Identification of Genomic Regions Associated with High Grain Zn Content in Polished Rice Using Genotyping-by-Sequencing (GBS)
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation in MTU1010 X Ranbir Basmati RIL Population
2.2. Statistical Analysis
2.2.1. Correlation Analysis
2.2.2. PCA
2.3. Ranking of Genotypes
2.4. High-Density Genetic Map
2.5. QTL Mapping for Agronomic and Mineral Traits
2.5.1. QTLs for Mineral Traits
Grain Zn Brown (ZnBR)
Grain Zn Polished (ZnPR)
Grain Fe Brown (FeBR)
Grain Fe Polished (FePR)
2.5.2. QTLs for Agronomic and Yield-Related Traits
Days to 50% Flowering (DFF)
Number of Tillers (NT)
Panicle Length (PL)
Single Plant Yield (SPY)
2.6. Co-Localization of QTLs
2.6.1. Consistent QTLs across Seasons
2.6.2. Common QTLs
2.7. Analysis of Epistatic Interactions
2.8. Candidate Genes Underlying QTLs for Zn QTLs
2.9. Expression Analysis of Identified Candidate Genes
3. Discussion
3.1. Correlation
3.2. Identification of Promising RILs
3.3. Identification of Quantitative Trait Loci (QTLs)
4. Materials and Methods
4.1. Development of RIL Population
4.2. Field Experiment Details
4.3. Phenotypic Evaluation of Agronomic and Mineral Traits
4.4. Estimation of Grain Zn and Fe Content
4.5. Statistical Analysis
4.6. Genotyping by Sequencing (ddRAD-Seq)
4.6.1. Genotyping and Filtration
4.6.2. Genetic Linkage Map Construction
4.6.3. QTL Analysis
4.7. Mining of Candidate Genes
4.8. Confirmation of Identified QTLs and Markers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Saini, D.K.; Kumar, A.; Kaushik, P. A Review of Important QTLs for Biofortification Traits in Rice. Preprints 2019, 2019120158. [Google Scholar] [CrossRef] [Green Version]
- Roy Choudhury, A.; Review, M. Agronomic and Genetic Biofortification of Rice Grains with Microelements to Assure Human Nutritional Security. SF J. Agric. Crop Manag. 2020, 1, 1005. [Google Scholar]
- Welch, R.M.; Graham, R.D. Breeding for Micronutrients in Staple Food Crops from a Human Nutrition Perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [Green Version]
- McCall, K.A.; Huang, C.C.; Fierke, C.A. Function and Mechanism of Zinc Metalloenzymes. J. Nutr. 2000, 130, 1437S–1446S. [Google Scholar] [CrossRef] [Green Version]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.S. Zinc: The Missing Link in Combating Micronutrient Malnutrition in Developing Countries. Proc. Nutr. Soc. 2006, 65, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Waters, B.M.; Grusak, M.A. Quantitative Trait Locus Mapping for Seed Mineral Concentrations in Two Arabidopsis Thaliana Recombinant Inbred Populations. New Phytol. 2008, 179, 1033–1047. [Google Scholar] [CrossRef] [Green Version]
- Delseny, M.; Salses, J.; Cooke, R.; Sallaud, C.; Regad, F.; Lagoda, P.; Guiderdoni, E.; Ventelon, M.; Brugidou, C.; Ghesquière, A. Rice Genomics: Present and Future. Plant Physiol. Biochem. 2001, 39, 323–334. [Google Scholar] [CrossRef]
- Feng, Y.; Zhai, R.; Lin, Z.; Cao, L.; Wei, X.; Cheng, S. QTL Analysis for Yield Traits in Rice under Two Nitrogen Levels. Chin. J. Rice Sci. 2013, 27, 577–584. [Google Scholar]
- Khush, G.S. Strategies for Increasing the Yield Potential of Cereals: Case of Rice as an Example. Plant Breed. 2013, 132, 433–436. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Pandit, E.; Pawar, S.; Naveenkumar, R.; Barik, S.R.; Mohanty, S.P.; Nayak, D.K.; Ghritlahre, S.K.; Sanjiba Rao, D.; Reddy, J.N.; et al. Linkage Disequilibrium Mapping for Grain Fe and Zn Enhancing QTLs Useful for Nutrient Dense Rice Breeding. BMC Plant Biol. 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Patni, B.; Shankhdhar, D.; Shankhdhar, S.C. Zinc—An Indispensable Micronutrient. Physiol. Mol. Biol. Plants 2013, 19, 11–20. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving Nutrition through Biofortification: A Review of Evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Bouis, H.E.; Welch, R.M. Biofortification—A Sustainable Agricultural Strategy for Reducing Micronutrient Malnutrition in the Global South. Crop Sci. 2010, 50, S-20–S-32. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.; Senadhira, D.; Beebe, S.; Iglesias, C.; Monasterio, I. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crop. Res. 1999, 60, 57–80. [Google Scholar] [CrossRef]
- Zhao, M.; Lin, Y.; Chen, H. Improving Nutritional Quality of Rice for Human Health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef]
- Wissuwa, M.; Ismail, A.M.; Graham, R.D. Rice Grain Zinc Concentrations as Affected by Genotype, Native Soil-Zinc Availability, and Zinc Fertilization. Plant Soil 2008, 306, 37–48. [Google Scholar] [CrossRef]
- Zhang, M.; Pinson, S.R.M.; Tarpley, L.; Huang, X.-Y.; Lahner, B.; Yakubova, E.; Baxter, I.; Guerinot, M.L.; Salt, D. E Mapping and Validation of Quantitative Trait Loci Associated with Concentrations of 16 Elements in Unmilled Rice Grain. Theor. Appl. Genet. 2014, 127, 137–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, B.P.M.; Descalsota, G.I.L.; Nha, C.T.; Amparado, A.; Inabangan-Asilo, M.A.; Manito, C.; Tesoro, F.; Reinke, R. Identification of Genomic Regions Associated with Agronomic and Biofortification Traits in DH Populations of Rice. PLoS ONE 2018, 13, e0201756. [Google Scholar] [CrossRef] [PubMed]
- Neeraja, C.N.; Babu, V.R.; Ram, S.; Hossain, F.; Hariprasanna, K.; Rajpurohit, B.S. Biofortification in Cereals: Progress and Prospects. Curr. Sci. 2017, 113, 1050–1057. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Calayugan, M.I.C.; Swamy, B.P.; Nha, C.T.; Palanog, A.D.; Biswas, P.S.; Descalsota-Empleo, G.I.; Inabangan-Asilo, M. A Zinc-Biofortified Rice: A Sustainable Food-Based Product for Fighting Zinc Malnutrition. In Rice Improvement; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Kumar, S.; Hash, C.T.; Nepolean, T.; Mahendrakar, M.D.; Satyavathi, C.T.; Singh, G.; Rathore, A.; Yadav, R.S.; Gupta, R.; Srivastava, R.K. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes 2018, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Ott., J.; Wang, J.; Leal, S.M. Genetic Linkage Analysis in the Age of Whole-Genome Sequencing. Nat. Rev. Genet. 2015, 16, 275–284. [Google Scholar] [CrossRef]
- de Leon, T.B.; Linscombe, S.; Subudhi, P.K. Molecular Dissection of Seedling Salinity Tolerance in Rice (Oryza sativa L.) Using a High-Density GBS-Based SNP Linkage Map. Rice 2016, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Singh, V.K.; Kumar, A.; Powell, W.; Sorrells, M.E. Can Genomics Deliver Climate-Change Ready Crops? Curr. Opin. Plant Biol. 2018, 45, 205–211. [Google Scholar] [CrossRef]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M. Genome-Wide Genetic Marker Discovery and Genotyping Using next-Generation Sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, 37135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Guan, N.; Ma, C.; Zeng, H.; et al. SLAF-Seq: An Efficient Method of Large-Scale De Novo SNP Discovery and Genotyping Using High-Throughput Sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gali, K.K.; Sackville, A.; Tafesse, E.G.; Lachagari, V.B.R.; McPhee, K.; Hybl, M.; Mikić, A.; Smýkal, P.; McGee, R.; Burstin, J.; et al. Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.). Front. Plant Sci. 2019, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Dissanayaka, D.N.; Gali, K.K.; Jha, A.B.; Lachagari, V.B.R.; Warkentin, T.D. Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms Associated with Fe, Zn, and Se Concentration in Field Pea. Crop Sci. 2020, 60, 2070–2084. [Google Scholar] [CrossRef] [Green Version]
- Furuta, T.; Ashikari, M.; Jena, K.K.; Doi, K.; Reuscher, S. Adapting Genotyping-by-Sequencing for Rice F2 Populations. G3 Genes Genomes Genet. 2017, 7, 881–893. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, D.; Wing, R.A.; Yu, Y.; Chougule, K.; Kudrna, D.; Lee, S.; Rang, A.; Singh, K. Genotyping by Sequencing of Rice Interspecific Backcross Inbred Lines Identifies QTLs for Grain Weight and Grain Length. Euphytica 2018, 214, 41. [Google Scholar] [CrossRef]
- Yadav, S.; Sandhu, N.; Singh, V.K.; Catolos, M.; Kumar, A. Genotyping-by-Sequencing Based QTL Mapping for Rice Grain Yield under Reproductive Stage Drought Stress Tolerance. Sci. Rep. 2019, 9, 14326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.J.; Broadley, M.R. Physiological Limits to Zinc Biofortification of Edible Crops. Front. Plant Sci. 2011, 2, 80. [Google Scholar] [CrossRef] [Green Version]
- Nakandalage, N.; Nicolas, M.; Norton, R.M.; Hirotsu, N.; Milham, P.J.; Seneweera, S. Improving Rice Zinc Biofortification Success Rates through Genetic and Crop Management Approaches in a Changing Environment. Front. Plant Sci. 2016, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.A.; Narayana, K.K.; Holla, S.; Shrinivas, S.M.; Dar, Z.A.; Shashidhar, H.E. Micronutrient Productivity: A Comprehensive Parameter for Biofortification in Rice (Oryza sativa L.) Grain. J. Sci. Food Agric. 2019, 99, 1311–1321. [Google Scholar] [CrossRef]
- Suman, K.; Neeraja, C.N.; Madhubabu, P.; Rathod, S.; Bej, S.; Jadhav, K.P.; Kumar, J.A.; Chaitanya, U.; Pawar, S.C.; Rani, S.H.; et al. Identification of Promising RILs for High Grain Zinc Through Genotype × Environment Analysis and Stable Grain Zinc QTL Using SSRs and SNPs in Rice (Oryza sativa L.). Front. Plant Sci. 2021, 12, 587482. [Google Scholar] [CrossRef] [PubMed]
- Janila, P.; Pandey, M.K.; Shasidhar, Y.; Variath, M.T.; Sriswathi, M.; Khera, P.; Manohar, S.S.; Nagesh, P.; Vishwakarma, M.K.; Mishra, G.P.; et al. Molecular Breeding for Introgression of Fatty Acid Desaturase Mutant Alleles (AhFAD2A and AhFAD2B) Enhances Oil Quality in High and Low Oil Containing Peanut Genotypes. Plant Sci. 2016, 242, 203–213. [Google Scholar] [CrossRef]
- Varshney, R.K.; Terauchi, R.; McCouch, S.R. Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biol. 2014, 12, e1001883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collard, B.C.Y.; Mackill, D.J. Marker-Assisted Selection: An Approach for Precision Plant Breeding in the Twenty-First Century. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soren, K.R.; Madugula, P.; Kumar, N.; Barmukh, R.; Sengar, M.S.; Bharadwaj, C.; Sharma, P.C.; Singh, S.; Bhandari, A.; Singh, J.; et al. Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom® cicerSNP Array in Chickpea. Int. J. Mol. Sci. 2020, 21, 5058. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.M.; Neeraja, C.N.; Rathod, S.; Suman, K.; Uttam, G.A.; Chakravartty, N.; Lachagari, V.B.R.; Chaitanya, U.; Rao, L.V.S.; Voleti, S.R. Stable SNP Allele Associations with High Grain Zinc Content in Polished Rice (Oryza sativa L.) Identified Based on DdRAD Sequencing. Front. Genet. 2020, 11, 763. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.-L. Genomic Selection for Crop Improvement. Crop. Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Sudan, J.; Singh, R.; Sharma, S.; Salgotra, R.K.; Sharma, V.; Singh, G.; Sharma, I.; Sharma, S.; Gupta, S.K.; Zargar, S.M. ddRAD sequencing-based identification of inter-genepool SNPs and association analysis in Brassica juncea. BMC Plant Biol. 2019, 19, 594. [Google Scholar] [CrossRef] [Green Version]
- Anuradha, K.; Agarwal, S.; Batchu, A.K.; Prasad, B.A.; Mallikarjuna, S.B.P.; Longvah, T. Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J. Phytol. 2012, 4, 19–25. [Google Scholar]
- Inabangan-Asilo, M.A.; Mallikarjuna Swamy, B.P.; Amparado, A.F.; Descalsota-Empleo, G.I.L.; Arocena, E.C.; Reinke, R. Stability and G × E Analysis of Zinc-Biofortified Rice Genotypes Evaluated in Diverse Environments. Euphytica 2019, 215, 61. [Google Scholar] [CrossRef] [Green Version]
- Descalsota-Empleo, G.I.; Amparado, A.; Inabangan-Asilo, M.A.; Tesoro, F.; Stangoulis, J.; Reinke, R.; Swamy, B.P.M. Genetic Mapping of QTL for Agronomic Traits and Grain Mineral Elements in Rice. Crop. J. 2019, 7, 560–572. [Google Scholar] [CrossRef]
- Dixit, S.; Singh, U.M.; Abbai, R.; Ram, T.; Singh, V.K.; Paul, A.; Virk, P.S.; Kumar, A. Identification of genomic region(s) responsible for high iron and zinc content in rice. Sci. Rep. 2019, 9, 8136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anandan, A.; Rajiv, G.; Eswaran, R.; Prakash, M. Genotypic Variation and Relationships between Quality Traits and Trace Elements in Traditional and Improved Rice (Oryza Sativa L.) Genotypes. J. Food Sci. 2011, 76, H122–H130. [Google Scholar] [CrossRef]
- Descalsota, G.I.L.; Swamy, B.P.M.; Zaw, H.; Inabangan-Asilo, M.A.; Amparado, A.; Mauleon, R.; Chadha-Mohanty, P.; Arocena, E.C.; Raghavan, C.; Leung, H.; et al. Genome-Wide Association Mapping in a Rice Magic plus Population Detects Qtls and Genes Useful for Biofortification. Front. Plant Sci. 2018, 9, 1347. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zheng, T.Q.; Hu, X.; Cheng, L.R.; Xu, J.L.; Shi, Y.M.; Li, Z.K. Examining Two Sets of Introgression Lines in Rice (Oryza sativa L.) Reveals Favorable Alleles That Improve Grain Zn and Fe Concentrations. PLoS ONE 2015, 10, e0131846. [Google Scholar] [CrossRef] [PubMed]
- Stangoulis, J.C.R.; Huynh, B.L.; Welch, R.M.; Choi, E.Y.; Graham, R.D. Quantitative Trait Loci for Phytate in Rice Grain and Their Relationship with Grain Micronutrient Content. Euphytica 2007, 154, 289–294. [Google Scholar] [CrossRef]
- Swamy, B.P.M.; Kaladhar, K.; Anuradha, K.; Batchu, A.K.; Longvah, T.; Sarla, N. QTL Analysis for Grain Iron and Zinc Concentrations in Two O. Nivara Derived Backcross Populations. Rice Sci. 2018, 25, 197–207. [Google Scholar] [CrossRef]
- Norton, G.J.; Deacon, C.M.; Xiong, L.; Huang, S.; Meharg, A.A.; Price, A.H. Genetic Mapping of the Rice Ionome in Leaves and Grain: Identification of QTLs for 17 Elements Including Arsenic, Cadmium, Iron and Selenium. Plant Soil 2010, 329, 139–153. [Google Scholar] [CrossRef]
- Ogasawara, M.; Miyazaki, N.; Monden, G.; Taniko, K.; Lim, S.; Iwata, M.; Ishii, T.; Ma, J.F.; Ishikawa, R. Role of QGZn9a in Controlling Grain Zinc Concentration in Rice, Oryza sativa L. Theor. Appl. Genet. 2021, 134, 3013–3022. [Google Scholar] [CrossRef]
- Naik, S.M.; Raman, A.K.; Nagamallika, M.; Venkateshwarlu, C.; Singh, S.P.; Kumar, S.; Singh, S.K.; Tomizuddin, A.; Das, S.P.; Prasad, K.; et al. Genotype × Environment Interactions for Grain Iron and Zinc Content in Rice. J. Sci. Food Agric. 2020, 100, 4150–4164. [Google Scholar] [CrossRef]
- Ajmera, S. Studies on Stability Analysis for Grain Yield and Its Attributes in Rice (Oryza sativa L.) Genotypes. Int. J. Pure Appl. Biosci. 2017, 5, 892–908. [Google Scholar] [CrossRef]
- Suwarto; Nasrullah. Genotype × Environment Interaction for Iron Concentration of Rice in Central Java of Indonesia. Rice Sci. 2011, 18, 75–78. [Google Scholar] [CrossRef]
- Phuke, R.M.; Anuradha, K.; Radhika, K.; Jabeen, F.; Anuradha, G.; Ramesh, T.; Hariprasanna, K.; Mehtre, S.P.; Deshpande, S.P.; Anil, G.; et al. Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench). Front. Plant Sci. 2017, 8, 712. [Google Scholar] [CrossRef] [PubMed]
- Singhal, T.; Satyavathi, C.T.; Kumar, A.; Sankar, S.M.; Singh, S.P.; Bharadwaj, C.; Aravind, J.; Anuradha, N.; Meena, M.C.; Singh, N.; et al. Genotype × Environment Interaction and Genetic Association of Grain Iron and Zinc Content with Other Agronomic Traits in RIL Population of Pearl Millet. Crop Pasture Sci. 2018, 69, 1092–1102. [Google Scholar] [CrossRef]
- Courtois, B.; Shen, L.; Petalcorin, W.; Carandang, S.; Mauleon, R.; Li, Z. Locating QTLs Controlling Constitutive Root Traits in the Rice Population IAC 165 × Co39. Euphytica 2003, 134, 335–345. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Price, A.H.; Courtois, B. Yield Response to Water Deficit in an Upland Rice Mapping Population: Associations among Traits and Genetic Markers. Theor. Appl. Genet. 2004, 109, 1237–1246. [Google Scholar] [CrossRef]
- Bernier, J.; Atlin, G.N.; Serraj, R.; Kumar, A.; Spaner, D. Breeding upland rice for drought resistance. J. Sci. Food Agric. 2008, 88, 927–939. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Ram, T.; Yadaw, R.B.; Mishra, K.K.; Mandal, N.P. Breeding High-Yielding Drought-Tolerant Rice: Genetic Variations and Conventional and Molecular Approaches. J. Exp. Bot. 2014, 65, 6265–6278. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Sun, C.; Min, J.; Chen, Y.; Tong, C.; Bao, J. Association Mapping of Quantitative Trait Loci for Mineral Element Contents in Whole Grain Rice (Oryza sativa L.). J. Agric. Food Chem. 2015, 63, 10885–10892. [Google Scholar] [CrossRef]
- Swamy, B.P.M.; Kaladhar, K.; Anuradha, K.; Batchu, A.K.; Longvah, T.; Viraktamath, B.C.; Sarla, N. Enhancing iron and zinc concentration in rice grains using wild species. In ADNAT Convention and International Symposium on Genomics and Biodiversity; CCMB: Hyderabad, India, 2011; p. 71. [Google Scholar]
- Mackay, T.F.C. Epistasis and quantitative traits: Using model organisms to study gene–gene interactions. Nat. Rev. Genet. 2013, 15, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Rao, D.S.; Babu, P.M.; Swarnalatha, P.; Kota, S.; Bhadana, V.P.; Varaprasad, G.S.; Babu, V.R. Assessment of Grain Zinc and Iron Variability in Rice Germplasm Using Energy Dispersive X-ray Fluorescence Spectrophotometer. J. Rice Res. 2014, 7, 45–52. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Yaseen, M.; Eskridge, K.M.; Murtaza, G. Stability: Stability Analysis of Genotype by Environment Interaction (GEI), R package version 0.5.0; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated Software for Genetic Linkage Map Construction and Quantitative Trait Locus Mapping in Biparental Populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Voorrips, R.E. Computer Note MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonemaru, J.-I.; Yamamoto, T.; Fukuoka, S.; Uga, Y.; Hori, K.; Yano, M. Q-TARO: QTL Annotation Rice Online Database. Rice 2010, 3, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L.; et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef] [PubMed]
- Bej, S.; Neeraja, C.; Krishna Kanth, T.; Suman, K.; Barbadikar, K.M.; Voleti, S. Correlation of Expressional Pattern of Ubiquitin Activating Gene with Grain Fe Content in Rice. Oryza-Int. J. Rice 2020, 57, 251–259. [Google Scholar] [CrossRef]
- Phule, A.S.; Barbadikar, K.M.; Madhav, M.S.; Senguttuvel, P.; Babu, M.B.B.P.; Ananda Kumar, P. Genes Encoding Membrane Proteins Showed Stable Expression in Rice under Aerobic Condition: Novel Set of Reference Genes for Expression Studies. 3 Biotech 2018, 8, 383. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
Statistics | Year | DFF | PH | NT | PL | SPY | ZnBR | ZnPR | FeBR | FePR |
---|---|---|---|---|---|---|---|---|---|---|
Mean | WS17 | 105.9 | 126.6 | 11.2 | 26.5 | 20.6 | 22.2 | 18 | 9.1 | 2.8 |
MTU1010 | 97 | 92 | 12 | 21.1 | 30.21 | 12.4 | 6.8 | 10.1 | 1.9 | |
R. Basmati | 92 | 115 | 18 | 19.7 | 21.1 | 17.2 | 13.3 | 11.6 | 2.9 | |
DS18 | 99.4 | 110.8 | 14.6 | 22.4 | 17.4 | 16.7 | 13 | 9.4 | 2 | |
MTU1010 | 96 | 90 | 13 | 22.2 | 30.7 | 11.7 | 6.7 | 10.1 | 1.9 | |
R. Basmati | 85 | 114 | 19 | 19.4 | 14.6 | 16.6 | 12.5 | 11.6 | 2.9 | |
WS20 | 104.6 | 119.1 | 11.9 | 25.6 | 17.2 | 17.4 | 13.8 | 9.8 | 2.6 | |
MTU1010 | 100 | 103 | 12 | 25 | 14.5 | 20.1 | 14.6 | 11.8 | 2.9 | |
R. Basmati | 92 | 101 | 11 | 18 | 13.6 | 19.1 | 16.3 | 13.5 | 2.3 | |
DS20 | 98.1 | 107.4 | 13 | 22.4 | 12.8 | 16.7 | 13.4 | 10.7 | 3.1 | |
MTU1010 | 103 | 109 | 12 | 23 | 13.8 | 17.2 | 10.9 | 8.1 | 1.1 | |
R. Basmati | 100 | 101 | 14 | 22 | 15.5 | 15.2 | 12.6 | 10.4 | 2.2 | |
Variance | WS17 | 60.9 | 247.1 | 4.5 | 5 | 108.6 | 27.7 | 25.1 | 2.4 | 1.9 |
DS18 | 236.7 | 327.8 | 16.9 | 5 | 48.4 | 16.7 | 15.9 | 3.4 | 0.9 | |
WS20 | 32.3 | 185.4 | 3.2 | 4.4 | 39 | 16.7 | 17.3 | 2.1 | 0.7 | |
DS20 | 62.4 | 67.6 | 7.4 | 4.8 | 11.6 | 13.3 | 13 | 1.2 | 2.4 | |
Std Error (Dev) | WS17 | 7.8 | 15.7 | 2.1 | 2.2 | 10.4 | 5.3 | 5 | 1.6 | 1.4 |
DS18 | 15.4 | 18.1 | 4.1 | 2.2 | 7 | 4.1 | 4 | 1.8 | 0.9 | |
WS20 | 5.7 | 13.6 | 1.8 | 2.1 | 6.2 | 4.1 | 4.2 | 1.5 | 0.8 | |
DS20 | 7.9 | 8.2 | 2.7 | 2.2 | 3.4 | 3.7 | 3.6 | 1.1 | 1.6 | |
Skewness | WS17 | 0.4 | −0.4 | 0.6 | −0.3 | 0.6 | 0.6 | 0.7 | 0.3 | 2.4 |
DS18 | −0.4 | −1.6 | 0.2 | −0.2 | 0.8 | 1.1 | 1 | −0.9 | 0.9 | |
WS20 | 0.5 | −0.1 | 0.2 | −0.8 | 1.2 | 1.2 | 1.9 | 0.6 | 1 | |
DS20 | 0.4 | 0.9 | 0.2 | 0 | 1 | 0.2 | 0.3 | 0.4 | 5.5 | |
Kurtosis | WS17 | −1 | −0.8 | 0.8 | 0.9 | −0.3 | −0.4 | 0 | −0.5 | 9.5 |
DS18 | 1.3 | 9.5 | −0.1 | 0.2 | 1.2 | 3.4 | 2.8 | 3.3 | 1.1 | |
WS20 | 0.8 | −1 | −0.3 | 1.7 | 2.9 | 2.9 | 7.3 | −0.2 | 1 | |
DS20 | −0.3 | 0.5 | 0.2 | −0.2 | 2.4 | 1.5 | 1.4 | 1 | 40.3 | |
Minimum | WS17 | 92 | 89 | 7 | 19.7 | 6.5 | 12.4 | 6.8 | 6.4 | 1 |
DS18 | 37 | 8 | 7 | 16 | 3.6 | 8.5 | 5.3 | 1.2 | 0.4 | |
WS20 | 92 | 92 | 7 | 18 | 7.5 | 7.2 | 5.6 | 7.4 | 1.4 | |
DS20 | 80 | 92 | 7 | 17 | 6.2 | 7.3 | 4.5 | 8.1 | 1.1 | |
Maximum | WS17 | 123 | 157 | 18 | 33 | 51 | 37.8 | 31.7 | 13.2 | 10.6 |
DS18 | 131 | 153 | 27 | 27 | 42.9 | 35.2 | 30.5 | 13.3 | 5.1 | |
WS20 | 125 | 147 | 16 | 30 | 45 | 32.9 | 35.6 | 13.5 | 5.7 | |
DS20 | 118 | 135 | 22 | 27 | 25.9 | 28.4 | 26.3 | 14.3 | 15.5 | |
Range | WS17 | 31 | 68 | 11 | 13.3 | 44.5 | 25.4 | 24.9 | 6.8 | 9.6 |
DS18 | 94 | 145 | 20 | 11 | 39.3 | 26.7 | 25.2 | 12.1 | 4.7 | |
WS20 | 33 | 55 | 9 | 12 | 37.5 | 25.7 | 30 | 6.1 | 4.3 | |
DS20 | 38 | 43 | 15 | 10 | 19.7 | 21.1 | 21.8 | 6.2 | 14.4 | |
Standard Error | WS17 | 0.8 | 1.6 | 0.22 | 0.23 | 1.08 | 0.54 | 0.52 | 0.16 | 0.14 |
DS18 | 1.6 | 1.9 | 0.42 | 0.23 | 0.72 | 0.42 | 0.41 | 0.19 | 0.1 | |
WS20 | 0.6 | 1.4 | 0.19 | 0.21 | 0.64 | 0.42 | 0.43 | 0.15 | 0.09 | |
DS20 | 0.8 | 0.8 | 0.28 | 0.22 | 0.35 | 0.38 | 0.37 | 0.11 | 0.16 | |
CV % | WS17 | 1.6 | 3.2 | 0.43 | 0.45 | 2.13 | 1.08 | 1.03 | 0.32 | 0.28 |
DS18 | 3.2 | 3.7 | 0.84 | 0.45 | 1.42 | 0.84 | 0.82 | 0.38 | 0.19 | |
WS20 | 1.2 | 2.8 | 0.37 | 0.42 | 1.28 | 0.84 | 0.85 | 0.3 | 0.17 | |
DS20 | 1.6 | 1.7 | 0.55 | 0.44 | 0.7 | 0.75 | 0.74 | 0.23 | 0.32 |
DFF | PH | NT | PL | SPY | ZnBR | ZnPR | FeBR | FePR | |
---|---|---|---|---|---|---|---|---|---|
DFF | 1.00 | −0.01 | 0.06 | 0.02 | 0.28 ** | 0.04 | 0.02 | −0.14 | 0.06 |
1.00 | −0.09 | −0.12 | 0.03 | −0.01 | −0.06 | −0.06 | −0.35 *** | −0.24 * | |
PH | −0.01 | 1.00 | 0.10 | 0.25 * | 0.04 | −0.04 | 0.03 | −0.04 | −0.08 |
−0.09 | 1.00 | 0.25 * | 0.18 | −0.20 * | 0.00 | 0.05 | 0.11 | −0.05 | |
NT | 0.06 | 0.10 | 1.00 | −0.30 ** | 0.02 | −0.06 | −0.19 | 0.12 | 0.03 |
−0.12 | 0.25 * | 1.00 | 0.00 | −0.01 | −0.04 | 0.04 | 0.18 | 0.13 | |
PL | 0.02 | 0.25 * | −0.30 ** | 1.00 | 0.06 | 0.02 | 0.15 | −0.26 * | −0.04 |
0.03 | 0.18 | 0.00 | 1.00 | −0.16 | −0.04 | −0.07 | −0.02 | 0.03 | |
SPY | 0.28 ** | 0.04 | 0.02 | 0.06 | 1.00 | −0.26 * | −0.21 ** | −0.27 ** | −0.19 |
−0.01 | −0.20 * | −0.01 | −0.16 | 1.00 | −0.17 | −0.23 * | −0.09 | −0.27 * | |
ZnBR | 0.04 | −0.04 | −0.06 | 0.02 | −0.26 * | 1.00 | 0.79 *** | 0.64 *** | 0.40 *** |
−0.06 | 0.00 | −0.04 | −0.04 | −0.17 | 1.00 | 0.76 *** | 0.59 *** | 0.23 * | |
ZnPR | 0.02 | 0.03 | −0.19 | 0.15 | −0.21 ** | 0.79 *** | 1.00 | 0.45 *** | 0.35 *** |
−0.06 | 0.05 | 0.04 | −0.07 | −0.23 * | 0.76 *** | 1.00 | 0.47 *** | 0.43 *** | |
FeBR | −0.14 | −0.04 | 0.12 | −0.26 * | −0.27 | 0.64 *** | 0.45 *** | 1.00 | 0.34 *** |
−0.35 *** | 0.11 | 0.18 | −0.02 | −0.09 | 0.59 *** | 0.47 *** | 1.00 | 0.10 | |
FePR | 0.06 | −0.08 | 0.03 | −0.04 | −0.19 | 0.40 *** | 0.35 *** | 0.34 *** | 1.00 |
−0.24 * | −0.05 | 0.13 | 0.03 | −0.27 * | 0.23 * | 0.43 *** | 0.10 | 1.00 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | |
---|---|---|---|---|---|---|---|---|---|
Standard Deviation | 1.79 | 1.20 | 1.10 | 0.98 | 0.91 | 0.79 | 0.68 | 0.48 | 0.23 |
Proportion of Variance | 0.35 | 0.16 | 0.13 | 0.11 | 0.09 | 0.07 | 0.05 | 0.03 | 0.01 |
Cumulative Proportion | 0.35 | 0.52 | 0.65 | 0.76 | 0.85 | 0.92 | 0.97 | 0.99 | 1.00 |
Linkage Grp | No. of SNPs Mapped | Map Distance (cM) | Density (SNPs/cM) |
---|---|---|---|
LG01 | 215 | 200 | 1.08 |
LG02 | 171 | 371 | 0.46 |
LG03 | 252 | 194 | 1.30 |
LG04 | 28 | 122 | 0.23 |
LG05 | 261 | 238 | 1.10 |
LG06 | 418 | 272 | 1.54 |
LG07 | 205 | 186 | 1.10 |
LG08 | 266 | 154 | 1.73 |
LG09 | 132 | 265 | 0.50 |
LG10 | 315 | 155 | 2.03 |
LG11 | 194 | 147 | 1.32 |
LG12 | 289 | 141 | 2.05 |
Total | 2746 | 2445 | 1.2 |
S. No. | Trait Name | QTL Name | Chr | Marker Interval | LOD | PVE (%) | Add | Allele |
---|---|---|---|---|---|---|---|---|
1 | ZnBR-WS17 | qZnBR.2.1 | 2 | SNP_25682947-24248265 | 4.53 | 20.8 | −2.56 | P2 |
2 | ZnBR-WS20 | qZnBR.4.1 | 4 | SNP_34361396-34862789 | 3.84 | 16.01 | −1.81 | P2 |
3 | ZnBR-DS18 | qZnBR.5.1 | 5 | SNP_23987433-23987440 | 2.59 | 23.49 | −1.3 | P2 |
4 | ZnBR-WS20 | qZnBR.9.1 | 9 | SNP_3990952-4052267 | 2.72 | 11.4 | 1.65 | P1 |
5 | ZnBR-DS20 | qZnBR.9.2 | 9 | SNP_3036200-9387676 | 2.55 | 13.88 | −1.43 | P2 |
6 | ZnPR-WS17 | qZnPR.2.1 | 2 | SNP_25682947-24248265 | 4.75 | 19.42 | −2.45 | P2 |
7 | ZnPR-WS20 | qZnPR.2.2 | 2 | SNP_35521280-24248265 | 3.46 | 11.78 | −8.29 | P2 |
8 | ZnPR-WS17 | qZnPR.6.1 | 6 | SNP_28083826-2824031 | 2.81 | 12.34 | −3.04 | P2 |
9 | ZnPR-DS18 | qZnPR.6.2 | 6 | SNP_28684145-30895032 | 3.19 | 8.33 | −2.19 | P2 |
10 | ZnPR-DS18 | qZnPR.7.1 | 7 | SNP_14229996-13495315 | 3.31 | 8.1 | 3.52 | P1 |
11 | FeBR-WS17 | qFeBR.2.1 | 2 | SNP_24248265-10686645 | 4.11 | 15.73 | −0.61 | P2 |
12 | FeBR-WS17 | qFeBR.3.1 | 3 | SNP_31758461-31908509 | 4.06 | 16.78 | −0.85 | P2 |
13 | FeBR-WS17 | qFeBR.6.1 | 6 | SNP_2824031-28033555 | 2.73 | 11.27 | −0.76 | P2 |
14 | FeBR-WS20 | qFeBR.5.1 | 5 | SNP_25431969-26111360 | 8.32 | 34.15 | −0.95 | P2 |
15 | FePR-WS17 | qFePR.1.1 | 1 | SNP_12900648-35973332 | 10.38 | 28.73 | −4.04 | P2 |
16 | FePR-DS18 | qFePR.2.1 | 2 | SNP_25682947-24248265 | 2.73 | 3.52 | −0.27 | P2 |
17 | FePR-DS20 | qFePR.3.1 | 3 | SNP_13716046-28278891 | 26.59 | 36 | −5.81 | P2 |
18 | FePR-WS17 | qFePR.5.1 | 5 | SNP_14288078-24423261 | 4.56 | 11.97 | −0.68 | P2 |
19 | FePR-WS20 | qFePR.5.2 | 5 | SNP_28525048-27859206 | 2.91 | 8.68 | 0.69 | P1 |
20 | FePR-WS17 | qFePR.6.1 | 6 | SNP_2824031-28033555 | 2.81 | 12.43 | −0.86 | P2 |
21 | FePR-DS18 | qFePR.8.1 | 8 | SNP_8033030-10615027 | 11.52 | 18.27 | −0.81 | P2 |
22 | FePR-DS18 | qFePR.10.1 | 10 | SNP_18122916-17994542 | 4.12 | 5.53 | 0.37 | P1 |
23 | FePR-DS18 | qFePR.12.1 | 12 | SNP_214104199-217575057 | 13.17 | 21.55 | −0.64 | P2 |
S. No. | Trait | QTL Name | Chr | Marker Interval | LOD | PVE (%) | Add | Allele |
---|---|---|---|---|---|---|---|---|
1 | DFF-DS18 | qDFF.1.1 | 1 | SNP_24168773-4543601 | 8.31 | 8.86 | −8.33 | P2 |
2 | DFF-WS17 | qDFF.2.1 | 2 | SNP_12479844-31358768 | 4.17 | 16.05 | 4 | P1 |
3 | DFF-DS18 | qDFF.2.2 | 2 | SNP_18086957- 17352707 | 9.9 | 10.32 | 5.52 | P1 |
4 | DFF-DS20 | qDFF.2.3 | 2 | SNP_18086957-17352707 | 2.82 | 12.25 | 2.46 | P1 |
5 | DFF-DS20 | qDFF.2.4 | 2 | SNP_24248265-10686645 | 2.61 | 14.31 | 2.97 | P1 |
6 | DFF-DS18 | qDFF.2.5 | 2 | SNP_24248265-10686645 | 11.61 | 14.4 | 7.07 | P1 |
7 | DFF-DS18 | qDFF.3.1 | 3 | SNP_22060292-22880259 | 8.86 | 9.43 | −6.4 | P2 |
8 | DFF-WS17 | qDFF.6.1 | 6 | SNP_1521959-2211457 | 3.04 | 6.63 | −2.98 | P2 |
9 | DFF-WS17 | qDFF.6.2 | 6 | SNP_6569100-12310577 | 7.26 | 21.35 | −4.68 | P2 |
10 | DFF-DS18 | qDFF.8.1 | 8 | SNP_14611920-15329887 | 16.54 | 20.96 | 13.22 | P1 |
11 | DFF-WS20 | qDFF.11.1 | 11 | SNP_11928941-1421311 | 3.68 | 19.25 | −3.6 | P2 |
12 | PL-WS17 | qPL.2.1 | 2 | SNP_13823910-15278368 | 2.56 | 13.29 | −0.73 | P2 |
13 | PL-DS20 | qPL.9.1 | 9 | SNP_18030272-17930222 | 3.3 | 8.03 | 0.83 | P1 |
14 | PL-DS18 | qPL.11.1 | 11 | SNP_116504977-12294027 | 2.65 | 12.39 | 1.47 | P1 |
15 | PL-DS20 | qPL.11.2 | 11 | SNP_125186904-123220554 | 5.51 | 16.51 | −1.26 | P2 |
16 | PL-WS20 | qPL.12.1 | 12 | SNP_21721652-21797699 | 3.2 | 15.88 | 0.83 | P1 |
17 | SPY-DS18 | qSPY.3.1 | 3 | SNP_32176877-962276 | 2.63 | 11.26 | 4.71 | P1 |
18 | SPY-WS17 | qSPY.6.1 | 6 | SNP_22324866-1691751 | 3.57 | 15.32 | −4.98 | P2 |
19 | SPY-WS17 | qSPY.9.1 | 9 | SNP_18053950-18053949 | 2.82 | 11.28 | 3.74 | P1 |
20 | SPY-DS20 | qSPY.9.2 | 9 | SNP_18915073-18745200 | 2.69 | 12.99 | 1.23 | P1 |
21 | NT-DS20 | qNT.6.1 | 6 | SNP_14518832-15621571 | 2.51 | 12.03 | 1.59 | P1 |
22 | NT-WS17 | qNT.9.1 | 9 | SNP_17649556-17654662 | 3.24 | 17.94 | −0.81 | P2 |
23 | NT-WS20 | qNT.9.2 | 9 | SNP_17887929-18744623 | 3.33 | 10.37 | −0.73 | P2 |
24 | NT-WS20 | qNT.10.1 | 10 | SNP_22330346-18248511 | 2.57 | 11.02 | 1.04 | P1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uttam, G.A.; Suman, K.; Jaldhani, V.; Babu, P.M.; Rao, D.S.; Sundaram, R.M.; Neeraja, C.N. Identification of Genomic Regions Associated with High Grain Zn Content in Polished Rice Using Genotyping-by-Sequencing (GBS). Plants 2023, 12, 144. https://doi.org/10.3390/plants12010144
Uttam GA, Suman K, Jaldhani V, Babu PM, Rao DS, Sundaram RM, Neeraja CN. Identification of Genomic Regions Associated with High Grain Zn Content in Polished Rice Using Genotyping-by-Sequencing (GBS). Plants. 2023; 12(1):144. https://doi.org/10.3390/plants12010144
Chicago/Turabian StyleUttam, Goparaju Anurag, Karre Suman, Veerendra Jaldhani, Pulagam Madhu Babu, Durbha Sanjeeva Rao, Raman Meenakshi Sundaram, and Chirravuri Naga Neeraja. 2023. "Identification of Genomic Regions Associated with High Grain Zn Content in Polished Rice Using Genotyping-by-Sequencing (GBS)" Plants 12, no. 1: 144. https://doi.org/10.3390/plants12010144
APA StyleUttam, G. A., Suman, K., Jaldhani, V., Babu, P. M., Rao, D. S., Sundaram, R. M., & Neeraja, C. N. (2023). Identification of Genomic Regions Associated with High Grain Zn Content in Polished Rice Using Genotyping-by-Sequencing (GBS). Plants, 12(1), 144. https://doi.org/10.3390/plants12010144