
Citation: Uttam, G.A.; Suman, K.;

Jaldhani, V.; Babu, P.M.; Rao, D.S.;

Sundaram, R.M.; Neeraja, C.N.

Identification of Genomic Regions

Associated with High Grain Zn

Content in Polished Rice Using

Genotyping-by-Sequencing (GBS).

Plants 2023, 12, 144. https://doi.org/

10.3390/plants12010144

Academic Editors: Andrea Ertani and

Michela Schiavon

Received: 8 November 2022

Revised: 24 November 2022

Accepted: 29 November 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Identification of Genomic Regions Associated with
High Grain Zn Content in Polished Rice Using
Genotyping-by-Sequencing (GBS)
Goparaju Anurag Uttam, Karre Suman , Veerendra Jaldhani , Pulagam Madhu Babu, Durbha Sanjeeva Rao,
Raman Meenakshi Sundaram and Chirravuri Naga Neeraja *

Department of Biotechnology, Crop Improvement Section, ICAR-Indian Institute of Rice Research (IIRR),
Hyderabad 500030, India
* Correspondence: cnneeraja@gmail.com

Abstract: Globally, micronutrient (iron and zinc) enriched rice has been a sustainable and cost-
effective solution to overcome malnutrition or hidden hunger. Understanding the genetic basis
and identifying the genomic regions for grain zinc (Zn) across diverse genetic backgrounds is an
important step to develop biofortified rice varieties. In this case, an RIL population (306 RILs)
obtained from a cross between the high-yielding rice variety MTU1010 and the high-zinc rice variety
Ranbir Basmati was utilized to pinpoint the genomic region(s) and QTL(s) responsible for grain
zinc (Zn) content. A total of 2746 SNP markers spanning a genetic distance of 2445 cM were
employed for quantitative trait loci (QTL) analysis, which resulted in the identification of 47 QTLs
for mineral (Zn and Fe) and agronomic traits with 3.5–36.0% phenotypic variance explained (PVE)
over the seasons. On Chr02, consistent QTLs for grain Zn polished (qZnPR.2.1) and Zn brown
(qZnBR.2.2) were identified. On Chr09, two additional reliable QTLs for grain Zn brown (qZnBR.9.1
and qZnBR.9.2) were identified. The major-effect QTLs identified in this study were associated with
few key genes related to Zn and Fe transporter activity. The genomic regions, candidate genes, and
molecular markers associated with these major QTLs will be useful for genomic-assisted breeding for
developing Zn-biofortified varieties.

Keywords: biofortification; rice; grain zinc; quantitative trait loci; Genotyping-by-Sequence (GBS);
candidate genes

1. Introduction

Micronutrient malnutrition or hidden hunger has become a major issue for peo-
ple in developing countries, especially in Asia and Africa [1,2]. Marginal intake of mi-
cronutrients has been shown to contribute to increasing mortality rates, affect liveli-
hoods, and result in adverse effects on millions of school-going children and pregnant
women [3]. About three billion people worldwide are estimated to be affected and more
than 24,000 people die daily owing to micronutrient malnutrition or hidden hunger [4].
Recently, the United Nations (UN) declared that tackling micronutrient deficiencies is one
of the sustainable development goals (SDGs) and set a goal of SDG 2 to be achieved by
2035 (https://sustainabledevelopment.un.org/sdgs (20 September 2022)). Among different
micronutrients, zinc (Zn) and iron (Fe) are the most essential and are associated with the de-
velopment of physical and mental health in humans and reducing the risk of micronutrient
malnutrition [5].

Microelements, such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), are
found in many enzymes and have great importance for maintaining normal metabolic
pathways in humans. Zn serves as a major co-factor for more than 300 enzymes and
2000 transcription factors and is involved in the metabolism of carbohydrates, lipids, pro-
teins, and nucleic acids in humans [6,7]. It is the only metal present in all six enzyme classes
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(oxidoreductase, transferase, hydrolases, lyases, isomerases, and ligases) [8]. One third
of the human population, particularly children and women, suffer from Zn deficiency-
associated health complications such as stunting, diarrhea, reduced immunity, poor cogni-
tive development, and skin problems [9]. According to World Health Organization (WHO),
Zn deficiency is sixth among the top 10 major causes of illness in developing nations, affect-
ing 27–30% of the global population. A large portion of the global population suffers from
mineral malnutrition, as they depend on plant-based diets that have a low mineral/calorific
density [10].

Rice is a predominant and major staple food crop that provides the caloric needs of
half of the global population [11,12]. A total of 483.3 million tons of milled rice is produced
globally, according to a recent survey (ICRISAT., 2018). To meet the need, however, pro-
duction must rise to 800 to 900 million tons by 2025 [13]. Mega varieties under cultivation
are a poor source of micronutrients, particularly Zn in polished form (12 ± 14 ppm), and
provide only one fifth of daily recommended Zn requirements (15 mg/day) [14,15]. In
other words, 11 to 15 mg of Zn must be present in 220 gm of rice, which is the per capita
amount of rice identified for India. The present international target as well as that from
the AICRIP biofortification trial is 28 ppm, which can only meet half of the RDA. Through
the AICRIP rice biofortification trial, medium slender, long slender, and short bold grain
type rice varieties were released to some of the states in the country. Therefore, there is
a need to develop biofortified varieties suitable for rice consumers under aromatic grain
and other grain types. To ameliorate this situation, researchers are working to enhance the
grain Zn content in rice by different approaches. Biofortification has emerged as a cost-
effective and sustainable strategy to tackle mineral deficiencies by enhancing micronutrient
content without compromising the yield achieved through agronomic, conventional, and
biotechnological approaches [16,17]. The availability of genetic variability in grain mineral
nutrients in the rice germplasm can be employed to develop biofortified high-yielding rice
varieties [18,19].

Understanding the genetic potential of the genotypes as well as interaction between
genotype and environment is essential for developing successful biofortified rice varieties.
Developing Zn-biofortified rice is challenging, as it involves complex genetics of the
trait, genetic interactions such as epistasis, and environmental factors such as soil and
water [14,20–22]. Several genetic studies have also been carried out to identify markers
linked with quantitative trait loci (QTLs) for high Zn in grains, which would help in the
development of biofortified rice varieties through marker-assisted selection (MAS) [23].
QTL mapping provides information for identification of genomic regions associated with
targeted traits of interest (Zn) by combining genetic information with phenotypic data [24].
Several QTLs with moderate to high phenotypic variance were reported for grain Zn on all
12 chromosomes of rice [25]. Recent studies on QTL mapping for mineral elements in rice
using bi-parental and multi-parental mapping populations have identified multiple loci
and demonstrated the genetic complexity of grain micronutrient traits [26].

Compared with other molecular markers (RFLP, RAPD, SSRs, etc.) single nucleotide
polymorphisms (SNPs) are preferred because of their uniform distribution and wide occur-
rence across the genome (one marker every 100–500 bp, specific to species), thus making
them the ideal choice for constructing high-density linkage maps and identification of
markers closely associated with the trait of interest [27,28]. Next generation sequencing
(NGS) technology with reduced cost provides abundant sequence information along with
significant improvements in genome coverage and time [29]. Genotyping by sequencing
(GBS), an advancement in NGS technology based on genome target reduction and restric-
tion enzyme use has gained popularity as a cost-effective method in the development of
genome-wide markers for genetic studies [30].

Numerous methods for reduced representation genome sequencing have been de-
veloped and include genotyping by sequencing (GBS) [31], double digest restriction-site-
associated DNA sequencing (ddRAD) [32], and specific-locus amplified fragment sequenc-
ing (SLAF) [33]. GBS is being deployed for genetic studies in various crops [34,35], particu-
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larly GWAS analysis, diversity studies, genomic selection (GS), marker and gene discovery,
and high-resolution QTL mapping in rice [36–38].

The present study aims to construct a high-density linkage map and identify QTLs
for high grain Zn in polished rice and related agronomic traits using a recombinant inbred
line (RIL) population derived from a MTU1010 X Ranbir Basmati cross. Putative candidate
genes present in the QTLs identified for high grain Zn in polished rice were retrieved. The
QTLs and putative candidate genes identified in the study can be deployed to advance
genetic research and breeding applications for enhancing grain Zn content in rice.

2. Results
2.1. Phenotypic Variation in MTU1010 X Ranbir Basmati RIL Population

Wide variations were observed among the RILs across the four seasons for the nine
agronomic, yield-, and mineral-related traits, zinc (Zn) in brown rice (ZnBR; 8.5–37.8 ppm),
Zn in polished rice (ZnPR; 5.3–31.7 ppm), iron (Fe) in brown rice (FeBR; 1.2–13.3 ppm),
Fe in polished rice (FePR; 0.4–6.4 ppm), days to 50% flowering (DFF; 37–131 days), plant
height (PH; 8–157 cm), number of tillers per plant (NT; 7–27), panicle length (PL; 16–33 cm),
and single plant yield (SPY; 3.6–51 gm) (Table 1). Normal distribution was observed
for most of the traits as per the descriptive statistics and histograms across seasons
(Supplementary Figures S1 and S2).

Table 1. Descriptive statistics of selected RILs (four seasons).

Statistics Year DFF PH NT PL SPY ZnBR ZnPR FeBR FePR

Mean WS17 105.9 126.6 11.2 26.5 20.6 22.2 18 9.1 2.8
MTU1010 97 92 12 21.1 30.21 12.4 6.8 10.1 1.9
R. Basmati 92 115 18 19.7 21.1 17.2 13.3 11.6 2.9

DS18 99.4 110.8 14.6 22.4 17.4 16.7 13 9.4 2
MTU1010 96 90 13 22.2 30.7 11.7 6.7 10.1 1.9
R. Basmati 85 114 19 19.4 14.6 16.6 12.5 11.6 2.9

WS20 104.6 119.1 11.9 25.6 17.2 17.4 13.8 9.8 2.6
MTU1010 100 103 12 25 14.5 20.1 14.6 11.8 2.9
R. Basmati 92 101 11 18 13.6 19.1 16.3 13.5 2.3

DS20 98.1 107.4 13 22.4 12.8 16.7 13.4 10.7 3.1
MTU1010 103 109 12 23 13.8 17.2 10.9 8.1 1.1
R. Basmati 100 101 14 22 15.5 15.2 12.6 10.4 2.2

Variance WS17 60.9 247.1 4.5 5 108.6 27.7 25.1 2.4 1.9
DS18 236.7 327.8 16.9 5 48.4 16.7 15.9 3.4 0.9
WS20 32.3 185.4 3.2 4.4 39 16.7 17.3 2.1 0.7
DS20 62.4 67.6 7.4 4.8 11.6 13.3 13 1.2 2.4

Std Error (Dev) WS17 7.8 15.7 2.1 2.2 10.4 5.3 5 1.6 1.4
DS18 15.4 18.1 4.1 2.2 7 4.1 4 1.8 0.9
WS20 5.7 13.6 1.8 2.1 6.2 4.1 4.2 1.5 0.8
DS20 7.9 8.2 2.7 2.2 3.4 3.7 3.6 1.1 1.6

Skewness WS17 0.4 −0.4 0.6 −0.3 0.6 0.6 0.7 0.3 2.4
DS18 −0.4 −1.6 0.2 −0.2 0.8 1.1 1 −0.9 0.9
WS20 0.5 −0.1 0.2 −0.8 1.2 1.2 1.9 0.6 1
DS20 0.4 0.9 0.2 0 1 0.2 0.3 0.4 5.5

Kurtosis WS17 −1 −0.8 0.8 0.9 −0.3 −0.4 0 −0.5 9.5
DS18 1.3 9.5 −0.1 0.2 1.2 3.4 2.8 3.3 1.1
WS20 0.8 −1 −0.3 1.7 2.9 2.9 7.3 −0.2 1
DS20 −0.3 0.5 0.2 −0.2 2.4 1.5 1.4 1 40.3
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Table 1. Cont.

Statistics Year DFF PH NT PL SPY ZnBR ZnPR FeBR FePR

Minimum WS17 92 89 7 19.7 6.5 12.4 6.8 6.4 1
DS18 37 8 7 16 3.6 8.5 5.3 1.2 0.4
WS20 92 92 7 18 7.5 7.2 5.6 7.4 1.4
DS20 80 92 7 17 6.2 7.3 4.5 8.1 1.1

Maximum WS17 123 157 18 33 51 37.8 31.7 13.2 10.6
DS18 131 153 27 27 42.9 35.2 30.5 13.3 5.1
WS20 125 147 16 30 45 32.9 35.6 13.5 5.7
DS20 118 135 22 27 25.9 28.4 26.3 14.3 15.5

Range WS17 31 68 11 13.3 44.5 25.4 24.9 6.8 9.6
DS18 94 145 20 11 39.3 26.7 25.2 12.1 4.7
WS20 33 55 9 12 37.5 25.7 30 6.1 4.3
DS20 38 43 15 10 19.7 21.1 21.8 6.2 14.4

Standard Error WS17 0.8 1.6 0.22 0.23 1.08 0.54 0.52 0.16 0.14
DS18 1.6 1.9 0.42 0.23 0.72 0.42 0.41 0.19 0.1
WS20 0.6 1.4 0.19 0.21 0.64 0.42 0.43 0.15 0.09
DS20 0.8 0.8 0.28 0.22 0.35 0.38 0.37 0.11 0.16

CV % WS17 1.6 3.2 0.43 0.45 2.13 1.08 1.03 0.32 0.28
DS18 3.2 3.7 0.84 0.45 1.42 0.84 0.82 0.38 0.19
WS20 1.2 2.8 0.37 0.42 1.28 0.84 0.85 0.3 0.17
DS20 1.6 1.7 0.55 0.44 0.7 0.75 0.74 0.23 0.32

WS: Wet Season; DS: Dry Season; DFF: Days to 50% Flowering (days); PH: Plant Height (cm); NT: No. of Tillers;
PL: Panicle Length (cm); SPY: Single Plant Yield (g); ZnBR: Zinc Content in Brown Rice; ZnPR (ppm): Zinc Content
in Polished Rice (ppm); FeBR: Iron Content in Brown Rice (ppm); FePR: Iron Content in Polished Rice (ppm).

In WS 17, G3 RIL showed Zn content above the threshold value of 24 ppm as well as
SPY above 26 gm of yield check (IR64) (Figure 1a). In WS 20, G5 RIL showed Zn content
above the threshold value (24 ppm) and G3 along with another seven RILs noted SPY. In
the DS 18, G1 noted Zn content above the threshold value (24 ppm) and nine lines noted
SPY above the yield check (26 gm). In DS 20, G6 noted Zn content above the threshold
value and G3 line noted on-par yield with yield check. Based on mean Zn content and SPY
of the four seasons, none of the genotypes showed Zn content above the threshold value,
whereas seven RILs showed SPY ≥ the yield check (26 gm) (Figure 1b).

2.2. Statistical Analysis
2.2.1. Correlation Analysis

The relation between the mean values of individual traits varied from wet season to
dry season in the correlation analysis. In the wet season of 2017–2020, positive correlations
were observed between SPY and DFF at 0.05 or 0.01 probability. SPY showed significant
negative correlation at 0.05 or 0.01 probability. Panicle length showed significant negative
correlation at 0.05 probability with FeBR. NT showed significant negative correlation at
0.05 probability with ZnPR. In the dry season of 2018–2020, DFF showed significant nega-
tive correlation with FeBR and FePR at 0.001 and 0.05 probability, respectively. Significant
positive correlations were observed among the four mineral traits, namely ZnBR, ZnPR,
FeBR, and FePR, except for FeBR and FePR in the dry season of 2018–2020 (see Table 2).
Significant positive correlations were observed among the four mineral traits ZnBR, ZnPR,
FeBR, and FePR, except for FeBR and FePR in the dry season of 2018–2020.
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Figure 1. (a) Individual comparison of 92 RILs with respect to zinc (Zn) content and single plant
yield (SPY) in four seasons; (b) mean zinc (Zn) content vs. mean single plant yield (SPY) across
four seasons.

Table 2. Pearson correlation analysis for agronomic, yield-, and mineral-related traits evaluated
during two wet seasons (WS) and two dry seasons (DS) (average).

DFF PH NT PL SPY ZnBR ZnPR FeBR FePR

DFF
1.00 −0.01 0.06 0.02 0.28 ** 0.04 0.02 −0.14 0.06
1.00 −0.09 −0.12 0.03 −0.01 −0.06 −0.06 −0.35 *** −0.24 *

PH
−0.01 1.00 0.10 0.25 * 0.04 −0.04 0.03 −0.04 −0.08
−0.09 1.00 0.25 * 0.18 −0.20 * 0.00 0.05 0.11 −0.05

NT
0.06 0.10 1.00 −0.30 ** 0.02 −0.06 −0.19 0.12 0.03
−0.12 0.25 * 1.00 0.00 −0.01 −0.04 0.04 0.18 0.13

PL
0.02 0.25 * −0.30 ** 1.00 0.06 0.02 0.15 −0.26 * −0.04
0.03 0.18 0.00 1.00 −0.16 −0.04 −0.07 −0.02 0.03

SPY
0.28 ** 0.04 0.02 0.06 1.00 −0.26 * −0.21 ** −0.27 ** −0.19
−0.01 −0.20 * −0.01 −0.16 1.00 −0.17 −0.23 * −0.09 −0.27 *

ZnBR
0.04 −0.04 −0.06 0.02 −0.26 * 1.00 0.79 *** 0.64 *** 0.40 ***
−0.06 0.00 −0.04 −0.04 −0.17 1.00 0.76 *** 0.59 *** 0.23 *

ZnPR
0.02 0.03 −0.19 0.15 −0.21 ** 0.79 *** 1.00 0.45 *** 0.35 ***
−0.06 0.05 0.04 −0.07 −0.23 * 0.76 *** 1.00 0.47 *** 0.43 ***

FeBR
−0.14 −0.04 0.12 −0.26 * −0.27 0.64 *** 0.45 *** 1.00 0.34 ***

−0.35 *** 0.11 0.18 −0.02 −0.09 0.59 *** 0.47 *** 1.00 0.10

FePR
0.06 −0.08 0.03 −0.04 −0.19 0.40 *** 0.35 *** 0.34 *** 1.00

−0.24 * −0.05 0.13 0.03 −0.27 * 0.23 * 0.43 *** 0.10 1.00

*** p < 0.001; ** p < 0.01; * p < 0.05; DFF: Days to 50% Flowering; PH: Plant Height; NT: No. of Tillers; PL: Panicle
Length; SPY: Single Plant Yield; ZnBR: Zinc Content in Brown Rice; ZnPR; Zinc Content in Polished Rice; FeBR:
Iron Content in Brown Rice; FePR: Iron Content in Polished Rice. Upper value indicates wet season (WS), lower
value indicates dry season (DS).
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The combined ANOVA across four seasons or environments indicating significant vari-
ance at probability < 0.001 was observed among the genotypes (Supplementary Table S5).

2.2.2. PCA

To explain the relationships among agronomic, yield-related, and mineral traits, PCA
(Principal Component Analysis) with 92 RILs was performed using the mean values of all
the four seasons.

The nine traits were resolved into nine principal components (PCs). The first four PCs
noted an eigenvalue ≥ 1 (Figure 2) with a cumulative proportion of 75.56% (see Table 2).
ZnBR, ZnPR, and FeBR were significant in PC1. PH and PL were negatively significant
in PC2; DFF, NT, and SPY were significant in PC3. DFF and NT were significant in PC4
(Figure 2 and Table 3).
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Table 3. Importance of components.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Standard Deviation 1.79 1.20 1.10 0.98 0.91 0.79 0.68 0.48 0.23

Proportion of Variance 0.35 0.16 0.13 0.11 0.09 0.07 0.05 0.03 0.01

Cumulative Proportion 0.35 0.52 0.65 0.76 0.85 0.92 0.97 0.99 1.00

2.3. Ranking of Genotypes

Ranking of genotypes was conducted using SPY and ZnPR of multi-seasonal data in
the “Metan” package of ‘R’. The genotypes G3, G52, G68, G70, G73, G75, and G82 were
grouped in WS17 Figure 3).
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2.4. High-Density Genetic Map

The genome-wide polymorphic SNPs were evaluated for expected segregation ratio us-
ing chi-square analysis in MTU1010 X Ranbir Basmati RIL population. Out of 32,245 SNPs
between the parents, a total of 23,183 SNPs with contrasting alleles between the parents
were found to be homozygous polymorphic and displayed segregation within the mapping
population. A genetic map was constructed using 2746 SNPs spanning a genetic distance of
2445 cM (Table 4). The total number of polymorphic SNPs mapped across 12 chromosomes
ranged from 28 (Chr04) to 418 (Chr06), and the average genetic distance ranged from
122 cM (Chr04) to 371 cM (Chr02) (Table 4). A large variation in marker density was seen
across the chromosomes, with the highest marker density on Chr12 (2.05 SNPs/cM) and
lowest on Chr04 (0.23 SNPs/cM) (Table 4).

Table 4. Distribution of markers on the 12 linkage groups (LGs) of rice genetic map for the MTU1010
X Ranbir Basmati RIL population.

Linkage Grp No. of SNPs Mapped Map Distance (cM) Density (SNPs/cM)

LG01 215 200 1.08
LG02 171 371 0.46
LG03 252 194 1.30
LG04 28 122 0.23
LG05 261 238 1.10
LG06 418 272 1.54
LG07 205 186 1.10
LG08 266 154 1.73
LG09 132 265 0.50
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Table 4. Cont.

Linkage Grp No. of SNPs Mapped Map Distance (cM) Density (SNPs/cM)

LG10 315 155 2.03
LG11 194 147 1.32
LG12 289 141 2.05
Total 2746 2445 1.2

2.5. QTL Mapping for Agronomic and Mineral Traits

A total of 47 QTLs were identified for eight out of nine traits (except PH). These
included 24 QTLs for agronomic and yield traits (11 QTLs for DFF, 4 QTLs for NT, 5 QTLs
for PL, and 4 QTLs for SPY) and 23 QTLs for mineral traits (5 QTLs each for ZnBR and ZnPR,
4 QTLs for FeBR, and 9 QTLs for FePR) across four seasons (Tables 5 and 6). The phenotypic
variation explained (PVE) ranged from 3.52% to 36.0%. Altogether, 39 major effect QTLs
(PVE ≥ 10%) and 8 minor effect QTLs (PVE < 10%) were identified (Tables 5 and 6). The
highest number of QTLs (16) was observed in the wet season (WS) of 2017.

Table 5. Summary of major and minor QTLs for mineral traits (zinc (Zn) and iron (Fe)).

S. No. Trait Name QTL Name Chr Marker Interval LOD PVE (%) Add Allele

1 ZnBR-WS17 qZnBR.2.1 2 SNP_25682947-24248265 4.53 20.8 −2.56 P2
2 ZnBR-WS20 qZnBR.4.1 4 SNP_34361396-34862789 3.84 16.01 −1.81 P2
3 ZnBR-DS18 qZnBR.5.1 5 SNP_23987433-23987440 2.59 23.49 −1.3 P2
4 ZnBR-WS20 qZnBR.9.1 9 SNP_3990952-4052267 2.72 11.4 1.65 P1
5 ZnBR-DS20 qZnBR.9.2 9 SNP_3036200-9387676 2.55 13.88 −1.43 P2
6 ZnPR-WS17 qZnPR.2.1 2 SNP_25682947-24248265 4.75 19.42 −2.45 P2
7 ZnPR-WS20 qZnPR.2.2 2 SNP_35521280-24248265 3.46 11.78 −8.29 P2
8 ZnPR-WS17 qZnPR.6.1 6 SNP_28083826-2824031 2.81 12.34 −3.04 P2
9 ZnPR-DS18 qZnPR.6.2 6 SNP_28684145-30895032 3.19 8.33 −2.19 P2

10 ZnPR-DS18 qZnPR.7.1 7 SNP_14229996-13495315 3.31 8.1 3.52 P1
11 FeBR-WS17 qFeBR.2.1 2 SNP_24248265-10686645 4.11 15.73 −0.61 P2
12 FeBR-WS17 qFeBR.3.1 3 SNP_31758461-31908509 4.06 16.78 −0.85 P2
13 FeBR-WS17 qFeBR.6.1 6 SNP_2824031-28033555 2.73 11.27 −0.76 P2
14 FeBR-WS20 qFeBR.5.1 5 SNP_25431969-26111360 8.32 34.15 −0.95 P2
15 FePR-WS17 qFePR.1.1 1 SNP_12900648-35973332 10.38 28.73 −4.04 P2
16 FePR-DS18 qFePR.2.1 2 SNP_25682947-24248265 2.73 3.52 −0.27 P2
17 FePR-DS20 qFePR.3.1 3 SNP_13716046-28278891 26.59 36 −5.81 P2
18 FePR-WS17 qFePR.5.1 5 SNP_14288078-24423261 4.56 11.97 −0.68 P2
19 FePR-WS20 qFePR.5.2 5 SNP_28525048-27859206 2.91 8.68 0.69 P1
20 FePR-WS17 qFePR.6.1 6 SNP_2824031-28033555 2.81 12.43 −0.86 P2
21 FePR-DS18 qFePR.8.1 8 SNP_8033030-10615027 11.52 18.27 −0.81 P2
22 FePR-DS18 qFePR.10.1 10 SNP_18122916-17994542 4.12 5.53 0.37 P1
23 FePR-DS18 qFePR.12.1 12 SNP_214104199-217575057 13.17 21.55 −0.64 P2

Chr: Chromosome; QTL: Quantitative Trait Loci; cM: Centimorgan; PVE: Phenotypic Variance Explained; LOD:
Logarithm of Odds; Add: Additive Effect; P1: Parent 1 (MTU1010); P2: Parent 2 (Ranbir Basmati); ZnBR: Zinc
Content in Brown Rice; ZnPR: Zinc Content in Polished Rice; FeBR: Iron Content in Brown Rice; FePR: Iron
Content in Polished Rice; WS: Wet Season; DS: Dry Season.



Plants 2023, 12, 144 9 of 22

Table 6. Summary of major and minor QTLs for agronomic and yield related traits.

S. No. Trait QTL Name Chr Marker Interval LOD PVE (%) Add Allele

1 DFF-DS18 qDFF.1.1 1 SNP_24168773-4543601 8.31 8.86 −8.33 P2
2 DFF-WS17 qDFF.2.1 2 SNP_12479844-31358768 4.17 16.05 4 P1
3 DFF-DS18 qDFF.2.2 2 SNP_18086957- 17352707 9.9 10.32 5.52 P1
4 DFF-DS20 qDFF.2.3 2 SNP_18086957-17352707 2.82 12.25 2.46 P1
5 DFF-DS20 qDFF.2.4 2 SNP_24248265-10686645 2.61 14.31 2.97 P1
6 DFF-DS18 qDFF.2.5 2 SNP_24248265-10686645 11.61 14.4 7.07 P1
7 DFF-DS18 qDFF.3.1 3 SNP_22060292-22880259 8.86 9.43 −6.4 P2
8 DFF-WS17 qDFF.6.1 6 SNP_1521959-2211457 3.04 6.63 −2.98 P2
9 DFF-WS17 qDFF.6.2 6 SNP_6569100-12310577 7.26 21.35 −4.68 P2

10 DFF-DS18 qDFF.8.1 8 SNP_14611920-15329887 16.54 20.96 13.22 P1
11 DFF-WS20 qDFF.11.1 11 SNP_11928941-1421311 3.68 19.25 −3.6 P2
12 PL-WS17 qPL.2.1 2 SNP_13823910-15278368 2.56 13.29 −0.73 P2
13 PL-DS20 qPL.9.1 9 SNP_18030272-17930222 3.3 8.03 0.83 P1
14 PL-DS18 qPL.11.1 11 SNP_116504977-12294027 2.65 12.39 1.47 P1
15 PL-DS20 qPL.11.2 11 SNP_125186904-123220554 5.51 16.51 −1.26 P2
16 PL-WS20 qPL.12.1 12 SNP_21721652-21797699 3.2 15.88 0.83 P1
17 SPY-DS18 qSPY.3.1 3 SNP_32176877-962276 2.63 11.26 4.71 P1
18 SPY-WS17 qSPY.6.1 6 SNP_22324866-1691751 3.57 15.32 −4.98 P2
19 SPY-WS17 qSPY.9.1 9 SNP_18053950-18053949 2.82 11.28 3.74 P1
20 SPY-DS20 qSPY.9.2 9 SNP_18915073-18745200 2.69 12.99 1.23 P1
21 NT-DS20 qNT.6.1 6 SNP_14518832-15621571 2.51 12.03 1.59 P1
22 NT-WS17 qNT.9.1 9 SNP_17649556-17654662 3.24 17.94 −0.81 P2
23 NT-WS20 qNT.9.2 9 SNP_17887929-18744623 3.33 10.37 −0.73 P2
24 NT-WS20 qNT.10.1 10 SNP_22330346-18248511 2.57 11.02 1.04 P1

Chr: Chromosome; QTL: Quantitative Trait Loci; cM: Centimorgan; PVE: Phenotypic Variance Explained; LOD:
Logarithm Of Odds; Add: Additive Effect; P1: Parent 1 (MTU1010); P2: Parent 2 (Ranbir Basmati); DFF: Days to
50% Flowering; PL: Panicle Length; SPY: Single Plant Yield; NT: No. of Tillers; WS: Wet Season; DS: Dry Season.

2.5.1. QTLs for Mineral Traits
Grain Zn Brown (ZnBR)

Five major effect QTLs were identified on Chr02 (qZnBR.2.1; PVE 20.80%), Chr05
(qZnBR.5.1; PVE 23.49%), andChr04 (qZnBR.4.1; PVE 16.01%), and one consistent QTL was
identified on Chr09 (qZnBR.9.1 PVE 11.40% and qZnBR.9.2 13.88%) in WS20 and DS20
seasons (Table 5). The majority of QTLs showed negative additive value, indicating that
the allele contribution was from the donor parent Ranbir Basmati.

Grain Zn Polished (ZnPR)

Five QTLs were identified with PVE ranging from 8.10 to 19.42%. Two major-effect
consistent QTLs qZnPR.2.1 (PVE 19.42%) and qZnPR.2.2 (11.78%) were identified on Chr02
in WS17 and WS20. Further, two QTLs, one major (qZnPR.6.1; PVE 12.34%) and one minor
(qZnPR.6.2; PVE 8.33%), were identified on Chr06. One minor-effect QTL (qZnPR.7.1; PVE
8.10%) was also identified on Chr07 (Table 5).

Grain Fe Brown (FeBR)

Four major QTLs for FeBR trait were identified on Chr02 (qFeBR.2.1; PVE 15.73%),
Chr03 (qFeBR.3.1; PVE 16.78%), and Chr06 (qFeBR.6.1; PVE 11.27%) for WS17 and Chr05
(qFeBR.5.1; PVE 34.15%) for WS20. All the QTLs showed negative additive values, indicat-
ing that the alleles were contributed from the donor parent (Ranbir Basmati) (Table 5).
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Grain Fe Polished (FePR)

Nine QTLs were identified for the FePR trait, with the PVE ranging from 3.52% to
36.0%. Three major QTLs on Chr01 (qFePR.1.1; PVE 28.73%), Chr05 (qFePR 5.1; PVE 11.97%),
and Chr06 (qFePR.6.1; PVE 12.43%) were identified during WS17. During DS18, four QTLs,
two major and two minor, were identified each on Chr02 (qFePR 2.1; PVE 3.52%), Chr08
(qFePR.8.1; PVE 18.27%), Chr10 (qFePR.10.1; PVE 5.53%), and Chr12 (qFePR.12.1; PVE
21.55%). One minor QTL was identified on Chr05 (qFePR.5.2; PVE 8.68%) for WS20 and
one major QTL was identified on Chr03 (qFePR.3.1; PVE 36.0%) for DS20 (Table 5).

2.5.2. QTLs for Agronomic and Yield-Related Traits
Days to 50% Flowering (DFF)

A total of nine QTLs were identified for the DFF trait across four seasons. The
phenotypic variance (PVE) ranged from 6.63% to 21.35%. One QTL each was observed on
Chr01 (qDFF 1.1, PVE 8.86%), Chr03 (qDFF.3.1, PVE 9.43%), Chr08 (qDFF.8.1, PVE 20.96%),
and Chr11 (qDFF.11.1, PVE 19.25%).

Three major effect QTLs, qDFF.2.1 with PVE 16.05%, were observed in WS17, and
another two consistent QTLs (qDFF.2.2, PVE 10.32% and 12.25%; and qDFF.2.3, PVE 14.40%
and 14.31%) were observed in DS18 and DS20, respectively. On Chr06, one major (qDFF.6.2;
PVE 21.35%) and one minor effect (qDFF.6.1; PVE 6.63%) QTLs were identified (Table 6).

Number of Tillers (NT)

Four major QTLs, two QTLs on Chr09 qNT.9.1 (PVE 17.94%) and qNT.9.2 (PVE 10.37%)
were identified. The additive effect of these two QTLs indicates inheritance from a donor
parent (Ranbir Basmati). Furthermore, two QTLs each on Chr06, qNT.6.1 (PVE 12.03%) and
Chr10, qNT.10.1 (PVE 11.02%) were identified (Table 6).

Panicle Length (PL)

Four major QTLs for panicle length (PL) were identified on Chr02 (qPL.2.1) with
PVE 13.29% in WS17. Two major QTLs on Chr11, qPL.11.1 (PVE 12.39%) and qPL.11.2
(PVE 16.51%) were identified for DS18 and DS20. Further, one major effect QTL on Chr12,
qPL.12.1 with PVE 15.88% was identified for WS20 and one minor effect QTL qPL.9.1 with
PVE 8.03% on Chr09 was observed (Table 6).

Single Plant Yield (SPY)

Four major QTLs were identified for three seasons, with the PVE ranging from 11.26%
to 15.32%. Two QTLs, namely qSPY.9.1 (PVE 11.28%) and qSPY.9.2 (PVE 12.99%), were
identified on Chr09. Another two QTLs each on Chr03 (qSPY.3.1; PVE 11.26%) and Chr06
(qSPY.6.1; PVE 15.32%) were identified with an additive effect value of −4.98, indicating
the allele inheritance from donor parent Ranbir Basmati (Table 6).

2.6. Co-Localization of QTLs

In our present study, the co-localization of QTLs for traits was observed in the genic
regions of Chr02, 05, and 06. DFF (days to 50% flowering) on Chr02 (SNP_ 24248265–SNP_
10686645) was co-localized with four mineral trait QTLs: FeBR, FePR, ZnBR, and ZnPR.
Similarly, the region on Chr05 (SNP_14288078–SNP_24423261) FePR QTL was co-localized
with ZnBR QTL (Tables 5 and 6 and Figure 4).
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2.6.1. Consistent QTLs across Seasons

Two major consistent QTLs, qDFF.2.2 and qDFF.2.3, were identified across two seasons
(DS18 and DS20), and four major mineral QTLs, qZnBR.2.1, qZnPR.2.2 on Chr02, were
consistent in WS17 and WS20. Another two QTLs, qZnBR.9.1 and qZnBR.9.2 on Chr09,
were consistent in DS20 and WS20 (Tables 5 and 6 and Figure 4).
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2.6.2. Common QTLs

Two common QTLs for grain Zn were identified on Chr02. The QTLs for grain Zn
polished, qZnPR.2.1 (PVE 19.42%), and grain Zn brown, qZnBR.2.1 (PVE 20.80%), on Chr02
were located in the 25.68–24.25 Mb region (Tables 5 and 6 and Figure 4).

2.7. Analysis of Epistatic Interactions

A total of 170 epistatic interactions were detected for agronomic and yield (83) along
with grain mineral (87) traits across four seasons (Supplementary Table S1). Eight epistatic
interactions for five traits (PH, NT, FeBR, FePR, and ZnPR) were considered as the main
effect QTLs, with PVE ranging from 11.20 to 26.83%. For two QTLs of ZnPR, one on Chr05
interacted with Chr10 (PVE 12.15%) and another QTL on Chr07 interacted with Chr11 (PVE
17.24%). Epistatic interaction for FeBR trait was observed on Chr04, which interacted with
the locus on Chr05 (PVE 16.16%). Similarly, another epistatic interaction was observed for
FePR on Chr02, which interacted with locus on Chr10 (PVE 26.83%). Two interactions were
observed for NT on Chr01 with two loci of Chr02 and Chr08, and another QTL for NT on
Chr02 interacted with loci on Chr05. Two digenic epistatic QTL interactions within the two
loci of Chr02 were observed for PH, with PVE 8.74% and 24.49%, respectively (Figure 5).
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2.8. Candidate Genes Underlying QTLs for Zn QTLs

A total of 1637 genes present within the identified QTL region for Zn brown (ZnBR)
and polished (ZnPR) on Chr02, Chr06, and Chr09 were retrieved (Supplementary Table S2).
They were annotated and categorized broadly on cellular, molecular, and biological pro-
cesses using WEGO (Web Gene Ontology Plot) software (Supplementary Figure S3). Among
several functional categories, 36 putative candidate genes (seven on Chr02, 18 on Chr06,
and 11 on Chr09) belonging to transporter activity roles were shortlisted for the targeted
QTLs (Supplementary Table S3). Out of 36 genes, two candidate genes on Chr06 showed
a putative function of Zn and Fe transport; thus, the role of these candidate genes in Zn
transport and metabolism was evaluated using knetminer software.
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Os06g0705700 present in the QTL region of qZnPR.6.2 encoded by peptide transporter
was found to be linked with 17 genes and three QTLs. Knetminer network analysis showed
that this gene has a role in Zn and Fe transport (Figure 6a), and another gene Os06g0706100
present in the same QTL region on Chr06 is encoded by NRAMP4 and has a role in metal ion
transport, particularly Zn transport. The two putative candidate genes (Os06g0705700 and
Os06g0706100) within the identified QTL region are being further investigated (Figure 6b).
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2.9. Expression Analysis of Identified Candidate Genes

To predict the expression pattern of selected Zn- and Fe-related candidate genes
(Os06g0705700 and Os06g0706100), expression profiling was carried out using the two
parental lines MTU1010 and Ranbir Basmati, their derived inbred lines (I-42, I-44, and I-83),
two mega rice varieties (IR64, BPT5204), a set of Zn-biofortified varieties (ZINCORICE,
PAUSTIC1, PAUSTIC9) and a high-Zn landrace karuppunel. The recipient parent MTU1010,
which has low Zn content, showed low expression of both the genes, whereas Ranbir
Basmati showed higher expression levels (Supplementary Figure S4).

3. Discussion

One third of the global population is reported to be suffering from a lack of sufficient
Zn nutrition [39]. Biofortification is considered as long-term sustainable strategy to address
micronutrient malnutrition by enhancing the grain micronutrient density. Over the last
decade, using conventional breeding approaches, a few biofortified rice varieties with high
grain Zn have been developed and released globally, as Zn plays a critical role in several
cellular and metabolic activities [40,41]. Though wide variability for grain Fe is available in
brown rice, because of polishing, around 70 to 80% of grain Fe is lost [42].

Marker-assisted breeding has a vast potential to achieve desirable phenotypic vari-
ations in less time through the deployment of molecular markers linked to QTLs for
desirable traits [43]. Large QTL regions identified with low-density SSR markers may
have undesirable linkages, resulting in unsuccessful introgression [44]. In some of the
recent studies, undesirable linkage groups were successfully eliminated by employing
NGS-generated markers such as SNPs by identifying the recombinants. Next generation
sequencing (NGS) technologies have become potential tools for the discovery of millions of
SNPs in a cost-effective manner. The genotyping-by-sequencing (GBS) technique has facili-
tated the identification of key genomic regions for both complex and simple traits and has
accelerated the breeding process [45–48]. ddRAD sequencing facilitates the identification
of SNPs by reducing genome complexity in rice and other crops [49].

In the present study, we developed a high-density genetic linkage map from an RIL
population MTU1010 X Ranbir Basmati using a GBS approach to identify QTLs for grain
Zn and Fe using multi-seasonal phenotype data of the mapping population. Detailed
analysis of phenotype data revealed a wide genetic variability within the RIL population
for grain Zn and Fe along with agronomic and yield-related traits and showed normal
distribution across four seasons. Previous studies indicated that complex inherited traits
and micronutrient values exhibit wide variation, and these can be attributed to various
genetic and environmental factors [50,51]. We examined data from the two wet and dry
seasons in the current study and confirmed our results based on the previous variability
studies in rice grain mineral content across the seasons (Kharif and Rabi) [52,53].

3.1. Correlation

Highly significant positive correlations were obtained among ZnBR, ZnPR, FeBR, and
FePR, irrespective of season and location; however, there was a negative correlation with
single plant yield (SPY). Several studies have reported positive correlation between Zn and
Fe in rice [54–57]. Swamy et al. (2018b) [58] attributed the positive correlation between
Zn and Fe contents to commonalities in their pathways and genetic networks of Zn and
Fe uptake, translocation, and loading in rice. Negative correlations between yield and Zn
in rice were earlier reported by [20,59] (G3: Mean Zn and Mean SPY). A QTL (qGZn9a)
identified in Australian wild rice strain O.meridionalis was reported to be associated with
an increase in grain Zn levels also found to be concomitant with fertility reduction [60].
The negative linkages between the yield and Zn must be eliminated for developing a
successful biofortified variety by generating a greater number of recombinants per cross
for identifying positive combinations for grain Zn and yield.
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3.2. Identification of Promising RILs

Six stable RILs were identified for four mineral traits in the present study with >24 ppm
(Zn) based on stability and G × E interaction analysis across four environments. From
the study, we could also identify promising RILs with high grain Zn in polished rice
(35.6 ppm) and promising RILs with single plant yield (28.4 g to 38.4 g), which could be
further deployed in the breeding of biofortified rice varieties. For rice grain Zn and Fe,
stability and G × E analyses are used for identification of stable donors [47,61–63].

Considering the wide variability observed for the breeding lines with high grain Zn
and Fe, stability and G × E analyses are being applied for selecting promising RILs in cereals.
The contribution of environmental variation to grain Zn and Fe along with other agronomic
traits in a RIL population of sorghum was demonstrated through genotype × environment
interaction, correlation, and GGE biplot analyses [64]. Stable RILs with higher grain Zn
and Fe content were also identified in the RILs of pearl millet using AMMI and GGE biplot
analyses [65]. Different stable breeding lines were identified for different environments
among eight Zn biofortified lines through stability and G × E analyses [51].

3.3. Identification of Quantitative Trait Loci (QTLs)

Out of 13 QTLs identified for grain Fe and 10 QTLs for grain Zn in brown and polished
rice using ICIM, six QTLs were found to be stable/consistent across the seasons, namely
qDFF.2.2, qDFF.2.3, qZnPR.2.1, qZnPR.2.2, qZnBR.9.1, and qZnBR.9.2 on Chr02 and Chr09.
The lack of stability of QTL effects across the environments/genetic backgrounds has been
one of the most limiting factors for successful deployment of QTLs through MAS breeding
for various complex traits [66–69]. The consistent QTLs (qZnPR.2.1, qZnPR.2.2) identified
in this study can reliably be deployed in marker-assisted breeding for high grain Zn.

Several researchers have mapped QTLs for grain Zn and Fe traits in rice using various
mapping populations, such as RILs, ILs, F2, DH, and MAGIC populations, and have
identified multiple loci and clearly demonstrated the genetic complexity of the grain
micronutrient traits. The genomic region on Chr02 (SNP_24248265-SNP_25682947) has
shown co-localization in the qZPR.2.1 region [42].

Co-localization of QTLs for different element contents in grain is common in rice [70].
In the study, co-localization was observed: the genomic regions of Chr02, 05, and 06 of
the DFF trait was co-localized with mineral trait QTLs FeBR, FePR, ZnBR, and ZnPR on
Chr02. The Fe QTLs on Chr05 were co-located with ZnBR QTL, suggesting that there may
be a possibility of selecting high grain Zn and Fe lines using molecular markers; Ref. [71]
reported co-location of Zn and Fe QTLs on Chr02, 03, 08, and 12 in RIL populations.

In the present study, eight significant epistatic interactions were observed for PH, NT,
FeBR, FePR, and ZnPR on Chr01, 02, 04, 05, and 07 and accounted for 11.20–26.83% PVE,
suggesting the complex genetic variation of the traits. Two digenic interactions were
detected for PH on Chr02, with PVE 8.74% and 24.49%, respectively. None of the identified
digenic interactions in the present study were found to be involved with the main effect
QTLs. Similar observations were earlier reported for epistatic interactions for grain Zn
in rice [52,59]. Recent QTL mapping studies suggest that epistasis is considered to be a
crucial genetic component underlying complex quantitative traits. Epistasis should be
underscored in studying complex traits because it can account for hidden quantitative
genetic variations in natural populations [72].

Integration of genomics with conventional breeding efforts can decipher the molecular
mechanisms underlying traits of interest. Using the rice genome sequence, it is now
possible to identify the putative candidate genes for grain Zn within QTL regions. In the
present study, major QTLs involved in grain mineral element content that show consistency
across seasons merit further examination by fine mapping and candidate gene analysis
for ultimate use in MAS. The identified five candidate genes Os02t0629200 on Chr02 with
Zn binding and transport activity, two genes Os09t0268300 and Os09t0297300 on Chr09
with transporter activity, and two genes Os06t0705700 and Os06t0706100 on Chr06 with Zn
and Fe transporter activity and metal ion transport function could be promising genes for
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further validation. The enhanced expression of Os06t0705700 and Os06t0706100 in the flag
leaf samples of the donor parent (Ranbir Basmati) and some of the donors/RILs with grain
Zn further supported the identified QTLs/candidate genes in the present study.

Out of 92 RILs evaluated, one promising RIL G3 showed the highest SPY and Zn
content across 92 RILs. The G3 RIL can be used as donor in biofortification breeding
programs. Likewise, three other RILs, G1, G4 and G6, with high Zn content donors,
and RILs G73, G49, G70, G82, and G52, with promising yield, can be used for future
breeding programs.

4. Materials and Methods
4.1. Development of RIL Population

A recombinant inbred line (RIL) population (n = 306) was developed using the single
seed descent (SSD) method by crossing MTU1010 (also known as Cotton Dora Sannalu,
pedigree: Krishnaveni/IR-64; Zn: 16.6 ppm in brown rice; 12.9 ppm in polished rice;
mean yield of 6.5 tons ha−1; widely cultivated mega variety) as a recipient parent for
grain zinc (Zn) and Ranbir Basmati (pure line selection from Basmati 370-90-95; mean
yield of 2–2.5 tons ha−1; Zn: 27.5 ppm in brown rice; 23.4 ppm in polished rice) as a donor
parent. In this study, two parental lines and a set of selected 92 RILs (F8) were used for
genotyping and phenotypic analysis. All 306 lines’ Fe and Zn values are included in
Supplementary Table S4.

4.2. Field Experiment Details

A total of 92 RILs along with parents were evaluated during four seasons (Wet season
(WS) 2017; Dry season (DS) 2018; Wet season (WS) 2020 and Dry Season (DS) 2020) at
ICAR-Indian Institute of Rice Research (IIRR) farm, Hyderabad, India (17.53◦ N latitude
and 78.27◦ E longitude with 545 mm mean rainfall). Each RIL was planted in four rows.
with each row consisting of 15 plants with a spacing of 20 × 15 cm following randomized
block design (RCBD). The crop was raised by following recommended field management
practices of production and protection.

4.3. Phenotypic Evaluation of Agronomic and Mineral Traits

Across four environments (seasons), five uniform plants were tagged from the center
of each row, and phenotype data was collected for the traits. Days to 50% flowering
(DFF), plant height (PH) (cm), number of tillers per plant (NT), panicle length (PL) (cm) at
heading/early filling stage, single plant yield (SPY) (g), grain zinc (ZnBR, ZnPR), and iron
(FeBR, FePR) in brown and polished rice were estimated at the post-harvest stage.

4.4. Estimation of Grain Zn and Fe Content

For estimation of grain Zn and Fe in brown rice (ZnBR, FeBR) and polished rice
(ZnPR, FePR), seed samples were dehusked using a JLGJ4.5 rice husker (Jingjian Huayuan
International Trade Co., Ltd., Hangzhou, Zhejiang, China). The brown rice was polished
using a polisher with non-ferrous and non-zinc components (Krishi International India Ltd.,
New Delhi, India). After a thorough cleaning, samples of brown and polished rice (5 g)
were subjected to energy-dispersive XRF (ED-XRF) (OXFORD Instruments X-Supreme
8000, Abingdon, UK) as per the standardized protocol [73].

4.5. Statistical Analysis

For each season, descriptive statistics such as mean, standard error of the mean (SEM),
skewness, kurtosis, and coefficient of variations (CV%) were calculated for five plants
using MS-Excel (2010). Trait-wise frequency distribution histograms were generated using
R software [74]. Pearson correlation analysis and principal component analysis were
computed using R script among nine traits. Different R packages (R core Team, 2018,
Vienna, Austria), namely ggplot2, gge, FactoMinerR, and factoextra, were used to generate
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frequency distribution plots and individual comparison of RILs; the ‘Metan’ package was
used for ranking of RILs [75].

4.6. Genotyping by Sequencing (ddRAD-Seq)

Genomic DNA was extracted from pooled young leaves (20–25 days) of both parents
and RILs using the DNeasy plant kit (Qiagen, Hilden, Germany) following the manu-
facturer’s protocol. DNA quality of each sample was checked on 0.8% agarose gel. Fur-
thermore, DNA quantification was done using a Qubit 2.0 fluorometer (Themo Fisher
Scientific Inc., Waltham, MA, USA). ddRAD–Seq protocol (modified GBS) was followed in
the present study.

To perform GBS, genomic DNA was double digested with SphI and MlucI restriction
enzymes (NEB, UK) and fractionated in 2% agarose gel to check the product size. The
digested fragments were cleaned (Agencourt AMpure XP beads, Invitrogen, Waltham,
MA, USA) using standard protocols. The ligation enzyme, T4 DNA ligase (NEB, England)
was used to ligate the unique barcode adapters (4–8 nt sequence) at 16 ◦C for 30 min and
heat-inactivated at 65 ◦C for 10 min.

This was followed by indexing with the addition of index-1 and index-2 (6–8 nt long)
for multiplexing sequencing libraries in NGS Illumina. These libraries were PCR amplified
(8–12 cycles) using a PhusionTM polymerase kit (Fisher Scientific, Loughborough, UK)
followed by AMPure bead cleanup for purification to remove excess adapters and were
sequenced on the Illumina HiSeqX platform (Illumina Inc, San Diego, CA, USA).

4.6.1. Genotyping and Filtration

The sequence reads for the parents and RILs were obtained as FASTQ files, which
are used for SNP discovery. Raw reads were de-multiplexed according to their barcodes,
and the adapters/barcode sequences were removed using standard software [76]. High-
quality reads were aligned onto the rice reference genome of Nipponbare (MSU7) using
bowtie2-2.2.6. The mapped reads were exported in the form of a Sequence Alignment
Map (SAM) file by SAM tools, version 0.1.19 [77]. The alignment file was then processed
for SNP calling using a Bayesian approach at specific site. Potential SNPs were filtered
using the following criteria: loci with >70% missing data and those that showed distorted
segregation of the two parental genotypes were excluded. SNPs with minimum allele
frequency (MAF) > 0.05 and 90% call rate were considered for further analysis. The variant
annotation was performed based on rice gene models, using in-house pipeline software
developed by Agri Genome Labs Pvt., Ltd., Kochi, India.

4.6.2. Genetic Linkage Map Construction

High-quality SNPs obtained after filtering were used for map construction using the
linkage mapping function using IciMapping v4.2. [78]. The grouping and ordering of
2746 SNP events between adjacent markers was performed at a minimum logarithm of
odds (LOD) value of 2.5. ‘Rippling’ was done for fine-tuning of the ordered markers on
their respective chromosomes. The Kosambi map function was used for the construction
of the genetic map and to convert the recombination frequencies into map distances in
centiMorgans (cM) [79].

4.6.3. QTL Analysis

The main effect QTL analysis was carried out using IciMapping. Deploying the BIP
function in IciMapping, additive QTLs were identified by inclusive composite interval
mapping (ICIM) based on a 1000—permutation test at a 95% confidence level. The QTLs
with >3.0 LOD and phenotypic variance explained (PVE) > 10% were considered as major
effect QTLs, those with PVE <10% were considered as minor effect QTLs for a particular
trait. Epistatic interactions with the logarithm of odds (LOD) threshold value at 5.0 were
considered as significant epistatic QTLs. The QTLs were visualized using MapChart
V2.3 [80].



Plants 2023, 12, 144 18 of 22

4.7. Mining of Candidate Genes

To identify the candidate genes within the identified QTL region, the genomic po-
sition of the flanking markers was used. Using the rice genome annotation project
((http://rice.plantbiology.msu.edu/ (22 August 2022)), RAP-DB genome browser (https:
//rapdb.dna.affrc.go.jp (22 August 2022)), and Q-TARO (QTL Annotation Rice Online)
database (Yonemaru et al., 2010) [81] (http://qtaro.abr.affrc.go.jp/ (22 August 2022)), the
candidate genes within the QTL regions were retrieved. Genes were functionally character-
ized into various categories using WEGO [82]. Network analysis of genes present in the
major QTL genomic regions was derived using the Knetminer program (http://knetminer.
rothamsted.ac.uk/Oryza_sativa/ (24 August 2022)). The temporal and spatial expression of
the identified candidate genes were studied using RiceXpro (www.ricexpro.dna.affrc.go.jp
(24 August 2022)).

4.8. Confirmation of Identified QTLs and Markers

Out of mined candidates from QTLs, primers were designed for two candidate genes
with known function of Zn transport, namely Os06g0705700 (CS528–F primer: GTGACG-
GCTTCGGATGAG and R primer: CCCGGTGTAGAAGAAGGTAATG), Os06g0706100
(CS533–F primer: CCAATGCCTGGCCTACTT and R primer: CCACGTGGACACGTTCTT)
using the Primer Quest tool (https://eu.idtdna.com/pages/tools/primerquest (2 Septem-
ber 2022)) with qPCR parameters (amplicon size < 150 bp; GC content > 50%; melting temp
~60 ◦C; no secondary structures) and were synthesized at Integrated DNA Technologies
(USA). Based on the RiceXpro data, flag leaf samples during the anthesis stage (after 10 days
of flowering) from 11 genotypes (with differential grain Zn) were collected in RNALater™
(Sigma Aldrich, St. Louis, MO, USA). The published protocols for RNA isolation, cDNA
synthesis, and checking of integrity of RNA and cDNA and their concentration were fol-
lowed [83]. To investigate the expression of Os06g0705700 and Os06g0706100 genes, qPCR
was performed with three biological replicates. Each qPCR reaction was performed in
three technical replicates containing 5 µL SYBR® qPCR Master Mix (Promega Corporation,
Madison, WI, USA), 0.6 µM forward and reverse gene-specific primers, and 100 ng tem-
plate cDNA. The qPCR was performed using QuantStudio5 Applied Biosystems (Thermo
Fisher Scientific, Waltham, MA, USA) Real-Time PCR Detection System with the following
conditions: 40 PCR cycles of denaturation at 95 ◦C for 15 s, amplification at 58 ◦C for 15 s,
followed by extension at 72 ◦C for 10 s. The melting curve (melting—95 ◦C for 10 s, 65 ◦C
for 1 min, 97 ◦C for 1 s) was analyzed for checking the amplicon specificity. Two inter-
nal control genes, Membrane Protein (Memp) (LOC_Os12g32950.1-F Primer: GAGCGC
AAAGTTCCAGAAGAA and R Primer: CGCCACTAGTTGCCGTCCTGAT) and Tumor
Protein Homolog (TPH) (LOC_Os11g43900.1-F Primer: CATTGGTGCCAACCCATC and R
Primer: AAGGAGGTTGCTCCTGAAGA) were used for the normalization [84]. Relative
fold change was calculated using the 2(−∆∆C(T)) method as described by [85].

5. Conclusions

The developed genetic map in the present study using MTU1010 X Ranbir Basmati
cloud be a foundation for fine mapping of grain zinc (Zn) QTLs, and the identified genomic
regions could be utilized in future breeding programs. The genes present in the identified
QTL regions in this study reportedly play a key role in transporter activity. Further fine
mapping, sequencing, and functional validation is required to identify the candidate genes
in these QTL regions.

http://rice.plantbiology.msu.edu/
https://rapdb.dna.affrc.go.jp
https://rapdb.dna.affrc.go.jp
http://qtaro.abr.affrc.go.jp/
http://knetminer.rothamsted.ac.uk/Oryza_sativa/
http://knetminer.rothamsted.ac.uk/Oryza_sativa/
www.ricexpro.dna.affrc.go.jp
https://eu.idtdna.com/pages/tools/primerquest
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12010144/s1, Table S1: List of epistatic QTLs. Table S2: List
of genes in selected QTL regions. Table S3: List of candidate genes with transporter activity. Table S4:
Fe and Zn data of 306 RILs. Table S5: Analysis of Variance. Figure S1: Frequency distribution of
92 RILs for mineral-related traits for all the four seasons. Figure S2: Frequency distribution of 92 RILs
for agronomic and yield-related traits for all the four seasons. Figure S3: WEGO analysis with the
identified candidate genes in the QTL regions. Figure S4: Relative expression of (a) Os06g0705700
and (b) Os06g0706100 in the flag leaf of rice genotypes.
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