia: Lisbon, Portugal, 1992. [Google Scholar]
- Activation Laboratories Ltd. ISO/IEC 17025 Code 1H–Au + 48. Ancaster, ON, Canada. 2015. Available online: https://actlabs.com/ (accessed on 1 September 2016).
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.; Wen, B. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.V.; Chevone, B.I.; Hess, J.L. Seasonal Variation in the Antioxidant System of Eastern White Pine Needles: Evidence for thermal dependence. Plant Physiol. 1992, 98, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Okamura, M. An improved method for determination of l-ascorbic acid and l-dehydroascorbic acid in blood plasma. Clin. Chim. Acta 1980, 103, 259–268. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Amâncio, S. Antioxidant defence system in plantlets transferred from in vitro to ex vitro: Effects of increasing light intensity and CO2 concentration. Plant Sci. 2002, 162, 33–40. [Google Scholar] [CrossRef]
- Creissen, G.; Firmin, J.; Fryer, M.; Kular, B.; Leyland, N.; Reynolds, H.; Pastori, G.; Wellburn, F.; Baker, N.; Wellburn, A.; et al. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 1999, 11, 1277–1291. [Google Scholar] [CrossRef]
- Pang, J.; Chan, G.Y.S.; Zhang, J.; Liang, J.; Wong, M. Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere 2003, 52, 1559–1570. [Google Scholar] [CrossRef]
- Ingham, L.M.; Parker, M.L.; Waldron, K.W. Peroxidase: Changes in soluble and bound forms during maturation and ripening of apples. Physiol. Plant. 1998, 102, 93–100. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Nabais, C.; Saraiva, J.A. Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area. Ecotoxicology 2009, 18, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.W.S.; Whitaker, J.R. Catalase. In Handbook of Food Enzymology; Whitaker, J.R., Voragen, A.G.J., Wong, D.W.S., Eds.; Marcel Dekker: New York, NY, USA, 2003; pp. 389–401. [Google Scholar]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Methods Enzymol. 1955, 2, 764–817. [Google Scholar]
- Yuan, Z.W.; Jiang, T.J. Horseradish Peroxidase. In Handbook of Food Enzymology; Whitaker., J.R., Voragen, A.G.J., Wong, D.W.S., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 402–410. [Google Scholar]
CE | Gossan Waste w/(g/kg) | Agriculture Waste w/(g/kg) | Carob Waste w/(g/kg) | Rockwool Waste w/(g/kg) | Biomass Ash w/(g/kg) |
---|---|---|---|---|---|
Al | 20.9 ± 0.9 | 4.06 | 0.6 × 10−3 | 53.4 | 30.9 |
As | 10.0 ± 1.2 | 2.3 × 10−3 | 0.8 × 10−3 | <0.5 × 10−3 | 0.03 |
Ca | 0.2 ± 0.1 | 22.56 | 11.02 | 139.0 | 159.0 |
Cu | 0.31 ± 0.0 | 44.6 × 10−3 | 9.4 × 10−3 | 0.08 | 0.22 |
Fe | 240.0 ± 23.1 | 2.96 | 0.99 | 39.90 | 19.8 |
K | 3.3 ± 0.1 | 1.495 | 0.96 | 6.80 | 25.4 |
Mg | 0.3 ± 0.1 | 2.34 | > 9.63 | 42.10 | 14.7 |
Mn | 0.1 ± 0.1 | 0.25 | 43.1 × 10−3 | 1.85 | 2.88 |
Na | 0.8 ± 0.1 | 0.31 | 0.40 | 13.10 | 5.5 |
Pb | 33.4 ± 1.6 | 5.0 × 10−3 | 0.9 × 10−3 | <3 × 10−3 | 0.10 |
Zn | 0.11 ± 0.0 | 75.6 × 10−3 | 18.5 × 10−3 | 0.20 | 0.25 |
Control | Technosols | |||
---|---|---|---|---|
BA | OR | BA + OR | ||
Beginning of the assay | ||||
pH | 3.8 ± 0.1 a | 5.9 ± 0.1 b | 6.0 ± 0.1 b | 6.8 ± 0.2 c |
CE (µS/cm) | 137 ± 20.5 a | 240 ± 13 b | 620 ± 293 c | 529 ± 34.2 c |
Corg (g/kg) | 2.2 ± 0.2 a | 2.6 ± 0.5 a | 9.0 ± 1.7 c | 5.8 ± 0.4 b |
Pext (mg/kg) | 0.2 ± 0.1 a | 99.4 ± 189 ab | 547 ± 416 ab | 298 ± 195 b |
Kext (mg/kg) | 16.9± 0.5 | 122.5 ± 58.9 | 308.6 ± 87.9 | 395.3 ± 26.4 |
NTotal (mg/kg) | 126 ± 12.5 a | 145 ± 132 a | 431 ± 31.5 c | 319 ± 24.8 b |
After one year of Cistus salviifolius growth | ||||
pH | 4.0 ± 0.1 a* | 5.6 ± 0.3 b* | 6.5 ± 0.3 b* | 6.9 ± 0.4 c |
CE (µS/cm) | 114.7 ± 30.7 a | 114.3 ± 85.2 a* | 180.7 ± 113.4 a* | 223.2 ± 230.8 a* |
Corg (g/kg) | 3.2 ± 0.9 a | 3.6 ± 1.1 a | 10.6 ± 1.6 b | 9.4 ± 0.4 b* |
Pext (mg/kg) | <0.2 a | 1.0 ± 0.5 a | 622 ± 566 a | 930 ± 996 a |
Kext (mg/kg) | 14.1 ± 2.5 | 38.4 ± 4.1 | 101.7 ± 12.7 | 123.5 ± 28.2 |
NTotal (mg/kg) | 188 ± 38.2 a* | 193 ± 67.4 a | 658 ± 86.9 b* | 638 ± 75.1 b* |
CE | Control w/(mg/kg) | Technosols | ||
---|---|---|---|---|
BA w/(mg/kg) | OR w/(mg/kg) | BA + OR w/(mg/kg) | ||
Al | 12.6 ± 3.0 a | 81.3 ± 35.6 c | 63.3 ± 24.1 b | 132 ± 26.4 d |
As | 0.2 ± 0.02 a | 4.8 ± 0.8 c | 3.8 ± 0.6 b | 4.5 ± 1.8 bc |
Ca | 15.0 ± 6.1 a | 154 ± 29.8 b | 721.0 ± 119.0 c | 995.0 ± 176.0 d |
Cu | 1.1 ± 0.3 d | 0.5 ± 0.01 b | 0.4 ± 0.01 a | 0.5 ± 0.01 c |
Fe | 18.0 ± 2.1 a | 84.3 ± 44.0 c | 65.8 ± 34.1 b | 108.0 ± 15.0 bc |
K | 5.5 ± 2.2 a | 159.0 ± 59.5 c | 124.0 ± 44.9 b | 113.0 ± 16.6 bc |
Mg | 2.7 ± 1.7 a | 5.5 ± 2.4 a | 85.7 ± 37.2 b | 125.0 ± 17.8 b |
Mn | 0.5 ± 0.2 a | 14.0 ± 3.6 c | 11.0 ± 2.7 b | 14.0 ± 8.6 bc |
Mo | 0.04 a | 0.04 a | 0.03 a | 0.1 ± 0.04 b |
Na | 3.5 ± 1.4 a | 71.3 ± 27.3 c | 55.6 ± 20.7 b | 111.0 ± 12.8 d |
Pb | 10.4 ± 6.3 d | 2.2 ± 0.03 b | 1.8 ± 0.03 a | 2.3 ± 0.02 c |
Zn | <0.7 a | 4.4 ± 2.7 c | 3.5 ± 2.1 b | 1.8 ± 0.5 bc |
CE | Control w/(mg/kg) | Technosols | ||
---|---|---|---|---|
BA | OR | BA + OR | ||
w/(mg/kg) | w/(mg/kg) | w/(mg/kg) | ||
Al | 31.0 ± 1.0 a* | 41.2 ± 5.5 b* | 161 ± 77.0 c | 179 ± 101 c |
As | 0.2 ± 0.02 a | 0.2 ± 0.1 a* | 1.3 ± 0.3 b* | 1.4 ± 0.1 b* |
Ca | 49.0 ± 11.1 a* | 328.0 ± 41.3 b* | 1047.0 ± 317.0 c | 1054.0 ± 264.0 c |
Cu | 1.7 ± 0.1 c* | 1.3 ± 0.2 b* | <0.9 a* | <0.09 a* |
Fe | 48.7 ± 3.7 a* | 42.1 ± 5.6 a | 136.0 ± 47.7 b | 124.0 ± 49.1 b |
K | 14.4 ± 2.9 a* | 31.3 ± 3.1 b* | 89.4 ± 7.5 c | 92.5 ± 20.9 c |
Mg | 4.7 ± 0.4 a | 19.0 ± 1.2 b* | 7.5 ± 3.0 ab* | 7.3 ± 4.1 a* |
Mn | <0.5 a* | 2.7 ± 0.5 b* | 20.8 ± 4.6 c* | 17.8 ± 0.7 c |
Mo | <0.05 a* | <0.05 a* | <0.05 b* | <0.05 b |
Na | 19.3 ± 1.7 a* | 24.2 ± 4.0 a* | 150.0 ± 18.9 b* | 135.0 ± 42.2 b |
Pb | 15.0 ± 4.5 b | 8.6 ± 4.8 b* | <4.5 a* | <4.5 a* |
Zn | 1.7 ± 0.2 a* | 2.0 ± 0.6 a | 7.9 ± 4.5 b | 2.4 ± 0.7 ab |
CE | Control | Technosols | |||
---|---|---|---|---|---|
BA | OR | BA + OR | LCT * | ||
Shoots w/(mg/kg) | |||||
Al | 981.0 ± 198.0 c | 222.0 ± 58.3 b | 56.3 ± 31.3 a | 41.9 ± 14.5 a | - |
As | 284.0 ± 198.0 c | 78.4 ± 19.4 b | 2.9 ± 1.1 a | 3.2 ± 1.0 a | 5–20 |
Ca | 3969.0 ± 1164.0 a | 11,331.0 ± 3571.0 b | 4278.0 ± 724.0 a | 3957.0 ± 641.0 a | - |
Cu | 116 ± 43.8 c | 18.0 ± 3.8 b | 2.5 ± 1.4 a | 2.1 ± 1.1 a | 20–100 |
Fe | 6004.0 ± 5627.0 ab | 2397.0 ± 1691.0 a | 74.0 ± 33.7 a | 69.9 ± 20.4 a | - |
K | 3772.0 ± 1558.0 a | 3999.0 ± 264.0 a | 4520.0 ± 347.0 a | 4115.0 ± 556.0 a | - |
Mg | 1139.0 402.0 ab | 1480.0 ± 107.0 b | 1181.0 ± 147.0 a | 1162.0 ± 213.0 a | - |
Mn | 149 ± 50.4 b | 647 ± 117 c | 81.1 ± 76.3 ab | 28.6 ± 3.7 a | 400–1000 |
Mo | 0.5 ± 0.3 a | 0.7 ± 0.4 ab | 2.0 ± 0.4 b | 1.3 ± 0.5 b | 10–50 |
Na | 2362.0 ± 1008.0 a | 1562 ± 162 a | 687.0 ± 134.0 b | 778.0 ± 226.0 b | - |
P | 34.1± 8.0 a | 28.7 ± 2.3 a | 2177.0 ± 347.0 b | 1483.0 ± 293.0 b | - |
Pb | 590.0 ± 73.4 c | 222.0 ± 63.9 b | 4.0 ± 2.9 a | 7.3 ± 2.7 a | 30–300 |
Zn | 399.0 ± 76.4 c | 115.0 ± 16.6 b | 91.8 ± 46.1 ab | 43.8 ± 19.1 a | 100–400 |
Roots w/(mg/kg) | |||||
Al | 2960.0 ± 403.0 b | 3268.0 b | 435.0 ± 169.0 a | 267 ± 81.4 a | |
As | 777.0 ± 189.0 c | 462.0 b | 123.0 ± 72.7 a | 64.9 ± 18.0 a | |
Ca | 2705.0 ± 312.0 ab | 2847.0 b | 3296.0 ± 299.0 c | 2648.0 ± 143 a | |
Cu | 238.0 ± 26.6 c | 334.0 b | 14.8 ± 6.4 a | 10.2 ± 2.7 a | |
Fe | 14,982.0 ± 3189.0 c | 9873.0 b | 2870.0 ± 1563.0 a | 1470.0 ± 540.0 a | |
K | 238.0 ± 55.8 a | 183.0 a | 1519.0 ± 262.0 c | 1309.0 ± 264.0 b | |
Mg | 298.0 ± 39.7 a | 317.0 a | 772.0 ± 124.0 b | 759 ± 29.4 b | |
Mn | 30.7 ± 2.5 a | 38.2 a | 206.0 ± 121.0 c | 116 ± 18.4 b | |
Mo | 1.8 ± 0.8 ab | 1.1 a | 2.4 ± 0.6 b | 1.8 ± 0.9 ab | |
Na | 230.0 ± 24.4 a | 423.0 b | 435 ± 125 b | 380 ± 139 b | |
P | 67.0 ± 10.0 c | 43.7 b | 519 ± 58.6 a | 518 ± 160 a | |
Pb | 2621 ± 441 c | 1984 b | 470 ± 269 a | 247 ± 67.7 a | |
Zn | 182.3 ± 13.1 d | 282 c | 41.6 ± 15.2 b | 22.0 ± 2.4 a |
Control | Technosols | |||
---|---|---|---|---|
BA | OR | BA + OR | ||
Al | 0.33 b | 0.09 a | 0.14 a | 0.18 a |
As | 0.34 b | 0.19 b | 0.03 a | 0.05 a |
Ca | 1.48 a | 5.84 b | 1.30 a | 1.50 a |
Cu | 0.49 c | 0.06 a | 0.17 b | 0.23 ab |
Fe | 0.37 b | 0.49 b | 0.03 a | 0.05 ab |
K | 15.66 c | 22.83 b | 3.04 a | 3.26 a |
Mg | 3.76 b | 5.15 b | 1.54 a | 1.54 a |
Mn | 4.83 b | 18.75 c | 0.35 a | 0.25 a |
Mo | 0.37 b | 0.43 ab | 0.83 a | 0.94 ab |
Na | 10.29 c | 4.22 b | 1.65 a | 2.60 ab |
Pb | 0.23 c | 0.12 b | 0.01 a | 0.03 a |
Zn | 2.19 b | 0.48 a | 2.15 b | 1.95 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, L.C.; Santos, E.S.; Saraiva, J.A.; Magalhães, M.C.F.; Macías, F.; Abreu, M.M. The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues. Plants 2022, 11, 588. https://doi.org/10.3390/plants11050588
Carvalho LC, Santos ES, Saraiva JA, Magalhães MCF, Macías F, Abreu MM. The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues. Plants. 2022; 11(5):588. https://doi.org/10.3390/plants11050588
Chicago/Turabian StyleCarvalho, Luísa C., Erika S. Santos, Jorge A. Saraiva, M. Clara F. Magalhães, Felipe Macías, and Maria Manuela Abreu. 2022. "The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues" Plants 11, no. 5: 588. https://doi.org/10.3390/plants11050588
APA StyleCarvalho, L. C., Santos, E. S., Saraiva, J. A., Magalhães, M. C. F., Macías, F., & Abreu, M. M. (2022). The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues. Plants, 11(5), 588. https://doi.org/10.3390/plants11050588