Quality of Rye Plants (Secale cereale) as Affected by Agronomic Biofortification with Iodine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Iodine Content
2.2. Photosynthetic Pigment Content and Total Antioxidant Capacity (TAC)
2.3. Sugar and Protein Content
3. Materials and Methods
3.1. Site Description and Experimental Design
3.2. Laboratory Tests
- p—iodine content in the sample solution, in micrograms per liter.
- F—dilution factor of the sample solution.
- V—the volume of extract solution (mL).
- m—initial sample weight (mg).
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blasco, B.; Rios, J.; Cervilla, L.; Sánchez-Rodrigez, E.; Ruiz, J.; Romero, L. Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Ann. Appl. Biol. 2008, 152, 289–299. [Google Scholar] [CrossRef]
- Blasco, B.; Ríos, J.J.; Leyva, R.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Rutiz, J.M.; Romero, L. Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res. 2011, 142, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Bowley, H.E.; Young, S.; Ander, E.; Crout, N.; Watts, M.; Bailey, E. Iodine bioavailability in acidic soils of Northern Ireland. Geoderma 2019, 348, 97–106. [Google Scholar] [CrossRef]
- Lawson, P. Development and Evaluation of Iodine Biofortification Strategies for Vegetables; Logos Verlag Berlin, GmbH: Berlin, Germany, 2014; 211p. [Google Scholar]
- Fuge, R.; Johnson, C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Appl. Geochem. 2015, 63, 282–302. [Google Scholar] [CrossRef]
- Gonzali, S.; Kiferle, C.; Perata, P. Iodine biofortification of crops: Agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 2017, 44, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiakb, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021, 754, 141983. [Google Scholar] [CrossRef]
- Medrano-Macías, J.; Leija-Martínez, P.; González-Morales, S.; Juárez-Maldonado, A.; Benavides-Mendoza, A. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci. 2016, 7, 1146. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Prom-U-Thai, C.; Guilherme, L.R.G.; Rashid, A.; Hora, K.H.; Yazici, A.; Savasli, E.; Kalayci, M.; Tutus, Y.; Phuphong, P.; et al. Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant Soil 2017, 418, 319–335. [Google Scholar] [CrossRef]
- Kiferle, C.; Ascrizzi, R.; Martinelli, M.; Gonzali, S.; Mariotti, L.; Pistelli, L.; Flamini, G.; Perata, P. Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLoS ONE 2019, 14, e0226559. [Google Scholar] [CrossRef]
- Rangel, I.E.D.; Téllez, L.I.T.; Ortiz, H.O.; Juárez Maldonado, A.J.; González Morales, S.; De la Fuente, M.C.; Mendoza, A.B. Comparison of iodide, iodate, and iodine-chitosan complexes for the Centraal Veevoederbureau biofortification of lettuce. Appl. Sci. 2020, 10, 2378. [Google Scholar] [CrossRef]
- Rakoczy-Lelek, R.; Smoleń, S.; Grzanka, M.; Ambroziak, K.; Pitala, J.; Liszka-Skoczylas, M.; Kardasz, H. Effectiveness of foliar biofortification of carrot with iodine and selenium in a field condition. Front. Plant Sci. 2021, 12, 656283. [Google Scholar] [CrossRef] [PubMed]
- Medrano Macías, J.; López Caltzontzit, M.G.; Rivas Martínez, E.N.; Narváez Ortiz, W.A.; Benavides Mendoza, A.; Martínez Lagunes, P. Enhancement to salt stress tolerance in strawberry plants by iodine products application. Agronomy 2021, 11, 602. [Google Scholar] [CrossRef]
- Naeem, A.; Aslam, M.; Ahmad, M.; Asif, M.; Atilla Yazici, M.; Cakmak, I.; Rashid, A. Biofortification of diverse basmati rice cultivars with iodine, selenium, and zinc by individual and cocktail spray of micronutrients. Agronomy 2022, 12, 49. [Google Scholar] [CrossRef]
- Nascimento, V.L.; Souza, B.C.O.Q.; Lopes, G.; Guilherme, L.R.G. On the role of iodine in plants: A commentary on benefits of this element. Front. Plant Sci. 2022, 13, 836835. [Google Scholar] [CrossRef]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Meuser, H.; Härtling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Weng, H.-X.; Weng, J.-K.; Yan, A.-L.; Hong, C.-L.; Yong, W.-B.; Qin, Y.-C. Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. Biol. Trace Elem. Res. 2008, 123, 218–228. [Google Scholar] [CrossRef]
- Smoleń, S.; Sady, W. Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Sci. Hortic. 2012, 143, 176–183. [Google Scholar] [CrossRef]
- Kashparov, V.; Colle, C.; Zvarich, S.; Yoschenko, V.; Levchuk, S.; Lundin, S. Soil-to plant halogens transfer studies 1. Root uptake of radioiodine by plants. J. Environ. Radioact. 2005, 79, 187–204. [Google Scholar] [CrossRef]
- Smoleń, S.; Ledwozyw-Smoleń, I.; Sady, W. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil 2016, 402, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Castro, S.B.; Lacasse, P.; Fouquet, A.; Beraldin, F.; Robichaud, A.; Berthiaume, R. Short communication: Feed iodine concentrations on farms with contrasting levels of iodine in milk. J. Dairy Sci. 2011, 94, 4684–4689. [Google Scholar] [CrossRef]
- van den Top, A.M. Reviews on the Mineral Provision in Ruminants (XI): Iodine Metabolism and Requirements in Ruminants; CVB Documentatierapport nr. 43; Centraal Veevoederbureau: Lelystad, The Netherlands, 2005. [Google Scholar]
- Lowe, N.M. The global challenge of hidden hunger: Perspectives from the field. Proc. Nutr. Soc. 2021, 80, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Elsabagh, M.; Obitsu, T.; Sugino, T.; Kurokawa, Y.; Kawamura, K. Changes of photosynthetic pigments and phytol content at differrent levels of nitrogen fertilizer in Italian ryegrass fresh herbage and hay. Grassl. Sci. 2022, 68, 53–59. [Google Scholar] [CrossRef]
- Viera, I.; Herrera, M.; Roca, M. Influence of food composition on chlorophyll bioaccessibility. Food Chem. 2022, 386, 132805. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, D.-W.; Liu, H.-P.; Hong, C.L.; Song, M.Y.; Dai, Z.X.; Liu, J.W.; Zhou, J.; Weng, H.-X. Enhancing iodine content and fruit quality of pepper (Capsicum annuum L.) through biofortification. Sci. Hortic. 2017, 214, 165–173. [Google Scholar] [CrossRef]
- Sabatino, L.; Di Gaudio, F.; Consentino, B.B.; Rouphael, Y.; El-Nakhel, C.; La Bella, S.; Vasto, S.; Mauro, R.P.; D’Anna, F.; Iapichino, G.; et al. Iodine biofortification counters micronutrient deficiency and improve functional quality of open field grown curly endive. Horticulturae 2021, 7, 582. [Google Scholar] [CrossRef]
- Duborská, E.; Martin, U.; Kubová, J. Interaction with soil enhances the toxic effect of iodide and iodate on barley (Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Arch. Agron. Soil Sci. 2017, 64, 46–57. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R. Effect of storage conditions on the quality of some selected low processed vegetable products available in the markets. Zywnosc Nauka Technol. Jakosc 2008, 3.58, 96–107. [Google Scholar]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Germ, M.; Maršić, N.K.; Turk, J.; Pirc, M.; Golob, A.; Jerše, A.; Kroflič, A.; Šircelj, H.; Stibilj, V. The effect of different compounds of selenium and iodine on selected biochemical and physiological characteristics in common buckwheat and pumpkin sprouts. Acta Biol. Slov. 2015, 58, 35–44. [Google Scholar]
- Smoleń, S.; Wierzbińska, J.; Sady, W.; Kołton, A.; Wiszniewska, A.; Liszka-Skoczylas, M. Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Sci. Hortic. 2015, 188, 89–96. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2016, 73, 40–45. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Salachna, P.; Meller, E. Changes in photosynthetic pigments, total phenolic content, and antioxidant activity of salvia coccinea Buc’hoz Ex Etl. Induced by exogenous salicylic acid and soil salinity. Molecules 2018, 23, 1296. [Google Scholar] [CrossRef] [PubMed]
- Blasco, B.; Rios, J.J.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Ruiz, J.M.; Romero, L. Photorespiration process and nitrogen metabolism in lettuce plants (Lactuca sativa L.): Induced changes in response to iodine biofortification. J. Plant Growth Regul. 2010, 29, 477–486. [Google Scholar] [CrossRef]
- Grzelak, M. The productivity and fodder value of hay from extensively utilised Noteć river valley meadows. Nauka Przyr. Technol. 2010, 4, 1–10. [Google Scholar]
- Smoleń, S.; Strzetelski, P.; Rożek, S.; Ledwożyw-Smoleń, I. Comparison of iodine determination in spinach using 2% CH3COOH and TMAH. Acta Sci. Pol. Hortorum Cultus 2011, 10, 29–38. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci.Technol. 2004, 26, 211–219. [Google Scholar]
- Sharma, R.K.; Sharma, N.; Samant, S.S.; Nandi, S.K.; Palni, L.M.S. Antioxidant activities in methanolic extracts of Olea ferruginea royle fruits. Int. J. Biosci. Biochem. Bioinform. 2013, 3, 154–156. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls, Liverpool, UK, 1983; 591–592.
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(mg kg−1) | |||||
KI | Soil | 0.50f | 13.11b | 20.24a | 7.99A |
Foliar | 0.51f | 7.90c | 5.70d | ||
KIO3 | Soil | 0.49f | 4.94d | 5.33d | |
Foliar | 0.50f | 2.04e | 2.42e | 1.65B | |
Mean (C) | 0.50C | 7.00B | 8.42A | ||
Mean (B) | Soil: 7.44A | Foliar: 3.18B |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(mg g−1 Fresh Weight) | |||||
KI | Soil | 9.81e | 10.00de | 13.95a | 11.88A |
Foliar | 10.12de | 13.97a | 13.44a | ||
KIO3 | Soil | 10.01de | 12.82a | 12.04abc | |
Foliar | 9.98de | 10.91cde | 11.15bcd | 11.15B | |
Mean (C) | 11.44C | 11.92B | 12.65A | ||
Mean (B) | Soil: 11.44A | Foliar: 11.59A |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(mg g−1 Fresh Weight) | |||||
KI | Soil | 3.94e | 4.63bcde | 6.23a | 5.18A |
Foliar | 4.36de | 5.89ab | 6.00a | ||
KIO3 | Soil | 3.91e | 5.51abc | 5.44abc | 4.80B |
Foliar | 4.06de | 4.95bcd | 4.95bcd | ||
Mean (C) | 4.07B | 5.25A | 5.66A | ||
Mean (B) | Soil: 4.94A | Foliar: 5.03A |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(mg g−1 Fresh Weight) | |||||
KI | Soil | 2.73a | 3.03a | 3.15a | 3.20A |
Foliar | 3.64a | 3.23a | 3.43a | ||
KIO3 | Soil | 3.32a | 3.25a | 3.17a | 3.19A |
Foliar | 3.22a | 2.98a | 3.21a | ||
Mean (C) | 3.23A | 3.12A | 3.24A | ||
Mean (B) | Soil: 3.11A | Foliar: 3.29A |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(µmol Trolox g−1 Fresh Weight) | |||||
KI | Soil | 40.03ef | 68.75a | 55.08c | 48.72A |
Foliar | 41.31e | 48.52d | 38.64f | ||
KIO3 | Soil | 40.44ef | 61.07b | 40.55ef | |
Foliar | 40.60ef | 40.29ef | 53.61c | 46.09B | |
Mean (C) | 40.59C | 54.66A | 46.97B | ||
Mean (B) | Soil: 50.98A | Foliar: 46.09B |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(µmol Trolox g−1 Fresh Weight) | |||||
KI | Soil | 4.20e | 5.19a | 4.87ab | 4.50A |
Foliar | 4.22de | 4.28de | 4.23de | ||
KIO3 | Soil | 4.32de | 4.67bc | 4.65bcd | |
Foliar | 4.15e | 4.42cde | 4.31de | 4.42A | |
Mean (C) | 4.22B | 4.64A | 4.51A | ||
Mean (B) | Soil: 4.65A | Foliar: 4.27B |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(mg g−1 Fresh Weight) | |||||
KI | Soil | 0.29a | 0.39a | 0.42a | 0.35B |
Foliar | 0.29a | 0.33a | 0.36a | ||
KIO3 | Soil | 0.31a | 0.43a | 0.42a | 0.37A |
Foliar | 0.3a | 0.39a | 0.39a | ||
Mean (C) | 0.30B | 0.39A | 0.40A | ||
Mean (B) | Soil: 0.38A | Foliar: 0.34B |
Iodine Form (A) | Application Method (B) | Iodine Dose (C) | Mean (A) | ||
---|---|---|---|---|---|
0 | 2.5 | 5 | |||
(mg g−1 Fresh Weight) | |||||
KI | Soil | 1.46f | 2.18a | 1.79cd | 1.84A |
Foliar | 1.54ef | 2.12ab | 1.92ac | ||
KIO3 | Soil | 1.49f | 1.68def | 1.73cde | 1.62B |
Foliar | 1.51ef | 1.74cde | 1.59def | ||
Mean (C) | 1.50C | 1.93A | 1.76B | ||
Mean (B) | Soil: 1.72A | Foliar: 1.74A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzepiłko, A.; Kościk, B.; Skowrońska, M.; Kuśmierz, S.; Walczak, J.; Prażak, R. Quality of Rye Plants (Secale cereale) as Affected by Agronomic Biofortification with Iodine. Plants 2023, 12, 100. https://doi.org/10.3390/plants12010100
Krzepiłko A, Kościk B, Skowrońska M, Kuśmierz S, Walczak J, Prażak R. Quality of Rye Plants (Secale cereale) as Affected by Agronomic Biofortification with Iodine. Plants. 2023; 12(1):100. https://doi.org/10.3390/plants12010100
Chicago/Turabian StyleKrzepiłko, Anna, Bogdan Kościk, Monika Skowrońska, Sebastian Kuśmierz, Jacek Walczak, and Roman Prażak. 2023. "Quality of Rye Plants (Secale cereale) as Affected by Agronomic Biofortification with Iodine" Plants 12, no. 1: 100. https://doi.org/10.3390/plants12010100
APA StyleKrzepiłko, A., Kościk, B., Skowrońska, M., Kuśmierz, S., Walczak, J., & Prażak, R. (2023). Quality of Rye Plants (Secale cereale) as Affected by Agronomic Biofortification with Iodine. Plants, 12(1), 100. https://doi.org/10.3390/plants12010100