Mowing Facilitated Shoot and Root Litter Decomposition Compared with Grazing
Abstract
:1. Introduction
2. Results
2.1. Effects of Altitude and Land-Use Type on Shoot and Root Decomposition
2.2. Effects of Altitude and Land-Use Type on Soil Properties and Plant Attributes
2.3. The Relationships between the Environment Variables and Decomposition of Shoot and Root
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Litter Sampling
4.4. Plant and Soil Sampling and Measurements
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, N.N.; Li, W.R.; Qiu, L.P.; Zhang, Y.J.; Wei, X.R.; Zhang, X.C. Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes. Ecol. Evol. 2020, 10, 3367–3382. [Google Scholar] [CrossRef] [PubMed]
- Veen, G.F.; Fry, E.L.; ten Hooven, F.C.; Kardol, P.; Morrien, E.; De Long, J.R. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 2019, 7, 10. [Google Scholar] [CrossRef]
- Cai, A.D.; Liang, G.P.; Yang, W.; Zhu, J.; Han, T.F.; Zhang, W.J.; Xu, M.G. Patterns and driving factors of litter decomposition across chinese terrestrial ecosystems. J. Clean. Prod. 2021, 278, 9. [Google Scholar] [CrossRef]
- Harmon, M.E.; Moreno, A.; Domingo, J.B. Effects of partial harvest on the carbon stores in douglas-fir/western hemlock forests: A simulation study. Ecosystems 2009, 12, 777–791. [Google Scholar] [CrossRef]
- Freschet, G.T.; Cornwell, W.K.; Wardle, D.A.; Elumeeva, T.G.; Liu, W.D.; Jackson, B.G.; Onipchenko, V.G.; Soudzilovskaia, N.A.; Tao, J.P.; Cornelissen, J.H.C. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J. Ecol. 2013, 101, 943–952. [Google Scholar] [CrossRef]
- Santonja, M.; Rancon, A.; Fromin, N.; Baldy, V.; Haattenschwiler, S.; Fernandez, C.; Montes, N.; Mirleau, P. Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a mediterranean shrubland. Soil Biol. Biochem. 2017, 111, 124–134. [Google Scholar] [CrossRef]
- Bradford, M.A.; Berg, B.; Maynard, D.S.; Wieder, W.R.; Wood, S.A. Understanding the dominant controls on litter decomposition. J. Ecol. 2016, 104, 229–238. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, F.Y.; Wang, Y.N.; Liu, X.M.; Cheng, J.W.; Zhang, J.Z.; Baoyin, T.; Bardgett, R.D. High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant Soil 2020, 448, 265–276. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Osler, G.H.R.; Campbell, C.D.; Burslem, D.; van der Wal, R. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J. Biogeogr. 2010, 37, 1317–1328. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Reed, S.C.; Keller, A.B.; Nemergut, D.R.; O’Neill, S.P.; Ostertag, R.; Vitousek, P.M. Litter quality versus soil microbial community controls over decomposition: A quantitative analysis. Oecologia 2014, 174, 283–294. [Google Scholar] [CrossRef]
- Wang, Y.H.; Gong, J.R.; Liu, M.; Luo, Q.P.; Xu, S.; Pan, Y.; Zhai, Z.W. Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in inner mongolia, china. Appl. Soil Ecol. 2015, 96, 183–191. [Google Scholar] [CrossRef]
- Peh, K.S.H.; Sonke, B.; Taedoung, H.; Sene, O.; Lloyd, J.; Lewis, S.L. Investigating diversity dependence of tropical forest litter decomposition: Experiments and observations from central africa. J. Veg. Sci. 2012, 23, 223–235. [Google Scholar] [CrossRef]
- Bontti, E.E.; Decant, J.P.; Munson, S.M.; Gathany, M.A.; Przeszlowska, A.; Haddix, M.L.; Owens, S.; Burke, I.C.; Parton, W.J.; Harmon, M.E. Litter decomposition in grasslands of central north america (us great plains). Glob. Change Biol. 2009, 15, 1356–1363. [Google Scholar] [CrossRef]
- Hou, D.J.; He, W.M.; Liu, C.C.; Qiao, X.G.; Guo, K. Litter accumulation alters the abiotic environment and drives community successional changes in two fenced grasslands in inner mongolia. Ecol. Evol. 2019, 9, 9214–9224. [Google Scholar] [CrossRef]
- Zhang, T.R.; Li, F.Y.; Shi, C.J.; Li, Y.L.; Tang, S.M.; Baoyin, T.G.T. Enhancement of nutrient resorption efficiency increases plant production and helps maintain soil nutrients under summer grazing in a semi-arid steppe. Agric. Ecosyst. Environ. 2020, 292, 8. [Google Scholar] [CrossRef]
- Song, X.X.; Wang, L.; Zhao, X.; Liu, C.; Chang, Q.; Wang, Y.; Xu, T.T.; Wang, D.L. Sheep grazing and local community diversity interact to control litter decomposition of dominant species in grassland ecosystem. Soil Biol. Biochem. 2017, 115, 364–370. [Google Scholar] [CrossRef]
- Chuan, X.Z.; Carlyle, C.N.; Bork, E.W.; Chang, S.X.; Hewins, D.B. Long-term grazing accelerated litter decomposition in northern temperate grasslands. Ecosystems 2018, 21, 1321–1334. [Google Scholar] [CrossRef]
- Du, Y.; Han, H.Y.; Wang, Y.F.; Zhong, M.X.; Hui, D.F.; Niu, S.L.; Wan, S.Q. Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade. Funct. Ecol. 2018, 32, 1117–1127. [Google Scholar] [CrossRef]
- Wang, Z.N.; Yuan, X.; Wang, D.L.; Zhang, Y.; Zhong, Z.W.; Guo, Q.F.; Feng, C. Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe. Sci Rep. 2018, 8, 12. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Liu, N.; Kan, H.M.; Yang, G.W.; Zhang, Y.J. Changes in plant, soil, and microbes in a typical steppe from simulated grazing: Explaining potential change in soil C. Ecol. Monogr. 2015, 85, 269–286. [Google Scholar] [CrossRef]
- Menezes, R.S.C.; Elliott, E.T.; Valentine, D.W.; Williams, S.A. Carbon and nitrogen dynamics in elk winter ranges. J. Range Manag. 2001, 54, 400–408. [Google Scholar] [CrossRef]
- Wang, X.D.; Yan, Y.; Cao, Y.Z. Impact of historic grazing on steppe soils on the northern tibetan plateau. Plant Soil 2012, 354, 173–183. [Google Scholar] [CrossRef]
- Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 2010, 7, 320–332. [Google Scholar] [CrossRef]
- Tracy, B.F.; Zhang, Y. Soil compaction, corn yield response, and soil nutrient pool dynamics within an integrated crop-livestock system in illinois. Crop Sci. 2008, 48, 1211–1218. [Google Scholar] [CrossRef]
- Liang, D.F.; Niu, K.C.; Zhang, S.T. Interacting effects of yak dung deposition and litter quality on litter mass loss and nitrogen dynamics in tibetan alpine grassland. Grass Forage Sci. 2018, 73, 123–131. [Google Scholar] [CrossRef]
- Zhang, K.R.; Cheng, X.L.; Dang, H.S.; Ye, C.; Zhang, Y.L.; Zhang, Q.F. Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biol. Biochem. 2013, 57, 803–813. [Google Scholar] [CrossRef]
- Aerts, R. The freezer defrosting: Global warming and litter decomposition rates in cold biomes. J. Ecol. 2006, 94, 713–724. [Google Scholar] [CrossRef]
- Salinas, N.; Malhi, Y.; Meir, P.; Silman, M.; Cuesta, R.R.; Huaman, J.; Salinas, D.; Huaman, V.; Gibaja, A.; Mamani, M.; et al. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in peruvian forests. New Phytol. 2011, 189, 967–977. [Google Scholar] [CrossRef]
- Benot, M.L.; Saccone, P.; Pautrat, E.; Vicente, R.; Colace, M.P.; Grigulis, K.; Clement, J.C.; Lavorel, S. Stronger short-term effects of mowing than extreme summer weather on a subalpine grassland. Ecosystems 2014, 17, 458–472. [Google Scholar] [CrossRef]
- Gavazov, K.; Mills, R.; Spiegelberger, T.; Lenglet, J.; Buttler, A. Biotic and abiotic constraints on the decomposition of Fagus sylvatica leaf litter along an altitudinal gradient in contrasting land-use types. Ecosystems 2014, 17, 1326–1337. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.L.; Klopatek, J.M.; Klopatek, C.C. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol. Appl. 1998, 8, 1061–1071. [Google Scholar] [CrossRef]
- Wang, C.Y.; Han, G.M.; Jia, Y.; Feng, X.G.; Tian, X.J. Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in china. J. Plant Ecol. 2012, 5, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Mommer, L.; van Ruijven, J.; de Kroon, H.; Fischer, C.; Gessler, A.; Hildebrandt, A.; Scherer-Lorenzen, M.; Wirth, C.; Weigelt, A.; et al. Plant species richness negatively affects root decomposition in grasslands. J. Ecol. 2017, 105, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Andren, O.; Kihara, J.; Bationo, A.; Vanlauwe, B.; Katterer, T. Soil climate and decomposer activity in sub-saharan africa estimated from standard weather station data: A simple climate index for soil carbon balance calculations. Ambio 2007, 36, 379–386. [Google Scholar] [CrossRef]
- Illig, J.; Schatz, H.; Scheu, S.; Maraun, M. Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern ecuador. J. Trop. Ecol. 2008, 24, 157–167. [Google Scholar] [CrossRef]
- Wang, Y.N.; Li, F.Y.; Song, X.; Wang, X.S.; Suri, G.; Baoyin, T. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agric. Ecosyst. Environ. 2020, 303, 9. [Google Scholar] [CrossRef]
- Pineiro, G.; Paruelo, J.M.; Oesterheld, M.; Jobbagy, E.G. Pathways of grazing effects on soil organic carbon and nitrogen. Rangel. Ecol. Manag. 2010, 63, 109–119. [Google Scholar] [CrossRef]
- Solly, E.F.; Schoning, I.; Boch, S.; Kandeler, E.; Marhan, S.; Michalzik, B.; Muller, J.; Zscheischler, J.; Trumbore, S.E.; Schrumpf, M. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 2014, 382, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Berger, T.W.; Duboc, O.; Djukic, I.; Tatzber, M.; Gerzabek, M.H.; Zehetner, F. Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: Decay and nutrient release. Geoderma 2015, 251, 92–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuan, X.Z.; Carlyle, C.N.; Bork, E.W.; Chang, S.X.; Hewins, D.B. Extracellular enzyme activity in grass litter varies with grazing history, environment and plant species in temperate grasslands. Sci. Total Environ. 2020, 702, 14. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.X.; Pan, Y.D.; Ouyang, H.; Shi, P.L.; Luo, J.; Yu, Z.L.; Lu, Q. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Glob. Ecol. Biogeogr. 2004, 13, 345–358. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, T.X.; Li, R.C.; Tang, Y.H.; Du, M.Y. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a largealtitudinal gradient in semi-arid regions. J. Veg. Sci. 2013, 24, 189–201. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Ding, J.P.; Zhao, X.Y.; Li, Y.Q.; Lian, J.; Wang, T. Grazing exclusion altered the effect of plant root diameter on decomposition rates in a semiarid grassland ecosystem, northeastern china. Ecol. Res. 2020, 35, 405–415. [Google Scholar] [CrossRef]
- Yang, C.T.; Zhang, Y.; Hou, F.J.; Millner, J.P.; Wang, Z.F.; Chang, S.H. Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai-Tibet plateau. Plant Soil 2019, 444, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gong, J.R.; Zhang, Z.H.; Shi, J.Y.; Zhang, W.Y.; Song, L.Y. Grazing directly or indirectly affect shoot and root litter decomposition in different decomposition stage by changing soil properties. Catena 2022, 209, 105803. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Su, K.Q.; Li, C.J.; White, J.F. Interactive effects of epichloe endophyte, dormancy-breaking treatments and geographic origin on seed germination of achnatherum inebrians. Microorganisms 2021, 9, 2183. [Google Scholar] [CrossRef]
- Dong, L.L.; An, S.Z.; Jin, G.L.; Xun, Q.L.; Wei, P.; Qu, H.M. Dynamic population changes of achnatherum inebrians seedings. Acta Pratacult. Sci. 2014, 31, 499–503. [Google Scholar]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itavaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wei, Y.Q.; Liu, N.; Xie, K.Y.; Zhang, Y.J.; Zhang, B. Decompositioncharacteristics of mixed litter on the improved grassland on the northern slope of the tianshan mountains. Acta Agrestia Sin. 2021, 29, 10–16. [Google Scholar]
- Xu, H.J. On the Spatial Distribution Patterns of Soil Organic Carbon in the Northern Slope in the Middle Section of Tianshan Mountainous. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, May 2010. [Google Scholar]
- Feng, Y. Study on Rangeland Biodiversity in the Middle Part of Northern Slop of Tian Shan Mountains. Ph.D. Thesis, Xinjiang Agricultural University, Urumqi, China, June 2005. [Google Scholar]
- Cong, R. Effects of Grazing Intensity on Performance of Vegetation and Livestock in Typical Steppe. Master’s Thesis, Inner Mongolia University, Huhhot, China, June 2018. [Google Scholar]
- Li, M.Y.; Li, X.B.; Liu, S.Y.; Li, X.; Lyu, X.; Dang, D.L.; Dou, H.S. Ecosystem services under different grazing intensities in typical grasslands in Inner Mongolia and their relationships. Glob. Ecol. Conserv. 2021, 26, 01526. [Google Scholar] [CrossRef]
- Ylanne, H.; Kaarlejarvi, E.; Vaisanen, M.; Mannisto, M.K.; Ahonen, S.H.K.; Olofsson, J.; Stark, S. Removal of grazers alters the response of tundra soil carbon to warming and enhanced nitrogen availability. Ecol. Monogr. 2020, 90, 13. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Sun, O.J.; Luo, Z.K.; Jin, H.M.; Chen, Q.S.; Han, X.G. Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant Soil 2008, 310, 103–112. [Google Scholar] [CrossRef]
- Vicente, A.R.; Saladie, M.; Rose, J.K.C.; Labavitch, J.M. The linkage between cell wall metabolism and fruit softening: Looking to the future. J. Sci. Food Agric. 2007, 87, 1435–1448. [Google Scholar] [CrossRef]
- Wei, J.M.; Ma, F.W.; Shi, S.G.; Qi, X.D.; Zhu, X.Q.; Yuan, J.W. Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol. Technol. 2010, 56, 147–154. [Google Scholar] [CrossRef]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using mub-linked substrates and l-dopa. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part1 Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Rowell, D.L. Soil Science: Method and Applications; Addison Wesley Longman Ltd.: London, UK, 1994. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Zagal, E.; Munoz, C.; Quiroz, M.; Cordova, C. Sensitivity of early indicators for evaluating quality changes in soil organic matter. Geoderma 2009, 151, 191–198. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wei, Y.; Liu, N.; Wang, Y.; Manlike, A.; Zhang, Y.; Zhang, B. Mowing Facilitated Shoot and Root Litter Decomposition Compared with Grazing. Plants 2022, 11, 846. https://doi.org/10.3390/plants11070846
Zhang S, Wei Y, Liu N, Wang Y, Manlike A, Zhang Y, Zhang B. Mowing Facilitated Shoot and Root Litter Decomposition Compared with Grazing. Plants. 2022; 11(7):846. https://doi.org/10.3390/plants11070846
Chicago/Turabian StyleZhang, Shuzhen, Yuqi Wei, Nan Liu, Yongqi Wang, Asiya Manlike, Yingjun Zhang, and Bo Zhang. 2022. "Mowing Facilitated Shoot and Root Litter Decomposition Compared with Grazing" Plants 11, no. 7: 846. https://doi.org/10.3390/plants11070846
APA StyleZhang, S., Wei, Y., Liu, N., Wang, Y., Manlike, A., Zhang, Y., & Zhang, B. (2022). Mowing Facilitated Shoot and Root Litter Decomposition Compared with Grazing. Plants, 11(7), 846. https://doi.org/10.3390/plants11070846