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Abstract: Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus,
has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy
scenario is the phloem-limited bacteria “Candidatus Liberibacter asiaticus” (CLas), which are trans-
mitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB,
making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction
of multipronged management strategies towards controlling CLas population within the phloem
system is deemed necessary. This article presents a comprehensive review of up-to-date scientific
information about HLB, including currently available management practices and unprecedented
challenges associated with the disease control. Additionally, a triangular disease management ap-
proach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches
include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or
immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or
kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system,
(ii) effective use of transgenic variety to build the host’s resistance against CLas, and (iii) induction of
systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological
control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease
management has been discussed to mitigate the HLB pandemic.

Keywords: HLB pandemic; citrus greening; Candidatus Liberibacter asiaticus; a triangular disease
management approach; integrated disease management

1. Introduction

Citrus is the most widely grown specialty fruit crop in the world, containing a variety
of health-promoting compounds, including vitamin C. The crop is highly vulnerable to
various fungal, bacterial, and viral diseases, owing to its narrow genetic diversity [1].
Huanglongbing (HLB, aka citrus greening) is one of the most devastating diseases, which
has affected the global citrus industry during last few decades [2,3]. The disease was first
reported in southern China [4]. The discovery of HLB in India was attributed to a citrus
dieback in the 1700s [5,6], resulting in a hypothesis that the disease was established in India
before spreading to China [3,7]. A similar malady was observed in South Africa in 1929
and named “citrus greening disease” based on the poor color development of the stylar
end of affected fruit [8]. The disease was also confirmed in South America, in the state of
Sao Paulo in Brazil in 2004 [9], and in the state of Florida in the USA [10]. It has seriously
impacted the US citrus industry, with an approximate loss of USD 3.6 billion per year [11].
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In the USA, the disease was also detected in other states, including two significant citrus-
producing states, Texas [12] and California [13], as well as in South Carolina, Georgia, and
Louisiana [14]. The disease had also become established in several Caribbean countries such
as Cuba [15], Jamaica [16], Belize [17], and Mexico [18]. Other major citrus-growing areas of
the Mediterranean Basin and Australia are under threat. The disease also has moved west
from Pakistan into Iran [19] and is threatening the neighboring areas. Presently, the disease
is distributed in over 58 countries of Asia, America, Africa, Oceania, and the Caribbean.
Reports are based on symptomatology, DNA-DNA hybridization with specific probe, PCR
followed by Xbal restriction digestion of the amplified DNA, electron microscopy, and
real-time PCR (Figure 1, Table 1) [20].

Table 1. Worldwide distribution of HLB disease.

Sr. No Continent/Country/Region Distribution of HLB Causal Organism Reference

Asia

1 Bangladesh Present Ca. Liberibacter asiaticus [21]

2 Bhutan Present Ca. Liberibacter asiaticus [22]

3 Cambodia Present Ca. Liberibacter asiaticus [23]

4 China Present Ca. Liberibacter asiaticus [22]

5 India Present, Widespread Ca. Liberibacter asiaticus [24]

6 Indonesia Present Ca. Liberibacter asiaticus [25]

7 Iran Present, Localized Ca. Liberibacter asiaticus [26]

8 Japan Present Ca. Liberibacter asiaticus [27]

9 Laos Present Ca. Liberibacter asiaticus [23]

10 Malaysia Present, Localized Ca. Liberibacter asiaticus [24]

11 Myanmar Present Ca. Liberibacter asiaticus [23]

12 Nepal Present, Widespread Ca. Liberibacter asiaticus [28]

13 Oman Present, Localized Ca. Liberibacter asiaticus [22]

14 Pakistan Present Ca. Liberibacter asiaticus [29]

15 Philippines Present, Widespread Ca. Liberibacter asiaticus [29]

16 Saudi Arabia Present, Localized Ca. Liberibacter asiaticus [30]

17 Sri Lanka Present Ca. Liberibacter asiaticus [22]

18 Taiwan Present, Widespread Ca. Liberibacter asiaticus [22]

19 Thailand Present Ca. Liberibacter asiaticus [31]

20 Vietnam Present, Localized Ca. Liberibacter asiaticus [32]

21 Yemen Present, Localized Ca. Liberibacter asiaticus [30]

North America Ca. Liberibacter asiaticus

22 Barbados Present, Localized Ca. Liberibacter asiaticus [22]

23 Belize Present, Localized Ca. Liberibacter asiaticus [17]

24 Costa Rica Present, Localized Ca. Liberibacter asiaticus [22]

25 Cuba Present, Widespread Ca. Liberibacter asiaticus [22]

26 Dominica Present, Few occurrences Ca. Liberibacter asiaticus [22]

27 Dominican Republic Present, Localized Ca. Liberibacter asiaticus [22]

28 El Salvador Present Unknown [33]
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Table 1. Cont.

Sr. No Continent/Country/Region Distribution of HLB Causal Organism Reference

29 Guadeloupe Present, Localized Unknown [34]

30 Guatemala Present Ca. Liberibacter asiaticus [22]

31 Honduras Present Ca. Liberibacter asiaticus [22]

32 Jamaica Present, Widespread Ca. Liberibacter asiaticus [22]

33 Martinique Present, Localized Ca. Liberibacter asiaticus [34]

34 Mexico Present, Localized Ca. Liberibacter asiaticus [22]

35 Nicaragua Present Ca. Liberibacter asiaticus [22]

36 Panama Present, Localized Ca. Liberibacter asiaticus [22]

37 Puerto Rico Present Ca. Liberibacter asiaticus [22]

38 Trinidad and Tobago Present, Localized Ca. Liberibacter asiaticus [22]

39 U.S. Virgin Islands Present, Few occurrences Ca. Liberibacter asiaticus [22]

40 United States Present, Localized Ca. Liberibacter asiaticus [22]

South America

41 Argentina Present, Localized Ca. Liberibacter asiaticus [22]

42 Brazil Present, Localized Ca. Liberibacter americanus and
Ca. Liberibacter asiaticus [9]

43 Colombia Present, Few occurrences Ca.Liberibacter asiaticus [22]

44 Paraguay Present, Localized Ca. Liberibacter asiaticus [35]

45 Venezuela Present Ca. Liberibacter asiaticus [36]

Africa

46 Burundi Present Ca. Liberibacter africanus [37]

47 Cameroon Present Ca. Liberibacter africanus [37]

48 Central African Republic Present Ca. Liberibacter africanus [37]

49 Comoros Present Ca. Liberibacter africanus [22]

50 Eswatini Present Ca. Liberibacter africanus [38]

51 Ethiopia Present Ca. Liberibacter africanus and
Ca. Liberibacter asiaticus [37]

52 Kenya Present Ca. Liberibacter africanus [29]

53 Madagascar Present Ca. Liberibacter africanus [38]

54 Malawi Present Ca. Liberibacter africanus [37]

55 Mauritius Present Ca. Liberibacter africanus and
Ca. Liberibacter asiaticus [22]

56 Rwanda Present Ca. Liberibacter africanus [37]

57 Somalia Present Ca. Liberibacter africanus [22]

58 South Africa Present, Localized Ca. Liberibacter africanus [39]

59 Tanzania Present, Localized Ca. Liberibacter africanus [38]

60 Uganda Present Ca. Liberibacter africanus [40]

61 Zimbabwe Present, Localized Ca. Liberibacter africanus [29]
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Figure 1. The world map represents geographical distribution of HLB based on DNA-DNA hy-
bridization with probe, PCR followed by Xbal restriction digestion of the amplified DNA, electron
microscopy, and symptomatology.

Typical symptoms of the disease are yellowing of shoots with mottled blotchy leaves
(partly yellow/green, with several shades of yellow blending), corky veins, and green
islands as depicted in Figure 2 [41,42]. The localized symptoms of greening eventually
spread on the entire canopy and finally cause defoliation and tree dieback [43]. The
symptoms of the chlorotic pattern often resemble zinc and iron deficiencies, as well as other
diseases such as citrus tristeza, citrus stubborn, and phytophthora infection [44–46]. It is
often seen that fruits from infected trees are small, lopsided, poorly colored, and bitter
in taste (Figure 2). The root system is found to be underdeveloped due to starvation that
leads to loss of fibrous roots [47]. All the species and hybrids of citrus, irrespective of
their rootstock, are susceptible to the greening disease. However, symptoms vary from
cultivar to cultivar, with the most severe found on sweet orange (C. sinensis), mandarin
(C. reticulata), tangelo (C. tangelo), and grapefruit (C. grandis). Less severe symptoms are
observed on lemon, rough lemon, and sour orange [2]. There are no known resistant citrus
species for the disease, but some cultivars are more tolerant. For example, grapefruit is
more tolerant than sweet orange. The pomelo (Citrus maxima) and kumquat (Fortunella
margarita) cultivar were initially considered as tolerant but eventually became infected and
started showing mottling symptoms [2,48].
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Figure 2. (A) HLB-infected sweet orange plant in the field showing characteristic yellow shoot 
symptoms at initial stage. (B) HLB-infected sweet orange in the field at severe stage. (C) Healthy 
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and misshapen sweet orange fruit (lopsided) with aborted seeds. 

Figure 2. (A) HLB-infected sweet orange plant in the field showing characteristic yellow shoot
symptoms at initial stage. (B) HLB-infected sweet orange in the field at severe stage. (C) Healthy leaf.
(D) Vein yellowing and corking. (E) Vein corking. (F) Blotchy mottle (a random pattern of chlorosis).
(G) Narrow leaf with blotchy mottle. (H) Green island. (I) HLB-affected with color inversion and
misshapen sweet orange fruit (lopsided) with aborted seeds.
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2. Causative Agent, Genomics, and Pathogenesis Mechanism

The pathogen associated with HLB was initially thought to be a mycoplasma-like
organism. Subsequent electron microscopic studies confirmed that the causative organism
is a bacterium. The fastidious nature of the pathogen was an impediment in traditional
taxonomical classification like the study of morphology and growth characteristics. The
phloem-limited causal agent was classified based on the 16S rRNA gene sequence and
grouped under the α-subdivision of proteobacteria, genus Candidatus Liberibacter in the
family Rhizobiaceae [49,50]. So far, three species of bacterium are known to be associated with
citrus greening disease: ‘Candidatus Liberibacter asiaticus’ (CLas), ‘Candidatus Liberibacter
africanus’ (CLaf), and ‘Candidatus Liberibacter americanus’ (CLam). To date, no successful
attempts have been made to grow these bacteria in culture.

Among them, CLas is the most destructive, widely prevalent, highly divergent, and
has caused significant economic loss in citrus production globally [51]. CLam and CLaf are
only present in Brazil and Africa, respectively. CLam, originally identified in Brazil, was
the major species, but later CLas became the most prevalent species [52]. This intracellular
plant pathogen acts as an insect symbiont and is transmitted by two sap-sucking insect
species, Diaphorinacitri and Triozaerytreae. D. citri isalso known as the Asian citrus psyllid
(ACP) (Figure 3). The ACP is responsible for the spread of CLas and CLam in Asia as well
as in the Americas [53]. The ACP is heat-tolerant and can withstand high temperatures (up
to 45 ◦C) but is sensitive to high humidity (above 90%) [54]. On the other hand, T. erytreae,
African citrus psyllid (AfCP), the vector for spread of CLaf in Africa [29], is heat-sensitive.
The adult and juvenile forms grow in a cool, moist environment and cannot withstand
temperatures above 32 ◦C [55]. The rapid spread of HLB throughout the globe sparked
research interest in understanding the genomics, transcriptomics, and proteomics of the
host/vector/pathogen virulence and diversity.
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Despite the unculturable nature of CLas, the complete circular genome sequence was
generated from CLas-infected psyllid by metagenomics, which became the foundation
platform for further research in functional genomics [56]. Presently, 42 complete isolate
sequences of CLas are available in GenBank.Ten genomes are fully assembled in a single
scaffold: psy62 [56], gxpsy [57], Ishi-1 [58], A4 [59], JXGC [60], AHCA1 [61], JRPAMB1 [62],
TaiYZ2 [63], CoFLP1 [64], and ReuSP1 [65] (Table 2). A total of 4.5% and 8% of genes are
involved in cell motility and active transport mechanism, respectively, and they might
contribute to its virulence activity in the citrus plant phloem system [56]. Bacterial plant
pathogens use the secreted proteins (effectors) in their defense mechanism to suppress plant
immunity and create a favorable environment for colonization and proliferation [66,67].
The CLas genome consists of all Type I secretion system genes that encode proteins involved
in multidrug efflux and toxin effectors: HlyD (membrane fusion protein, CLIBASIA_01355),
PrtD (ABC transporter, CLIBASIA_1350), and TolC (outer membrane export protein, CLIBA-
SIA_04145). However, CLas lacks type III, type IV, and type VI secretion systems and typical
degradative enzymes, which are required for its free-living state [67–69].

CLas also possesses the general Sec secretion system/Sectransloconcapable of pathogenic-
ity to the host plants by secreting effectors directly outside bacterial cells. CLas secretory
proteins CLIBASIA 05315, CLIBASIA 03875, CLIBASIA 00460, and CLIBASIA 04025 have
been reported as Sec-dependent secretory proteins engaged in starch accumulation, cell
death, and host plant infections [67–71]. Different peroxidase enzymes, such as SC2_gp095
and CLIBASIA_RS00445, have been identified as non-classical secretory proteins in CLas,
which counter the reactive-oxygen-species (ROS)-mediated defense-signaling response,
including H2O2, used by plants to combat disease progression [69]. This indicates that
CLas may have developed a non-classical secretion pathway to release virulence proteins
to combat the host. According to secretome analysis, the CLas genome contains a total of
27 non-classically secreted proteins (ncSecPs), the majority of which are involved in sup-
pressing early plant defense mechanisms by diminishing the hypersensitive response [69].
The peroxiredoxin (Prx) superfamily proteins are ubiquitous cysteine-based non-heme
peroxidases present in CLas. For example, bacterioferritin comigratory protein (BCP)
is involved in the oxidative stress defense system of CLas due to its ROS scavenging
activity [72]. Lipopolysaccharides (LPS), the most important outer membrane module of
CLas encoded by 21 genes, not only play a critical role in maintaining the robust structural
integrity to the bacterial cell, but also play a role in the virulence mechanism. However,
there are some differences between CLas, CLaf, and CLam for type I secretion system, and
LPS production has been reported [67,73].

Quorum sensing is a cell-to-cell signaling cascade where chemical-based regulatory
communications occur among bacterial populations for their motility, biofilm formation,
and virulence mechanism [11]. The mechanism of quorum sensing is regulated by two
genes: luxI and luxR. The luxI gene encodes different quorum-sensing molecules, acyl-
homoserine lactone (AHL), which induce biofilm formation by activation of luxR genes [68].
As CLas has a solo LuxR system but lacks LuxI [56], there is currently no evidence on how
the CLas pathogen employs a quorum-sensing-based mechanism to cause the pathogenic-
ity in citrus plants, although it is speculated that the disease is established like other
phytopathogens [74,75]. It has been hypothesized that the communication among the
CLas, endosymbiont, and psyllid is based on luxR and luxl genes [74]. CLas potentially
communicates with the endosymbiont (Wolbachia spp.) and psyllid after adhering in the
saliva sheath. Proteins like Mucin-5AC protein (23.46 kDa) were identified in D. citri saliva
in a proteome study, which might be involved in the formation of the salivary sheath.
Studies have shown that the down-regulation of Mucin 5AC results in reduced bacterial
pathogen acquisition by inhibiting bacterial adhesion to the insect gut [76]. It has been
reported that some proteins of psyllid (haemocyanin protein and myosin protein) and CLas
(phosphopantothenoylcysteine synthetase and pantothenate kinase) interact with each
other after the acquisition of CLas [76]. Therefore, a comprehensive understanding of the
quorum-sensing system in CLas and the interaction with the citrus and the vector with
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respect to co-evolved protein interaction networksmay provide a target for combating HLB
by hampering acquisition, growth, and biofilm formation of CLas.

Table 2. Details of sequenced genomes of CLas, CLam, and CLaf.

Sr. No Candidatus
Liberibacter spp. Strain Host Sample Origin Genome

Size (Mb)

Number CDS
Present in

the Genome
Reference

1 Candidatus Liberibacter
asiaticus

A4
(CP010804.1) Citrus reticulata China:

Guangdong 1.23025 1067 [59]

2 Candidatus Liberibacter
asiaticus

Gxpsy
(CP004005.1) Diaphorinacitri China: Guangxi 1.26824 1094 [57]

3 Candidatus Liberibacter
asiaticus

JRPAMB1
(CP040636.1) Diaphorinacitri USA: Florida 1.23716 1072 [62]

4 Candidatus Liberibacter
asiaticus

TaiYZ2
(CP041385.1) Citrus maxima Thailand:

Songkhla 1.23062 1067 [77]

5 Candidatus Liberibacter
asiaticus

psy62
(CP001677.5) - USA: Florida 1.22732 1049 [56]

6 Candidatus Liberibacter
asiaticus

JXGC
(CP019958.1) Citrus China: Jiangxi 1.22516 1033 [60]

7 Candidatus Liberibacter
asiaticus

Ishi-1
(AP014595.1) Diaphorinacitri Japan: Ishigaki 1.19085 1001 [58]

8 Candidatus Liberibacter
asiaticus

AHCA1
(CP029348.1) Diaphorinacitri USA: California 1.23375 1056 [61]

9 Candidatus Liberibacter
asiaticus

FL17
(JWHA00000000.1) Citrus USA: Florida 1.22725 1019 [78]

10 Candidatus Liberibacter
asiaticus

YNJS7C
(QXDO00000000) Citrus China: Yunnan 1.25898 1102 [79]

11 Candidatus Liberibacter
asiaticus

YCPsy
LIIM00000000) Diaphorinacitri China:

Guangdong 1.233647 1037 [80]

12 Candidatus Liberibacter
asiaticus

LBR19TX2
(VTMA00000000 - USA: Texas 1.20275 1008 [67]

13 Candidatus Liberibacter
asiaticus

LBR23TX5
(VTMB00000000) - USA: Texas 1.20347 1009 [67]

14 Candidatus Liberibacter
asiaticus

AHCA17
(VNFL00000000) Citrus maxima USA: California 1.20862 1036 [81]

15 Candidatus Liberibacter
asiaticus

YNXP-1
(VIGA00000000) Cuscuta China: Yunnan 1.20707 1031 -

16 Candidatus Liberibacter
asiaticus

SGCA16
(VTLZ00000000) - USA: San Gabriel 1.20994 1015 [67]

17 Candidatus Liberibacter
asiaticus

JXGZ-1
(VIQL00000000) Cuscuta China: JiangXi 1.21799 1040 -

18 Candidatus Liberibacter
asiaticus

DUR1TX1
VTLT00000000.1) - USA: Texas 1.20629 1011 [67]

19 Candidatus Liberibacter
asiaticus

Mex8
(VTLU00000000.1) - Mexico: Mexicali 1.24313 1042 [67]

20 Candidatus Liberibacter
asiaticus

SGCA5
(LMTO00000000.1) Orange citrus USA: San Gabriel 1.20138 1001 [80]

21 Candidatus Liberibacter
asiaticus

CHUC
(VTLV00000000) - China 1.20845 1032 [67]

22 Candidatus Liberibacter
asiaticus

TX2351
(MTIM00000000)

Asian citrus
psyllid USA: Texas 1.252 1129 [82]

23 Candidatus Liberibacter
asiaticus

GFR3TX3
(VTLR00000000) - USA: Texas 1.20932 1013 [67]
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Table 2. Cont.

Sr. No Candidatus
Liberibacter spp. Strain Host Sample Origin Genome

Size (Mb)

Number CDS
Present in

the Genome
Reference

24 Candidatus Liberibacter
asiaticus

HHCA16
(VTLY00000000) - USA: Hacienda

Heights 1.20705 1012 [67]

25 Candidatus Liberibacter
asiaticus

MFL16
(VTLX00000000) - USA: Florida 1.19922 1012 [67]

26 Candidatus Liberibacter
asiaticus

DUR2TX1
(VTLS00000000) - USA: Texas 1.21232 1009 [67]

27 Candidatus Liberibacter
asiaticus

CRCFL16
(VTLW00000000) - USA: Florida 1.20828 1028 [67]

28 Candidatus Liberibacter
asiaticus

HHCA
(JMIL00000000.2) Citrus sp. USA: Hacienda

Heights 1.15062 867 [59]

29 Candidatus Liberibacter
asiaticus

TX1712
(QEWL00000000) Citrus sinensis USA: Texas 1.20333 0 [83]

30 Candidatus Liberibacter
asiaticus

SGpsy
(QFZJ00000000.1) Diaphorinacitri USA: San Gabriel 0.769888 0 [61]

31 Candidatus Liberibacter
asiaticus

SGCA1
(QFZT00000000.1) USA: San Gabriel 0.233414 557 [61]

32 Candidatus Liberibacter
asiaticus

YCPsy
(LIIM00000000) Diaphorinacitri Guangdong, China 1.233647 - [80]

33 Candidatus Liberibacter
asiaticus

PA19
(WOXD01000000)

Kinnow
mandarin Pakistan 1.224156 1059 [84]

34 Candidatus Liberibacter
asiaticus

PA20
(WOUN01000000)

Kinnow
mandarin Pakistan 1.226225 1062 [84]

35 Candidatus Liberibacter
asiaticus

CoFLP1
(CP054558.1) Diaphorinacitri Colombia:

Municipio Dibulla 1.231639 1048 [64]

36 Candidatus Liberibacter
asiaticus

9PA (JAB-
DRZ000000000.1) Citrus sinensis Brazil (South

America) 1.231881 - [85]

37 Candidatus Liberibacter
asiaticus

MFL16
(VTLX00000000) Citrus USA: Florida 1,199,225 bp - [67]

38 Candidatus Liberibacter
asiaticus

CRCFL16
(VTLW00000000) Citrus USA: Florida 1,208,280 bp - [67]

39 Candidatus Liberibacter
asiaticus

ReuSP1
(CP061535.1) Diaphorinacitri France: La

Reunion 1.230064 1043 [65]

40 Candidatus Liberibacter
asiaticus

Tabriz.3
(JAKQYA000000000.1)

Elaeagnus
angustifolia

Iran: East
Azerbaijan, Tabriz 1.22409 589 -

41 Candidatus Liberibacter
asiaticus

YNHK-2
(WUUB01000000.1) Citrus China: Yunnan 1.08957 - [86]

42 Candidatus Liberibacter
asiaticus

A-SBCA19
(JADBIB010000000.1) Diaphorinacitri

USA: California,
San Bernardino

County
1.18688 1067 [87]

43 Candidatus Liberibacter
americanus

Sao Paulo
(NC_022793) Citrus sinensis Brazil 1.1952 945 [73]

44 Candidatus Liberibacter
americanus PW_SP Catharanthus

roseus Brazil: Sao Paulo 1.17607 924 -

45 Candidatus Liberibacter
africanus PTSAPSY Psyllid South Africa:

Pretoria 1.19223 1036 -

Pathogen Virulence Factors

Recent studies have put emphasis on understanding the virulence mechanisms of
CLas in the citrus host. The contribution of prophages in CLas pathogenicity towards the
suppression of plant defense has been reported [88]. Initially, it was reported that CLas
bacterium carries two prophages, Type 1 (SC1) and Type 2 (SC2). Recently, the prophages
have been classified into three types, i.e., Type 1 (SC1), Type 2 (SC2), and Type 3 (P-JXGC-3),
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based on functional and comparative genomic analysis of 15 different CLas genomes [89].
The SC1 prophage is reported tobe lytic as it produces proteins necessary for the lytic cycle
and becomes replicative in plants [90]. Phage particles were observed in the phloem of
infected periwinkle and sweet orange plants [91]. SC2, on the other hand, is a replicative
excision plasmid that lacks lytic genes and may play a role in the lysogenic cycle. SC2
encodes proteins, i.e., peroxidase (SC2_gp095) and glutathione peroxidase (SC2_gp100); it
has been observed that transient expression of SC2 gp095 leads to suppression of H2O2-
mediated defense signaling in plants [88,90]. The CLas may use the peroxidase enzyme as
a defense mechanism against the host immune response by suppressing the plant’s H2O2-
mediated hypersensitive response [88,90]. Zheng et al. (2016) studied the dominating
CLas strains in southern China, revealing a single prophage, SC1 (90.4%) or SC2 (82.6%),
over other strains [92]. The in silico analyses of CGdP2 have identified the presence of
CRISPR/cas systems in SC1 and SC2 prophages. Based on this analysis, it was hypothesized
that the presence of a CRISPR/cas system in dominating species allows them to overcome
an invading phage/prophage into the CLas genome. CLas also contains other virulence
factors, like serralysin (CLIBASIA_01345) and hemolysin (CLIBASIA_01555). Serralysin is
a metalloprotease, which inactivates various antimicrobial proteins involved in the plant
defense mechanism. This enzyme is believed to be used by the CLas to defend against the
citrus immune response [93]. To promote virulence, the endosymbiont-like pathogen ‘Ca. L.
psyllaurous’ suppresses the expression of genes involved in the plant defense mechanism,
i.e., genes regulated by jasmonic acid (JA) and salicylic acid (SA), by introducing protein
effectors [94]. CLas also degrades SA, which plays a critical role in the plant defense
mechanism against pathogens using salicylate hydroxylase.Salicylate hydroxylase reduces
the defense action of the citrus plant by attenuating the response to exogenous SA [95]. The
secretion and transport of the effector proteins in the host plant cells is one of the most
important virulence factors of the bacterial pathogen [66]. Thevirulence factor CaLas5315
(Sec-delivered effector 1) hinders the papain-like cysteine protease’s activity to suppress
the defense mechanism of citrus. It also induces the callose deposition inside the vascular
tissue, starch formation, chlorosis, and plant cell death after localization in the chloroplast of
Nicotiana benthamiana [69,71,96]. Ying et al. (2019) have assessed 60 total putative virulence
factors of CLas and identified four candidates (detrimental virulence factors) which are
responsible for growth inhibition (CLIBASIA_00470 and CLIBASIA_04025) and cell death
(CLIBASIA_05150 and CLIBASIA_04065C) in N. benthamiana [97].

3. HLB Diagnosis

To combat the HLB pandemic, early disease diagnosis is important to minimize further
damage to the global citrus industry. It is often challenging to visually distinguish HLB
in the field from similar non-HLB-related symptoms which may be indicative of other
ailments, such as citrus tristeza or nutrient deficiency [46,98]. Over the years, several
techniques have been developed for HLB diagnosis, as discussed below.

3.1. Electron Microscopy

Electron microscopy was the first laboratory technique used to identify the pathogen [99].
Cevallos-Cevalloset al.used the transmission electron microscopy (TEM) technique to
investigate a thin section of samples collected from leaf, petiole, stem, bark, and root tissue
of an HLB-suspected plant and directly confirmed the presence of the pathogen [100]. TEM
sample preparation involved the following steps: (i) tissue samples were fixed using 3%
glutaraldehyde for 4 h at room temperature followed by overnight storage in 0.1 mol/L
potassium phosphate buffer (pH 7.2) in a refrigerator, (ii) samples were subsequently
washed in the same buffer and treated with 2% osmium tetroxide solution for 4 h at room
temperature, (iii) samples were then dehydrated with acetone, cut into 90–100 nm sections,
stained with 2% uranyl acetate (aqueous), and (iv) lastly, samples were post-stained in lead
citrate and examined using a Morgani 268 TEM (Figure 4A).
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3.2. Molecular-Based Assays

Molecular techniques are sensitive and reliable tools for plant disease diagnosis. The
most commonly used techniques are polymerase chain reaction (PCR), real-time PCR (q-
PCR), flow cytometry, fluorescence in situ hybridization (FISH), and DNA
microarrays [101–103]. In conventional PCR, 16S-rRNA-sequence-specific primer sets
OI1/OI2c and OA1/OI2c were used for CLas and CLaf detection, respectively [104]
(Figure 4B). Nucleotide sequence analysis of the 16S rRNA region of both the species
reveals that CLas has only one Xba1 restriction site (this produced two DNA fragments of
size 520 bp and 640 bp after restriction digestion). On the other hand, CLaf has two Xba1
restriction sites, yielding three DNA fragments of a size of 520 bp, 506 bp, and 130 bp [49].
Another important genomic locus used for HLB diagnosis is the rplKAJL-rpoBC operon.
The primer set f-rplA2/ r-rplJ5 specific to this region amplifies a 703 bp amplicon for CLas
and 669 bp amplicon for CLaf, respectively. The CLam is detected by another set of primers,
i.e., f-GB1/r-GB3, which is specific to the 16S rRNA region of the CLam [42].

qPCR is one of the most sensitive and reliable quantitative methods for gene expression
analysis as well as for pathogen detection. Therefore, qPCR has become the preferred
method for CLas detection [105] (Figure 4D), as it is capable of reliably detecting the
pathogen at a very low concentration. Different chemistry/reporter dyes have been used in
qPCR to improve the pathogen detection limit. Nageswara-Rao et al. (2013) had developed
qPCR using various candidate genes for the early detection of HLB disease [42]. Ghosh
et al. (2018) standardized qPCR with TaqMan chemistry to detect and evaluate the efficacy
of an antimicrobial nano-zinc oxide-2S albumin protein formulation on the growth of CLas
in planta [106].

Dot hybridization assay with a biotin-labeled DNA probe was successfully used
for HLB diagnosis in various citrus hosts, including mandarins, tangors, sweet oranges,
andpomelos. A nucleic acid spot hybridization (NASH) test was also developed for the
diagnosis of HLB which could detect up to 1:100 dilution in HLB-infected tissue [107]. DNA
microarray is an advanced molecular technique mostly used for transcriptome analysis in
various bacterial plant diseases and has been used in the transcriptional profiling of sweet
orange plants in response to infection with CLas using the Affymetrix GeneChip citrus
genome microarray [108].

Loop-mediated isothermal amplification(LAMP) is another molecular technique where
DNA amplification is carried out at isothermal temperature [109]. The Bst polymerase
enzyme with a strand displacement property is used to complete the isothermal amplifica-
tion reaction. This biochemical reaction is carried out using a simple water bath operating
between 60 ◦C and 65 ◦C [110].

The LAMP method combined with a lateral flow dipstick (LFD) was also developed
for rapid HLB diagnosis [111]. Ghosh et al. (2016) developed a rapid and sensitive LAMP
technique using SYBR green I dye for visual CLas detection (Figure 4C) [112].

The recombinase polymerase amplification (RPA) is an isothermal nucleic acid ampli-
fication technique which requires three enzymes (a recombinase, a strand-displacing DNA
polymerase, and a single-strand binding protein) for the extension of primers, induced by
the recombination process. The reaction could be performed at isothermal temperature
ranges between 37 ◦C and 42 ◦C within 15–25 min. Due to simple reaction conditions,
the RPA is considered as one of the most promising emerging molecular diagnostic tech-
nologies. The CLas was also diagnosed with an RPA assay based on SYBR green I dye
using a mini-UV torch light [113] (Figure 4E) andlateral flow assay (HLB-RPA-LFA) [114]
(Figure 4F).
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a sieve element of a young leaf [115]. (B) PCR products visualized on agarose gel using primer
set OI1/OI2C [L: 1kb DNA ladder, C1 to C6: greening-infected samples, H: healthy control, −Ve:
negative control [114]. (C) LAMP-based detection using CYBR green I dye under normal light [tubes
1 and 3: greening-infected samples, tubes 2, 3, and 5: healthy control, and tube 6: non-template
control [112] (D) TaqMan-qPCR with HLBas-F/R-HLBp primer probe pair. Amplification plot for
sample C1 to C6 represent the CLas-positive sample. (E) HLB-positive leaf samples and their detection
results by real-time PCR and RPA-based visual detection method [113]. (F) HLB-RPA-LFA [C1 to C6
represents the CLas isolates, H: Healthy control and−Ve: negative control [114].

3.3. Early Diagnosis

It has been documented that the CLas pathogen enters the healthy citrus tree via
different mediators and spreads erratically in the vascular system [3]. Despite the high
sensitivity and reliability, CLas detection methods such asPCRandqPCRsuffer from serious
limitations for early diagnosis on a large scale. Molecular techniquesaretime-consuming
and require laboratory setup and skilled technicians to run the assay. Therefore, these
assays are not cost-efficient and are difficult to implement as a point-of-care tool for citrus
growers. CLas is reported to be unevenly distributed in the citrus vascular system [3]. The
likelihood of obtaining falsenegative results is therefore high even though the pathogen
translocates and multiplies over time [3]. Trees at the early stage of infection with low CLas
titer serve as an inoculum source for vector-assisted transmission to surrounding healthy
trees. To meet the above needs, researchers are currently focusingon the development
ofadvanced approaches for rapid HLB diagnosis that can be implemented in commercial
orchards at a large scale, i.e., tens to hundreds of acres. One of the most promising research
concepts is the profiling/screening of disease-specific volatile organic compounds (VOCs)
released by the affected plant. The idea is to identify uniqueVOCprofiles/fingerprints in
diseased plants that can be coupledwith an electronic odor detection system (also known
as an electronic nose or E-nose). It is expected that a healthy plant will exhibit different
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VOCprofiles/fingerprints, thus differentiating it from the disease-affected trees. The E-nose
system consists of a series of gas sensors with specific sensitivities to one or moreVOCs,
generating a profiles/fingerprints to discriminate a mixture of different compounds present
in the abnormal or healthy samples [116]. The mammalian olfactory system consisting
of chemotacticreceptorshas been utilizedas a first aid to gauge the freshness, quality, and
edibility of food products [117,118]. Canines possess a powerful olfactory system. Recently,
canine olfactory surveillance was deployed to recognize the volatile chemicals generated
byHLB-affected trees. It has been reported that canine accuracy detected 99% of HLB-
affected trees (Figure 5). A likelihood of a 100% infection rate was achieved when two or
more dogs were used for the same tree. The accuracy, sensitivity, and specificity of 10 dogs
trained toidentify CLaswere 0.9905, 0.8579, and 0.9961, respectively [118]. Upon training,
canines only reacted to CLasand not to other citrus pathogens such as bacterial, viral,
orspiroplasma [118].
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4. Triangular Management Strategies

To mitigate the effects of HLB, there is a need to devise integrated management
strategies which could obstruct the disease spread in a citrus grove. To date, no effective
chemical control measures are available for HLB management, and therefore, it is becoming
an increasingly difficult task to stop the spread of disease in new citrus-producing areas.
Integrated disease management viaintervention at three different levels, pathogen, vector,
and host, either individually or in combination, would be the most promising approach to
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combat HLB. Currently available management options include control of psyllid popula-
tion chemically or biologically, removal of CLas-infected trees, and planting of disease-free
nursery trees. To identify innovative HLB management options, it is important to under-
stand pathogen biology, the pathogenesis mechanism, disease infection progression, and
its correlation with genomics and proteomics. This article is focused on a comprehensive
review of scientific information available to date concerning HLB control based on the
triangular disease management approach involving pathogen, vector, and host (Figure 6).
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4.1. Disease Control Strategies at Pathogen Level

The disease management strategies are mostly dependent on the control of the causal
agent of the disease. Unfortunately, the causal agent of HLB is one of few phloem-limited
pathogens that have not been grown in an axenic culture. Numerous efforts have been
made globally to isolate and culture CLas. To date, there is no protocol available to culture
CLas that is robust enough to be useful in supporting efficacy screening of bactericide
candidates. The media composed of citrus vein extract (Liber A medium) and citrus juice
(King’s B medium) could grow CLas colonies on agar plates. However, this media failed
to stabilize the CLas for more than 4–5 serial single-colony transfers for further research
use [11]. Successful culture of CLas strain Ishi-1 on a solid medium through a mutualistic
relationship with citrus phloem microbiota has been also reported recently. However, this
media failed to support culture of the other strains of CLas [119]. According to genome
analysis, CLas lack genes that code for essential enzymes/other proteins and thus requires
association of other citrus phloem microbiota for their survival. Inability to culture CLas
seriously limits the development of effective long-term control strategies. To combat HLB,
there is a desperate need for thedevelopment of strategies aimed towards inhibition of
CLas multiplication inside the phloem system. Thus, to alleviate the effects of this graft-
transmissible and systemic pathogen and protect the farmers’ interest, there is an urgent
need to identify or develop novel inhibitor antimicrobial molecules that can suppress or
eradicate these pathogens from the infected trees. Availability of genome information
of CLas makes it easier to select key proteins critical for survival of the bacteria andthe
potential inhibitory molecules against CLas.
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4.1.1. Protein-Based Approach/Targeting Important Proteins of CLas

A combination of the antibiotics penicillin and streptomycin has been illustrated to
be effective in suppressing CLas [120]. Furthermore, several antibiotics like ampicillin,
cefalexin, penicillin, carbenicillin, rifampicin, and sulfadimethoxine were found to be
effective in suppressing CLas infection [121]. Proteins are the most versatile biological
macromolecules in living systems and perform a diverse array of functions in essentially
all biological processes. They function as transporters and catalysts, provide mechanical
support and immune protection, transmit nerve impulses, store other molecules such
as oxygen, and control growth and differentiation. Therefore, other potential strategies
for controlling HLB disease include targeting essential proteins that are critical for the
survival of bacteria through the development of inhibitor molecules to impair the target
protein function [122]. The essential protein of CLas can be targeted with various inhibitor
molecules based on two criteria, i.e., selectivity and necessity for virulence.

• Transport protein

All living organisms import diverse nutrients from the environment and expel toxic el-
ements and waste products outside the cell with the help of different membrane-embedded
transporters [123]. The ABC (ATP-Binding Cassette) transporters are one of the important
and common protein families among living organisms, from microorganisms to humans,
that are involved in the movement of solutes across the cell membrane [124]. Different types
of ABC transporters are found in bacteria, which are complexes of the transmembrane and
solute-binding domain (SBD) that facilitate the unidirectional movement of extracytosolic
molecules into the cytoplasm against their concentration gradient by the hydrolysis of the
ATP molecule. The ABC transporters consist of two transmembrane domains (TMDs) that
form a specific ligand transport channel and two cytosolic ATP-binding domains (ABDs)
that hydrolyze ATP to provide the energy for the translocation of substrate across the
membrane. The prokaryotic ABC transporter has periplasmic solute-binding protein (SBP),
which traps the substrate in the periplasmic space and delivers it to the external surface of
the transport complex (Figure 7).

ABC transporters import small molecules into the cell in association with the SBP,
including sugars, amino acids, peptides, phosphate esters, inorganic phosphate, sulfate,
phosphonates, metal cations, iron-chelator complexes, vitamins, and polyamines [125].
SBPs are involved in substrate identification, capture, and release to the translocator of the
ABC importer. L-arabinose-binding protein, an SBP, was first identified and crystallized
from the periplasmic space of E. coli [126]. SBPs have extremely conserved structural
folds consisting of two globular domains (bigger and smaller domain/lobe), connected
by a hinge region. Both bigger and smaller domains are built by a usual α/β fold with
internal core β-sheets surrounded by α-helices. In the absence of substrate (open state), the
two domains are well separated and rotating around the hinge region, and after substrate
binding, they go to the closed state with major conformational changes [127,128]. It rotates
around the hinge region; eventually, the two domains move towards each other and engulf
the substrate like a “Venus Flytrap” [129]. Based on structural similarity and pairwise
structural alignment, SBPs were classified into seven different clusters (A–G). On the basis
of substrate specificity, four of these, “cluster A, B, D, and F”, were further subdivided [130].
These SBPs have evolved to recognize a wide variety of solutes with high affinity and
specificity, and have also been involved in signal transduction, transcriptional regulation,
and catalysis.

The Cluster F–IV and A–I families of substrate-binding proteins are involved in
the transport of amino acids (cystine, cysteine, arginine, glutamine, histidine, gluta-
mate/aspartate) and divalent metal ions (Zn2+, Mn2+, and Fe2+), respectively. The binding
studies of Cluster F–IV and A–I show different substrate specificity (Table 3). The amino
acid transporters are associated with a bacterial infection. The deletion of amino acid
receptors reduces the virulence of bacteria. A recent study in Moraxellacatarrhalis reveals
that the deletion of lysine and ornithine receptors reduces the invasion of host adeno-
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carcinoma epithelial cells [131]. In the human pathogenic bacteria Listeria monocytogenes,
deletion of the cysteine receptor (CtaP) results in increased acid sensitivity, membrane
permeability, reduced bacterial adherence, and lowered colonization [132]. In Salmonella
typhimurium, expression of the D-alanine ABC receptors (DalS) protects the bacteria from
oxidative damage elicited by D-amino acid oxidase (DAO) in the host’s neutrophils. The
deletion of DalS makes the bacteria more prone to DAO-dependent killing inside the host
cell [133]. The inhibitors specific for solute-binding protein/receptors have proven to be
a drug candidate. The compounds, RDS50 and RDS51, bind with the ZnuABC receptor
of S. typhimurium and were shown to inhibit the growth of the pathogen. The crystal
structure of the “RDS51-Zn(II)-ZnuA complex” has revealed that it binds near the zinc-
binding site of the SBPs [134]. The CLas genome encodes 137 transporter proteins, which
is an exceptionally high number compared to other intracellular bacteria with similar
genome size. Among one hundred thirty-seven transporter proteins, twenty-four proteins
are electrochemical-potential-driven transporters, nine proteins are channels/pores trans-
porters, ninety-two proteins are primary active transporters, one protein is a translocator,
and the remaining eleven proteins are uncharacterized transporters. Among 92 primary
active transporters of CLas, 40 are ABC transporters [56,121]. The expression studies of
some vital component of the ABC transporter complex changed due to switching of the
host from psyllid to plant (Table 4) [135]. Some transporter proteins from CLas have been
biochemically and biophysically characterized: ZnuABC, the zinc uptake system, the amino
acid transporter, ATP/ADP translocase, and NttA. It is reported that the zinc transport
system (znuABC) is associated with pathogenesis in bacteria [136]. It is possible that some
of these transporters are involved in the uptake of nutrients and the virulence mechanism
of CLas.
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lation, and catalysis. 

The Cluster F–IV and A–I families of substrate-binding proteins are involved in the 
transport of amino acids (cystine, cysteine, arginine, glutamine, histidine, glutamate/as-
partate) and divalent metal ions (Zn2+, Mn2+, and Fe2+), respectively. The binding studies 
of Cluster F–IV and A–I show different substrate specificity (Table 3). The amino acid 
transporters are associated with a bacterial infection. The deletion of amino acid receptors 
reduces the virulence of bacteria. A recent study in Moraxella catarrhalis reveals that the 
deletion of lysine and ornithine receptors reduces the invasion of host adenocarcinoma 
epithelial cells [131]. In the human pathogenic bacteria Listeria monocytogenes, deletion of 
the cysteine receptor (CtaP) results in increased acid sensitivity, membrane permeability, 

Figure 7. (A) Schematic representation of ABC transporter complexes with SBDs in Gram-negative
bacteria. (B) Crystal structure of periplasmic cystine-binding protein from CLas (PDB Id: 6A80).
(C) Crystal structure of periplasmic metal-binding protein from CLas (PDB Id: 4Cl2). SBD: Solute-
binding domain, TMD: Transmembrane domains, NBD: Nucleotide binding domain.
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Table 3. Binding studies of a solute-binding protein from different bacteria.

Protein Organism PDB Id Ligand Dissociation
Constant (KD) References

ArtJ Geobacillus stearothermophilus

2Q2A Arginine 0.039 µM

[137]2Q2C Histidine 0.42 µM

2PVU Lysine 0.49 µM

GlnH Mycobacterium tuberculosis

6H2T Glutamate 15.2 µM

[138]6H1U Aspartate 4.8µM

6H20 Aspargine

DEBP Shigella flexneri
2VHA Glutamate 1.6 µM

[139]
Aspartate 5.2 µM

GlnP Lactococcuslactis 4KQP Glutamine 1.49 µM [140]

CjaA Campylobacter jejuni 1XT8 Cysteine 100 µM [141]

GlnBP Escherichia coli 1WDN Glutamine 0.5µM [127]

HBP Escherichia coli 1HSL Histidine 0.064 µM [142]

HisJ Salmonella typhimurium 1HPB Histidine 0.030 µM [143]

LAO Salmonella typhimurium 1LST Lysine 0.014 µM [143]

Ngo0372 Neisseria gonorrhoeae 2YLN Cystine 0.021 µM [144]

Ngo2014 Neisseria gonorrhoeae 2YJP Cysteine 0.026 µM [144]

CLasTcyA Candidatus Liberibacter asiaticus 6A80 Cystine 1.26 µM [145]

ClasTcyA
Mutant (V58W) Candidatus Liberibacter asiaticus - Cystine 0.22 µM [146]

CLas-ZnuA2 Candidatus Liberibacterasiaticus

4UDO Mn2+ 370 µM
[147,148]

5AFS Zn2+ 430 µM

6IXI Cd2+ [146]

CLas-ZnuA2
Mutant

(S38A) Candidatus Liberibacterasiaticus 5Z2K Mn2+ 340 µM
[149]

(Y68F) Candidatus Liberibacterasiaticus 5ZHA Mn2+ 540 µM

LBP Escherichia coli
1USK Leucine 0.4 µM

[150]
1USI Phenylalanine 0.18 µM

Table 4. ABC transporter system of CLas.

GenBank
Accession

No £.

Super
Family

Species
Domain Putative Function

CLas Relative
Expression $

Query Coverage € Identity €

ACT56612 MlaF
Acinetobacter baumanii

NBD
Putative ATP-binding component of

ABC transporter: Involved in
resistance to organic component

7.60
92% 38.49%

ACT56643 PBP2_
BztA

Brucellaovis
SBD

Putative cationic amino acid
ABC transporter −1.29

93% 57.32%

ACT56645
(aapM)

TM_
PBP2

Caldanaerobactersubterraneus
Permease Putative general L-amino acid

transport system permease 3.64
54% 30.77%

ACT56815
(proX)

PBP2_
ChoX

Sinorhizobiummeliloti
SBD

Putative glycine betaine/proline
ABC transporter 1.84

89% 50.0%

ACT56816 FieF
Escherichia coli

Efflux protein Predicted cation (Co/Zn/Cd)
efflux transporters

3.88
91% 26.83%
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Table 4. Cont.

GenBank
Accession

No £.

Super
Family

Species
Domain Putative Function

CLas Relative
Expression $

Query Coverage € Identity €

ACT57010
(ZnuA2) TroA-like

Yersinia pestis
SBD Fi/Mn transport 7.92

92% 49.26%

ACT57013 ZnuB
-

Permease Putative Mn2+/Zn2+ transport system 5.72
- -

ACT57585 PBP2
Neisseria gonorrhoeae

SBD
General L-amino acid

Transport 2.97
83% 32.33%

ACT57586 TM_
PBP2

Caldanaerobactersubterraneus
Permease

ABC-type amino acid
transport system 7.96

83% 34.04%

ACT57180 PBP2
Planctopiruslimnophila

SBD
Putative periplasmic

phosphate-binding protein 1.28
82% 29.01%

ACT57178 PstA
-

Permease Putative phosphate transporter 2.23
- -

ACT57369 livM
-

Permease
Putative branch chain aminoacid

(Leucine, Isoleucine, Valine)
transporter

-
- -

£. Accession numbers are for ABC transporter in the CLas Psy62 genome. € Query coverage and percent identity
shows protein BLAST against protein data bank. $ Fold change (log2 ratio) is the relative gene expression (in
plantaversus in psyllid) of CLas. Positive value indicates overexpressed in planta and negative value showed
overexpression in psyllid.

Znu System

Zinc is the cofactor and structural element of various proteins present in bacteria
which is imported through the zinc uptake (Znu) system. The periplasmic domain ZnuA
of the ZnuABC complex binds zinc in the periplasm and comes in close contact with
theZnuBC complex and transports it into the cell. The CLas genome encodes two ZnuABC
homologous systems; among them only one (ZnuA1) is functional and able to complement
the function of the partially inactivated ∆ZnuA of S. meliloti and E. coli. It is assumed that
the second (ZnuA2) of the two homologous systems might be involved in Mn2+ uptake, and
therefore it does not complement the ∆ZnuA of S. meliloti and E. coli [122]. S. meliloti and E.
coli, havea regulator of the Znu system, i.e., the Zur protein, but in CLas the gene encoding
the homologue to this protein is absent, indicating the alternative mode of regulation in
CLas [122]. The ZnuA1 of CLas having conserved metal-coordinating residues (3His and
1Asp), which are specific for Zn2+ binding, clearly indicated its role in Zn-uptake. ZnuA1
of CLas shared only 22% sequence identity with Clas-ZnuA2 and contained four conserved
metal-coordinating residues (His39, His106, Glu 172, and Asp 247), which are known to
be specific for Mn2+ or Fe2+ binding [147]. The sequence analysis of ZnuA2 showed the
highest identity with the Cluster A-I family’s Mn2+/Fe2+-specific SBPs. The comparison of
CLas-ZnuA2’s structure in three states (metal-free, intermediate, and metal-bound state)
showed that the mechanism of metal binding resembles the Zn2+-specific SBPs of the A-I
family [147]. Crystal structure showed that CLas-ZnuA2 binds both Zn2+ and Mn2+ with
square pyramidal geometry, different from Mn-specific SBPs (tetrahedral geometry). The
crystal structure studies of CLas-ZnuA2 (S38A and Y68F) protein demonstrate thatit is
mutant in a metal-bound and metal-free states, confirming the subtle communication [149].
Binding studies of CLas-ZnuA2 by Surface Plasmon Resonance (SPR) revealed the low
metal-binding affinity. Based on the structural and biophysical studies, it was hypothesized
that CLas-ZnuA2 evolved to bind Mn2+ and reversibly Zn2+, which allowed Mn2+ transport
and the avoidance of Zn toxicity in CLas [148]. The proteome analysis showed that the
heavy metal permease and cation (Co/Zn/Cd) exporter system is present in CLas, but the
specific metal uptake SBP for the heavy metal permease is absent. The crystal structure of
CLas-ZnuA2 in Cd2+-bound form and binding studies by surface plasmon resonance (SPR)
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led to the hypothesis that CLas-ZnuA2 might be involved in sequestering (heavy metal)
and transport of various divalent metals [146].

Amino Acid Uptake System

The proteome analysis of CLas showed the presence of two periplasmic amino-acid-
binding proteins, namely cationic-amino-acid-binding (GenBank accession no. ACT56643)
and putative cystine-binding proteins (GenBank accession no. ACT56645), which are com-
ponents of the ABC transporter. The relative expression studies showed overexpression of
cationic-amino-acid-binding protein in psyllid and cystine-binding protein in planta [135].
The sequence analysis of the cystine-binding protein of CLas (CLasTcyA) showed similarity
with the periplasmic cystine-binding protein of Neisseria gonorrhoeae. Crystal structure
and binding studies of CLasTcyA by SPR and microscale thermophoresis (MST) showed
a maximum affinity with cystine ligand. Detailed crystal structure analysis of CLasT-
cyA showed some unique features, like a relatively larger binding pocket, presence of
an extended c-terminal loop stabilized by a disulfide bond, and involvement of residue
from the hinge region in the stabilization of the ligand [145]. Biophysical characteriza-
tion of mutant CLasTcyA confirmed this unique feature. Comparison of the open and
closed state of CLasTcyA showed only ~18.4◦ domain movement in the presence of the
ligand, but ~40–60◦ domain movement was observed in other amino-acid-binding pro-
teins [144]. Restricted domain movement allowed the CLasTcyA to capture ligands of
different sizes and control the affinity of the binding. Proteome analysis of CLas showed
the presence of different permeases, such as cysteine permease, generalL-aminoacid, and
branched-chain amino acid (Valine/Isoleucine/Leucine) permease. Expression studies
showed a higher expression of these permeases in planta [135]. In CLas, only two spe-
cific periplasmic amino-acid-binding proteins are present: one is cationic amino acid, and
another is CLasTcyA. Based on the unique feature of CLasTcyA and the presence of per-
mease, it was hypothesized that CLasTcyA might be involved in the transport of cystine
and other branched-chain amino acids [145]. Insilico structure-based inhibitor screen-
ing against CLasTcyA showed five compounds in the zinc database (ZINC000000211883,
ZINC000004707227, ZINC000013843286, ZINC000018063863, and ZINC000100640093) that
exhibit higher binding energy than the ligand molecule [146]. Further biophysical and
biochemical characterization might confirm the strength of binding. Field studies might
also confirm the efficacy of inhibitor compounds.

Sec-Translocase/Translocon (SecY/SecE/SecG)

In bacteria, translocase and translocon (complex membrane transporter system) are
involved in the transport of extracytoplasmic proteins into and across the inner membrane.
The bacterial translocase is made of the core heterotrimeric “SecY/SecE/SecG” transmem-
brane protein and a peripheral ATPase motor (SecA) [151,152]. In bacteria, several vital
proteins that are required for bacterial growth are secreted through SecA [153–155]. The
SecA protein is highly conserved in bacteria and is also related with the virulence mech-
anism. It isa well-known drug target for developing antimicrobial compounds. It was
demonstrated that “Rose Bengal (RB)” and its analogs act as SecA inhibitors for E. coli
and B. subtilis. The crystal structures of E. coli “SecA” are available in the protein database
(PDB) [156]. Homology modeling of the SecA protein of CLas (CLas_SecA) was done by
using the PDB structure of E.coli SecA (PDB ID: 2FSG) as a template. A predicted model
was used for structure-based virtual screening and molecular docking to discover a novel
inhibitor molecule against CLas_SecA. The ATPase activity in the presence of an inhibitor
with seventeen compounds showed IC50 > 50% inhibition, while four compounds had
more than 65% inhibition [157].

• Transcription regulator

Bioinformatics studies showed only 11 genes of CLas (2% of the whole genome) encode
19 transcription regulators which regulate all gene expression [56,158]. In CLas, a single
transcription factor controls the several genes, so targeting the one transcription factor could
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affect the function of multiple genes pleiotropically. These greatly affected the bacterial
adaptation and survival inside the host [159]. CLas spends its life cycle in citrus and insect
hosts; therefore, it must have the ability to modify the gene expression in a host-specific
manner to adapt in two different environments [158]. Studies showed that when CLas
change their host from psyllid to citrus plant, the expression of a gene associated with
survival and pathogenicity are up-regulated in planta. Expression of some transcription
factors was also up-regulated in planta (Table 5). The transcription factors PrbP and LdtR of
CLas were biochemically characterized [160]. The factor PrbP is a transcription activator and
a predicted RNA-polymerase-binding protein in CLas, which interacts with the β-subunit
of RNA polymerase (RNAP) and the short specific recognition sequence on the promoter
region [159]. Small molecule inhibitors were identified by molecular screening assays,
and therapeutic efficacies were tested against CLas. It was observed that the identified
molecule, tolfenamic acid, significantly decreases the transcriptional activity of CLas and
inhibits infection in citrus seedlings [159]. Transcriptome and in silicostudies predicted
that LdtRn (MarR family transcriptional regulator) controls the expression of ~180 genes
(like cell motility, cell wall biogenesis, transcription, and energy production) in CLas [160].
Biochemical screening (thermal shift assay) was performed to identify small lead molecules
that modify the LdtR activity, and the biological impact was examined in Liberibactercrescens
and S. meliloti. The high-throughput screening of small molecule inhibitors against the
CLas transcription regulator was performed using an in vivo synthetic system which was
designed using the closely related model bacterium S. meliloti as a heterologous host.
The identified compound ChemDiv C549-0604 specifically inhibits the activity of CLas
transcription regulator VisN [161–165], which suggests that the small lead molecules that
target transcription regulators of CLas can potentially mitigate HLB.

Table 5. Transcription regulators of CLas.

GenBank
Accession No Regulator Type Protein Name Putative Function Mw

(kDa)
CLas Relative
Expression $ References

ACT56890 CarD PrbP
Regulate some
ribosomal gene

expression (Activator)
21.3 Kda 1.24 [159]

ACT56824 MarR LdtR
Activator and
Repressor of

gene expression
19.6 Kda 5.23 [160]

ACT57167 LuxR VisN
Activator of

chemotaxis, flagellar,
and motility genes.

28.5 Kda 2.75 [161]

ACT56755 LysR LsrB

Activator of
oxidativestress

lipopolysaccharide
biosynthesis gene.

34.3 Kda 2.23 [163]

ACT56897 HTH-XRE PhrR1 Gene related to
quorum sensing 16.5 Kda Not reported [162]

ACT57366 Response
regulator CtrA Control cell cycle 26.7 Kda 1.4 [164]

ACT57093 IscR RirA Response to
iron limitation 16.1 Kda 1.04 [165]

$ Fold change (log2 ratio) is the relative gene expression (in plantaversus in psyllid) of CLas. Positive value
indicates overexpressed in planta and negative value showed overexpression in psyllid.
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• Hydrolase family enzyme

The proteome analysis reveals a lot of important and potential drug targets, including
serine proteases and phosphatases, which are hydrolase family enzymes. The structural
and biochemical studies of these hydrolase enzymes will help in revealing the ligand- and
substrate-binding sites, which could be an area for potential inhibitor development to
control CLas.

Phosphatase

The phosphatases represent a part of bacterial signaling pathways and act as a viru-
lence factor by interacting with the host signaling system [166]. Proteome analysis showed
the presence of one hypothetical protein (ACT57371) in CLas that showed similarity with
the dual-specificity phosphatase (DSP, protein, serine/threonine, and tyrosine phosphatase)
family having a phosphotyrosine protein phosphatases II fold. In CLas, the cognate pro-
tein Ser/Thr or Tyr kinase of CLas_DSP was absent. Therefore, it is hypothesized that
CLas_DSP might be participating in the signaling pathways of infected citrus plant and
mimics the plant immune responses [167]. The N-terminal signal peptide is present in
CLas_DSP, suggesting that it may be secreted to take part in virulence. The haloacid-
dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases
present in all organisms. HAD-like enzyme showed non-specific phosphatase activity,
having a Rossmanoid fold [168]. The CLas genome also encodes the HAD family en-
zyme, HAD family hydrolase CLasHAD (EXU77906) and phosphoserine phosphatase
SerBCLas_PSP (ACT57433).

Serine Protease (Protease IV Transmembrane Protein)

The membrane-bound self-compartmentalized serine protease, signal peptide pep-
tidase A (SppA), cleaves the remnant signal peptide after the complete transport of the
secretary protein at the targeted site. Bacterial SppA has a serine/lysine catalyticdyad mech-
anism to cut the signal peptide [169]. A few serine protease inhibitors have been reported
against E. coli SppA protein, such as chymostatin, leupeptin, antipain, and elastinal [170].
The CLas genome encodes a protease IV transmembrane protein (ACT57220) (CLas_SppA)
with a periplasmic signal peptide, which is up-regulated in the plant system [135].

Although Murraya species are members of Rutaceae family, they have not shown
symptoms after CLas infection. The actual reasons for no symptom expression by the
Murraya species is unknown [171]. It has been observed that miraculin-like protein (MLP)
was overexpressed during CLas infection [172]. MLP expresses constitutively in the seeds
of Murrayakoenigi, which has been purified and characterized [173]. MLPs have been
reported to possess protease-inhibitory and antifungal properties [174]. It has also been
reported that MLPs are overexpressed during CLas infection [172]. The role of MLPs during
CLas infection should be investigated by studying the possible inhibition of important
serine proteases of CLas. Another protein extracted from the Putranjiva roxburghii plant
alsoshowed strong trypsin-inhibitory activity [175]. Treating CLas-infected citrus with
antimicrobial compounds targeting critical proteins (serine proteases and phosphatases)
could be an additional management approach for HLB disease.

• Antioxidants Protein

Peroxiredoxin (Prx) protein plays an important role in the regulation of peroxide and
protects organisms from peroxide-mediated oxidative damage. Prx protein is considered
as an important protein of the antioxidant defense system of aerobic organisms, as they are
involved in the hydrogen peroxide (H2O2) signaling pathway. CLas also has an antioxidant
defense system, and the genome could encode different antioxidant proteins that protect
from the lethality of the reactive oxygen species (ROS). These include cysteine-based
Prx containing key residue, like peroxidaticCys (CPSH), embedded within the conserved
PXXX (T/S) XXC motif. This protein family can be divided into two types based on the
presence of cysteine. In 1-cys Prx, only peroxidatic cysteine is present, and in 2-cys, both
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peroxidatic and resolving cysteine are present [176]. CLas contains both 1-cys (Gene Id:
ACT56685) and 2-cys (Gene Id: ACT56784) Prxs. The CLas 1-cys Prx protein (CLas_BCP)
has CPSH/sulfenic acid cysteine (C46) and lacks the resolving cysteine (CRSH), which plays
a major role in the CLas oxidative defense system. The purified CLas_BCP catalyzes the
detoxification of peroxides using non-physiological electron donor DTT with the various
substrates [72]. The protein protects the cell from H2O2-mediated cell killing and shows
antioxidant activity by scavenging the reactive oxygen species (ROS). The invitro DNA-
binding studies confirmed that CLas_BCP protects the supercoiled DNA from oxidative
damage. Biophysical analysis of CLas_BCP by Circular Dichroism (CD) experiments
showed that it is a β-sheet-rich protein [72]. A detailed biochemical and structural analysis
of these enzymes along with their reductase partner will enhance our understanding of the
structure–function relationships in CLas.

• Nucleotide biosynthesis

Nucleotides are the building blocks of DNA and RNA with biosynthetic, de novo,
and salvage pathways. The salvage pathway recovers the nucleotides formed during the
degradation of nucleic acid (DNA and RNA), and de novosynthesis would be the main
pathway for the formation of nucleotides from simple precursor molecules [177].

Bifunctional Enzyme 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyl
Transferase/Inosine Monophosphate Cyclohydrolase (ATIC)

De novo nucleotide biosynthesis is the main pathway required for the formation of
inosine monophosphate (IMP) from simple precursor molecules. In higher organisms,
the pathway comprises of 10 steps, but in most microorganisms, 11 biosynthetic steps
are required. In de novo purine biosynthesis, ATIC enzyme (encoded by the purH gene)
catalyzes the penultimate and final steps of biosynthesis [178]. ATIC is a bifunctional
enzyme; biochemical characterization of ATIC demonstrated that two activities reside
on separate domains [179]. The CLas genome could encode bifunctional phosphoribosyl
aminoimidazole carboxamide formyl transferase/IMP cyclohydrolaseenzyme (ACT57137).
ATIC of CLas (CLas_ATIC), which is 536 amino acids long (Mw 59.04 Kda), showed max-
imum identity with ATIC of M. tuberculosis (PDB ID: 3ZZM). It is an essential enzyme
for the survival of rapidly growing pathogenic bacteria. Developing inhibitor molecules
against ATIC would help to impair the protein function [180]. Thus, the determination
of the three-dimensional structure of the CLas_ATIC enzyme might pave the way for the
design of novel inhibitors to potentially mitigate the impact of HLB disease.

Inosine-5′-Monophosphate Dehydrogenase

Inosine Monophosphate Dehydrogenase (IMPDH), involved in the de novo synthesis
of purine, catalyzes the conversion of Inosine Monophosphate (IMP) into xanthosine-
5′-monophosphate. This is the rate-limiting step in de novo guanine synthesis. The
IMPDH from CLas (CLas_IMPDH) is a 493-amino-acid-long protein; its crystal structure
has been submitted to the Protein Data Bank. The CLas_IMPDH (PDB ID: 6KCF) could
be used for virtual screening and docking studies for the development of potential lead
inhibitor molecules.

• Fatty acid biosynthesis

Fatty acid biosynthesis (FAS) is important in all living organisms, including bacteria.
It is essential for viability and a validated target for the development of antimicrobial
molecules. On the basis ofthe enzymes involved, fatty acid biosynthesis is classified into
two different pathways: FASI (Type I) and FASII (Type II). FAS I is a multifunctional enzyme
with multiple domains that is found in mammals and fungi [181]. In FASII, each step is
catalyzed by monofunctional enzymes found in plant chloroplasts and bacteria. Enzymes
involved in FASII were observed as highly specific in bacteria [182].
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Enoyl-Acyl Carrier Protein Reductase I (FabI)

Type II fatty acid synthase and enoyl-acyl carrier protein reductase I (FabI) enzyme
catalyzes the final step of bacterial fatty acid biosynthesis. FabI is a crucial enzyme in the
completion of cycles, particularly in the elongation phase of fatty acid biosynthesis [183].
Crystal structures of several FabI from different organisms have been reported in the
Protein Data Bank (PDB). The CLas genome encodes 30.8 kDa enoyl-acylcarrierprotein
reductase [NADH] enzymes (CLas_FabI). CLas_FabI crystalized in apo (PDB ID: 4NK4) and
in complex with NAD+ (PDB ID: 4NK5) showed the conformational change in the substrate
binding loop. Inhibitor kinetics showed that isoniazid (INH) acts as a competitive inhibitor
with respect to NADH substrate and an uncompetitive inhibitor with crotonoyl-CoA [184].
Therefore, the structure of CLas_FabI would be used for virtual screening and molecular
docking for the identification of potential lead inhibitor molecules.

β-Hydroxyacyl-acyl Carrier Protein Dehydratase (FabZ)

In the Type II fatty acid biosynthesis pathway, the FabZ enzyme is involved in de-
hydration of β-hydroxyacyl-ACP to trans-2-acyl-ACP. 3-hydroxyacyl-ACP dehydratase
(FabZ) (WP_015452391) of CLas (CLas_FabZ) has been shown to be an 18kDa protein, and
a sizeexclusion study confirmed a hexameric form in solution. The crystal structure (PDB
ID: 4ZW0) analysis of CLas_FabZ showed similarity with other reported structures of
FabZ in a different organism [185]. The crystal structure of CLas_FabZ provides important
insights for the development of antibacterial molecules.

• Amino Acid Biosynthesis

In CLas, enzymes involved in the conversion of phenylpyruvate to phenylalanine and
asparate to lysine were identified. Furthermore, enzymes involved in the biosynthesis of
amino acids from metabolic intermediates have been identified. The enzyme for the biosyn-
thesis of amino acids (tyrosine, leucine, isoleucine, tryptophan, and valine) from metabolic
intermediates is absent [56]. In the diaminopimelate pathway of lysine biosynthesis, the
enzyme dihydrodipicolinate synthase (DHDPS) was involved. DHDPS catalyzes the con-
densation of pyruvate with L-aspartate beta-semialdehyde. Recently, the crystal structure
of DHDPS bound with pyruvate (PDB Id: 7LOY) and allosteric inhibitor (S)-lysine (PDB
Id: 7LVL) from Candidatus Liberibacter solanacearum (CLso_DHDPS) has been submitted
to the Protein Data Bank [186]. Dihydrodipicolinate synthase of CLas (CLas_DHDPS) has
80.82% sequence identity with CLso_DHDPS. This structural information of CLso_DHDPS
provided the basis for insilico inhibitor studies against CLas_DHDPS.

To date, only five proteins (two transporters and three enzymes) from CLas have been
crystalized in apo and complex form, and 17 structure coordinates are available in the
Protein Data Bank (Table 6). Structural studies of important transporters and enzymes from
CLas revealed some unique features, which are different from other reported structures of
a similar protein in different bacteria. These unique features could be targets for the virtual
screening of potential inhibitor molecular candidates available in database libraries.

Table 6. Crystal structure of important protein from CLas.

Protein GenBank
Accession No PDB ID References

Periplasmic metal-binding protein ACT57010
4CL2, 4UDN, 4UDO,

5AFS, 5Z2J, 5Z2K, 5Z35,
5ZHA, 6IXI

[146–149]

Putative amino-acid-binding periplasmic
ABC transporter protein ACT57585 6A80, 6AA1, 6AAL, 6A8S [145]

Enoyl-Acyl Carrier Protein Reductase I (FabI) KAE9510327 4NK4, 4NK5 [183]
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Table 6. Cont.

Protein GenBank
Accession No PDB ID References

beta-Hydroxyacyl-acyl carrier protein
dehydratase (FabZ) WP_015452391 4ZW0 [185]

Inosine 5′-monophosphate Dehydrogenase ACT57362 6KCF [187]

4.1.2. HLB management with Antimicrobial Chemicals

The effectiveness of a variety of broad-spectrum antibiotics has been reported on
HLB-infected trees under greenhouse as well as field conditions. Foliar application of
effective antibiotics has been recommended to alleviate the CLas population and greening
management in citrus [120,188]. The application of antibiotics like achromycin andle-
dermycin on citrus branches has helped to suppress the symptoms of HLB [189]. The
antibiotics oxytetracycline and penicillin were found effective against citrus greening to
reduce disease severity [190]. Zhang et al. (2010, 2011, and 2012) have demonstrated
that the combination of penicillin and streptomycin is effective for suppressing the CLas
titer in HLB-affected citrus [90,191,192]. Other antibiotics found effective in suppressing
CLas populations include ampicillin, carbenicillin, penicillin, cefalexin, rifampicin, and
sulfadimethoxine [120]. Oxytetracycline and streptomycin received emergency approval
to be used in citrus groves in Florida for foliar use by the United States Environmental
Protection Agency [193], and the approval for streptomycin was extended for 7 more years
in 2021. However, the effectiveness of these treatments for suppressing HLB is still an on-
going debate [188]. Studies indicate that due to the nature of the cuticle layer on citrus
leaves, the antibiotics applied foliarly have very limited uptake, therefore not reaching
target sites where the CLas reside [63,194]. Therefore, a delivery system is necessary for
antimicrobial chemical components to get to the phloem, a targeted site. A proofofconcept
was conducted by Killiny et al. (2020) to demonstrate if the cuticle layer is the main barrier
for the uptake of oxytetracycline [195]. Some parts of the cuticle layer of citrus leaves were
removed using a high-power laser followed by foliar application of oxytetracycline [195].
A significant amount of absorption of the antibiotic was observed, resulting in a decrease
in CLas titer in comparison to the control. This study suggested that the cuticle layer was
the first and major barrier for oxytetracycline bioavailability for killing CLas. Authors
also tested combining oxytetracycline with adjuvants commonly used in the agricultural
industry to see if it would facilitate oxytetracycline absorption [195], but mixing with the
adjuvant had minimal impact on the uptake of oxytetracycline. The trunk injection method
offers tools to directly administer agrochemicals to the plant vascular system. Use of this
technique would regulate the amount and specificity of agrochemical introduced into the
plant vascular system based on the disease, age, and size of trees. Previous reports have
revealed that trunk injection method is an effective way to overcome the limited absorption
of the antibiotics by the citrus leaves [196,197]. Al-Rimawi et al. (2019) demonstrated that
oxytetracycline and streptomycin antibiotics were still detectable even after thirty-five
days of treatment applied via soil-drench or trunk-injection methods [197]. The residual
activity could provide long-term protection and decrease frequency of treatment applica-
tion. The possibility of bacteria developing resistance against antibiotics cannot be ruled
out. Additionally, the possibility of antibiotic contamination of the fruits must be assessed
carefully. Therefore, to successfully manage HLB in the field, antibiotic alternatives should
be investigated.

Brassinosteroids are a family of plant steroidal compounds that play an essential role
in plant growth, development, and stress tolerance. Studies have revealed that brassinos-
teroids can be used as a possible control strategy for HLB. The foliar spray of epibrassi-
nolide has been recommended for CLas-infected citrus plants.It was observed that CLas
titers were reduced by treatment with epibrassinolide under both greenhouse and field
conditions [198]. The reduction in pathogen titer was the consequence of the induction in
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the defense-related genes in the leaves of the citrus plant. The role of brassinosteroids has
also been observed in the induction of the H2O2 in maize leaves [198].

SA and JA play a major role in the plant defense mechanism that induces the expression
of the pathogenesis-related (PR) proteins in response to a pathogen attack. SA mediates
the phenylpropanoid pathway to defend against pathogens, insect pests, and abiotic
stresses. JA mediates the octadecanoid pathway as the defense against insect pests and
pathogens [199]. A common defense system which is activated by both JA and SA was
proposed in rice [200]. SA blocks H2O2 inhibitors or scavengers, resulting in elevated
levels of H2O2 and the activation of defense-related genes. It was also demonstrated that
SA and its synthetic inducer 2, 6-dichloroisonicotinic acid inhibit ascorbate peroxidase
(APX), which is also an involved defense mechanism. Other plant defenseinducers were
able to induce defense mechanisms against a different disease, such as β-aminobutyric
acid, 2,1,3-benzothiadiazole, ascorbic acid, 2-deoxy-D-glucose, and 2,6-dichloroisonicotinic
acid [201].

Australian finger lime (Microcitrus australiasica), an inimitable citrus fruit that grows
in Australia’s rainforests, has recently been reported as immune to HLB [202,203]. The
comparative analysis among the HLB-tolerant and HLB-sensitive citrus cultivars demon-
strated stable antimicrobial peptides (SAMPs) responsible for the tolerance of finger lime
against HLB [204]. The peptide made by finger limes, SAMPs are involved in enhancing
host immunity and inhibiting the CLas multiplication in HLB-positive trees. It has been
reported that heat stablized SAMP (130) applied through foliar spray moved systemically in
the vascular system, making them more suitable for field applications than antibiotics [204].

Engineered Nanomaterials (ENMs) for HLB Management

Nanotechnology is one of the fastest-growing scientific fields over the last few decades.
The incorporation of nanotechnology-enabled tools and materials in the agricultural indus-
try is inevitable. In a broad definition, ENMs (Engineered Nanomaterials) are substances
with at least one of the dimensions between 1 nm to 100 nm [205,206]. ENMs are ex-
pected to improve the overall health of plants in accordance with sustainable agricultural
practices [207]. Until now, ENMs for agricultural applications were studied as sensors [208],
fertilizers [209], andurea-coating [210] and soil-conditioning agents [211,212]. For disease
management, they can be developed as nano-carriers to facilitate the transportation of ac-
tive ingredients (A.I.) to the diseased sites or used directly, thanks to their intrinsic biocidal
properties [213]. ENMs are reported to have higher antimicrobial efficacy compared to
corresponding bulk counterparts due to their higher surface-to-volume ratio; therefore, it is
reasonable to expect that they can work more efficiently at lower concentrations or require
smaller treatment frequencies compared to corresponding bulk counterparts [209,214].

In order to adapt nanotechnology-enabled materials for the management of HLB, it
should reach phloem tissue at a concentration that is suitable for inhibiting CLas growth
(i.e., above the minimum inhibitory concentration). ENMs applied via surface applica-
tion methods have barriers to overcome before reaching the plant vascular system [215]
(Figure 8). Foliarly applied ENMs have two possible paths of entry: stomatal or cuticular.
Soil-drench-applied ENMs need to be absorbed via the casparian strip [216]. It has been
observed that there is sizeexclusion for uptake and movement of ENMs into the phloem
vascular tissue of citrus trees after foliar application [217]. Results indicated that 5.4 nm and
below was optimal for nanomaterials to pass through epidermis tissues and mobilize into
the phloem channels [217]. However, previous studies indicate that surface coating [218]
and shape [219] of ENMs were other factors affecting the uptake and translocation in
the plant vascular system. To understand how the surface chemistry and application
method affects the uptake and movement ofsilver nanoparticles (AgNPs) in citrus trees,
Suet al.compared the uptake and mobility of AgNPs coated with citrate (28.7 +/− 11.0 nm),
polyvinylpyrrolidone (17.9 +/− 7.5 nm) (PVP) polymer, and gum Arabic (9.2 +/− 4.2 nm)
(gA) in 2.5-year-old mandarin trees [220]. Colloidal solutions were applied using foliar
spray (drop casting), petiole feeding, root-drench or trunk injection methods [220]. AgNPs
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applied via all four application methods were absorbed by the plant tissues, while surface
coating was found to be more critical for systemic movement of the NPs in the plant
vascular system. PVP- and gA-coated AgNPs distributed fully via both xylem and phloem
channels, while citrate-coated AgNPs aggregated in the trunk due to the high salinity of
the sap [220].
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ENMs can have intrinsic biocidal properties due to retaining antimicrobial metals such
as Ag, Zn, and Cu. Until now, the antimicrobial efficacy of AgNPs was reported against
different plant pathogens [221]. The use of AgNPs in agricultural practices is promising
because studies have demonstrated treatments that can be used for pathogens that already
developed resistance to Cu-based antimicrobials [222]. Release of antimicrobial Ag+ ions
causing cell membrane rupture is believed to be the major path of invitro biocidal efficacy
of AgNPs [223]. Stephano-Hornedo et al. reported the effectiveness of AgNPs suppressing
CLas in Mexican limes in a field study [224]. AgNPs (35 +/− 7 nm mean particle size,
zeta potential −14 mv) were applied via either trunk injection or foliar sprinkle methods,
and changes in CLas titer were quantified to determine the effectiveness of the treatments.
The study highlighted that both application methods are effective for the management of
HLB. Up to 90% reduction in bacterial titer was measured after foliar application, while
the trunk injection method reached 80% bacterial titer decrease at 12.5 times below the
concentration [224]. One must note that Ag in the ionic form is toxic to other bio-organisms
in the soil and water as well [225–227]. Therefore, more in-depth nanotoxicology studies
are required to analyze long term benefits and cost-effectiveness.

Zn and Cu are two micronutrient-based metals that possess toxicity against plant
pathogens yet are beneficial to a plant’s overall health by participating in biomolecule
synthesis, boosting the plant’s defense mechanism [209]. Cu as an antimicrobial agent for
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agricultural applications has been recognized by regulatory agencies worldwide. Just in
Florida, ~530 tons of Cu hydroxide per year were applied for disease management between
2007 and 2009 [228]. However, conventional Cu products are ineffective at managing HLB
due to a lack of systemic uptake and mobility [229]. It is fair to assume that formulations
retaining nano-Cu as the A.I. can overcome the size limitation of commercial products.
However, to the best of our knowledge, there is no nano-Cu formulation available for
controlling CLas. Nanomaterials have higher solubility in aqueous media compared to bulk
forms [230]. This could be a major limitation for developing a non-phytotoxic systemic Cu
bactericide formulation for killing CLas.

It has been reported that HLB infection causes micronutrient Zn imbalance within the
plant system [231]. Therefore, it is expected that Zn-containing bactericide formulations
would exhibit additional nutritional benefits. Previous reports demonstrated that chelating
Zn metal with organic lipophilic ligands can enhance its antimicrobial efficacy [232,233] and
improve their uptake by citrus leaves compared to bulk ZnO [234]. A multifunctional agro-
chemical formulation (MS3T) containing a Zn chelate, quarternary ammonium compound
(Quat), and clay have been shown to be effective against citrus canker citrus melanose and
scab in field conditions [235]. MS3T enabled surface protection by creating a clay-supported
filmbarrier between leaves and disease-bearing insects and released antimicrobial Quat
and chelated form of zinc [235]. Field trial results demonstrated that the formulation is
as effective as commercial Cu standards in controlling disease. Importantly, the MS3T
formulation improved fruit yield and quality, suggesting the nutritional benefits of Zn.
Zn concentration in the leaves of the treated trees increased significantly when compared
to untreated leaves, suggesting Zn uptake. In a separate study, water-soluble Zn salt (Zn
sulfate) and Zineb (a polymer dithiocarbamate complex of Zn) was applied to HLB-bearing
trees, and disease progression was monitored via CLas titer [236]. It is interesting to note
that even though Zn levels increased in the leaves after the application, HLB symptoms
were not mitigated. In fact, increase in CLas titer was observed due to beneficial effects
of low concentrations of Zn on bacteria growth [236]. This suggests that the Zn level in
phloem tissue is critical for mitigating HLB symptoms.

Until now, ZnO-based ENMs have been studied more extensively as a fertilizer for
agricultural practices. Studies on varieties of plants suggest that ZnO-based ENMs can
improve plant productivity [237], root growth [238], photosynthesis rate [239], seed ger-
mination rate [240], and plant biomass [241]. Biocidal properties of ZnO-based ENMs
can be attributed to the release of antimicrobial Zn and the generation of reactive oxygen
species (ROS) [242]. ROS are generated when ENM takes part in the catalytic activity.
A ZnO nanoparticle with surface defects serves as the catalytic sites and is responsible for
producing ROS such as peroxides, superoxides, and hydroxides [243]. In general, ENMs’
catalytic activity is triggered bythe absorption of a photon, which is unique to nanoparticles,
but this property is minimal/absent in their larger counterparts [244]. Studies indicate that
the ROS interfere with several important cellular processes for viability at the molecular
level, causing cell death [245].

To combat against HLB, a formulation of ultra-small (<10 nm) nano-ZnO (Zinkicide®)
was developed [246,247]. The superior antimicrobial property of Zinkicide has been
correlated with the surface-defect-related catalytic activity of the nano-ZnO [247]. Sur-
face defects originate at the atomic level due to the presence of Zn or O vacancies [247].
Naranjo et al. (2020) studied the mechanism of action of Zinkicide on Liberibacter crescens
in batch cultures and in microfluidic chambers as the model system mimicking the plant
vascular system [248]. Much-improved in vitro antimicrobial efficacy was reported for
Zinkicide in comparison to bulk ZnO (300–900 nm). It was observed that Zinkicide particles
released higher levels of Zn ions that contributed to intra-cellular ROS generation followed
by lipid peroxidation and even cell membrane disruption. Zinkicide demonstrated better
performance than bulk ZnO in inhibiting the bacterial biofilm of Liberibacter crescens be-
tween the 2.5 and 10 ppm Zn level. This study was carried out using microfluidic chamber
assays mimicking phloem vascular tissue [248]. This study also demonstrated that nano-
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ZnO had higher mobility and bactericidal efficacy in sink reservoirs of the microfluidic
chamber; therefore, it was more effective at clearing the biofilm compared to bulk ZnO.
Soliman et al. (2022) reported ZnO/ZnO2 (2.7 nm core, 0.4 nm shell as determined via
SANS measurements) nanotherapeutic formulations against HLB and canker-bearing citrus
trees [249]. The authors discovered a significant decrease in canker lesions compared
to Firewall® control and in the HLB disease rating compared to Nordox® 30/30 control.
It must be also noted that the ZnO/ZnO2 formulation caused a percentage increase in
large fruit size yield compared to control, which is desired for the fresh fruit market [249].
Graham et al. (2016) reported the efficacy of Zinkicidefor controlling the citrus canker of
grapefruit, another important disease [250]. Zinkicide-treated trees showed a low level of
disease incidence (9.2%) in comparison to untreated controls (63%) and Cu oxide industry
controls (21%). It is also interesting to note that the application rate of ZnO in the field was
half the rate of total metal concentration compared to the Cu commercial control. The effec-
tiveness of nano-ZnO formulation combined with the 2S-albumin protein on HLB-infected
seedlings was reported [106]. The formulation consisted of nano-ZnO (~4 nm) capped with
an organic coating that stabilized the 2S-albumin protein at neutral pH via intermolecular
interactions. In this study, 3-year-old mosambi trees were injected with a colloidal solution
of nano-ZnO, 2S-albumin, and nano-ZnO plus albumin, and CLas titer was quantified for
120 days. A significant decrease in titer at 28-fold with 2S-albumin, 26-fold with nano-
ZnO, and 34-fold for nano-ZnO plus albumin formulations were observed [106,251]. Zn
nitrate administered alone did not show any decrease in titer, consistent with previous
reports [236]. As an alternative to the conventional trunk injection method for the adminis-
tration of ENMs, Kundu et al. (2019) developed micromilled microneedles for the precise
delivery of agrochemicals, including antimicrobial nano-ZnO (Zinkicide) solution [252].
Micro-punctures were created on the bark of citrus seedlings, and the Zinkicide-solution-
soaked pad was wrapped around the treated area. A significant increase in metallic Zn
was observed on the stem and leaves of seedlings treated with microneedles compared to
untreated seedlings [252].

An ENM platform with no intrinsic antimicrobial properties can be used as a delivery
system to improve the effectiveness of conventional antimicrobials. Polymeric EMNs
consisting of hydrophobic and hydrophilic moieties can encapsulate lipophilic antimicrobial
active ingredients and release them at the target site. A bio-degradable polysuccinimide
(PSI) polymer nano-delivery system (average particle size 20.6 +/− 0.6 nm, zeta potential
−28.5 mV +/− 0.7 mV) was reported [253]. Grapefruit cell suspensions were incubated
with PSI nanoparticles loaded with a model fluorescent compound, and the distribution of
the fluorescent signal in the cytoplasm and nucleus was observed after 2 h [253]. Another
way that ENMs can be used to improve the effectiveness of current antimicrobials is by
improving their rainfastness. Kah et al. reported that nano-formulations applied on citrus
leaves have better rainfastness compared to bulk counterparts due to higher surface area
interacting with the leaf surface [254]. Maxwell et al. developed a novel nano-ZnS (particle
size ~3.5 nm) adjuvant to improve the rainfastness of streptomycin sulfate. In this study, the
rainfastness property of a mixture of streptomycin and N-acetyl-cysteine-coated nano-ZnS
was compared with streptomycin sulfate alone and a commercial product, FirewallTM

50W [255]. After two simulated rainfalls, about 50% of the streptomycin was found to be
adhering to the leaf surface when delivered through nano-ZnS, while 70% of the materials
washed away from controls [255].

Even though the use of ENMs could be a promising strategy for HLB management in
the field, to the best of our knowledge, there is no commercial product available to citrus
growers yet. A formulation retaining ENMs listed as the antimicrobial active ingredient
will have to go through registration and approval processes by regulatory agencies. Due to
environmental and human exposure, ENMs are under high public and regulatory scrutiny.
However, there are still no clear guidelines for biocidal applications of ENMs, and a uni-
versally accepted legal framework is needed urgently. Lawmakers need to adopt sensible
analytical techniques to identify and prove the existence of ENMs and provide guidelines
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on the toxicity tests required [256]. Taking into consideration that one solution may not fit
for all formulations, regulatory agencies must continue to work alongside scientists to adapt
ENM technology. ENM products aiding in sustainable agricultural practices are critical for
public and regulatory agencies’ acceptance and adaptation of this new technology [257].
For example, the use of chemicals designated Generally Recognized As Safe (GRAS) could
possibly facilitate the process for approval [258]. Furthermore, environmentally friendly
synthesis methods requiring a minimal amount of energy, number of synthesis steps, and
purification are ideal while keeping the cost low enough to be able to compete with existing
products [211,259]. Lastly, more in-depth residue studies are needed to understand the fate
and interactions of ENMs with soil and fruits before commercialization.

4.1.3. Thermotherapy and Cryotherapy

Thermotherapy has been used for decades in plants to control or kill the different
micro-organisms as a good alternative to chemical-based pathogen control. This approach
utilizes eitherdry or wet heat. Optimized treatment conditions include treatment duration
and frequency. Thermotherapy is shown to be effective in reducing CLas titer without any
significant damage to the plant. There are different ways of applying heat as treatment
for plants, such as vapor heat treatment, soaking in hot water, and hot air. Researchers
and growers have implemented the thermotherapy concept in the field on a small as well
as large scale by using translucent plastic coverings to elevate tree temperatures. It is
challenging to apply uniform heat to the tree canopy and the root system. An increase in
canopy temperature beyond the optimum level may cause thermal injury to the tender top
portion of the tree but may not be sufficient for the root system. A root system that escapes
thermotherapy treatment may be responsible for the re-infection of CLas to the entire
canopy. Application of the thermal treatment (40–42 ◦C for seven to ten days) under a con-
trolled greenhouse condition eliminated CLas completely for as long as two years [258].
Fan et al. (2016) assessed the efficacy of short, repetitive thermotherapy of 4 h over a period
of three weeks against CLas and found a significant reduction in titers in both 45 ◦C and
48 ◦C treatments in infected seedlings [260]. A novel method consisting of a combination
of thermotherapy (45 ◦C) with sulfathiazole and sulfadimethoxine sodium forcontrol of
HLB has been attempted [261]. The different thermotherapy treatments concluded that this
concept could not completely eradicate the CLas under the field condition, although the
treated trees expressed vigorous growth. It has been reported that many genes involved
in plant–bacterium interactions were up-regulated after thermotherapy [262]. Nowadays,
a mobile thermotherapy delivery system (mobile heat treatment system, MHTS) has been
developed and used for in-field treatment of HLB-infected trees [263]. This system consists
of different components required for heat generation and application of heat to the tree,
including a tree canopy cover (hood), water tank, pump, generator, steamer, pressure
washer, and a water softener. The system covers the canopy of the HLB-infected trees
and injects the steam and hot water through nozzles inside of the hood to increase the
temperature of the canopy. MHTS was also evaluated in the field by using a bio-based
sensor (a surrogate bacterium, Klebsiella oxytoca). It was reported that the system showed
good killing efficiency (3.35 log reductions in colony-forming units to the complete elimina-
tion of the bacteria) at a raised maximum temperature of 54 ◦C for 250 s [264]. Therefore,
thermotherapy treatment could be one of the effective control strategies in an integrated
management of HLB.

Cryotherapy of shoot tips is another popular technique used for the eradication of
virus and virus-like pathogens from explants [265]. The frequency of obtaining pathogen-
free plants is higher with the cryotherapy of shoot tips than with shoot tip culture. In
cryotherapy, plant pathogens are eliminated from shoot tips by exposing them briefly to
liquid nitrogen (−196 ◦C). After a brief cryo-treatment, shoot tips proceed for regeneration
of healthy shoots to obtain pathogen-free plants. Thermotherapy followed by cryotherapy
of meristems tissue can be used for efficient removal of virus and virus-like pathogen [266],
as shown in the schematic representation (Figure 9). Ding et al. (2008) successfully used
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a vitrification-cryopreservation for removal of CLas fromthe infected plants of several
citrus species [267]. They observed that almost all regenerated plants were HLB-free after
combined cryotherapy and thermotherapy [267]. This procedure could be carried out in
a tissue culture laboratory equipped with basic infrastructure for producing pathogen-
free plants.
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5. Management Strategies at Host Level
5.1. Activation of Plant Immune System

In response to pathogen attack, plants induce a series of defense responses, includ-
ing the production of reactive oxygen species (ROS), synthesis of PR proteins, cell wall
modifications, production of phytoalexins, and a hypersensitive response. The plant cell
membrane consists of pattern recognition receptors (PRRs), which act as cellular ‘antenna’
to sense extracellular signals and allow plants to detect a wide range of danger signals,
including pathogen-, microbe-, and virus-associated molecular patterns (PAMPs, MAMPs,
and VAMPs). PRRs of the plant cells are involved in self-defense against attackers by
triggering innate immune responses [268]. The citrus plant exposure with the pathogen
(PRR-PAMPs interaction) induces the transient production of different molecules involved
in the plant defense system such asreactive oxygen species, the activation of the mitogen-
activated protein kinase (MAPK) cascade, nitric oxide burst, ethylene production, calcium
influx, callose deposition at the cell wall, and expression of defense-related genes called
PAMP-triggered immunity (PTI) [269]. To suppress the PTI of the host, pathogens have
evolved a virulence mechanism that enables them to directly inject effectors into the host
cell, which avoids PRR recognition. As a countermeasure against the effector molecules,
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the plant induces another defense mechanism called effector-triggered immunity (ETI).
ETI is involved in the recognition of pathogen effector molecules by producing disease
resistance (R) proteins and causes a hypersensitive response to kill the infected cells.

CLas is a resilient pathogen capable of suppressing the immunity triggered by the
pathogen-associated molecular pattern (PAMP) of the citrus host. On the other side, CLas
lacks type II plant-cell-wall-degrading enzymes, which are needed for the induction of the
plant defense system. It is conjectured that the origin of the CLas is an insect/animal [270].
This may be the reason why the plant could not evolve to develop resistance/immunity
against CLas. Therefore, the citrus plant fails to defend against HLB [271]. The pathogen–
host interaction affects the expression of various gene patterns. The infection causes
down-regulation of the heat shock protein genes, genes involved in the synthesis of cy-
tokinins and gibberellins, while genes involved in the light reactions of photosynthesis, ATP
synthesis, and ethylene pathways are up-regulated [272]. It also affects the various path-
ways involved in cell signaling, hormone synthesis, sucrose-starch metabolism, source-sink
communication in phloem tissue, and the response through both SA and JA pathways [272].
In addition to local defense, plants can activate systemic acquired resistance (SAR). This
is a broad-spectrum mechanism which involves the synthesis of chemical mobile signals
in tissues that have been locally infected by pathogens. These signals travel throughout
the phloem tissues, triggering plant defense responses in the uninfected portions of the
plant. Thus, the activation of the plants’ own defense systems, by engineering the plants to
synthesize R-proteins or defense-related signals, is another approach used for the improve-
ment of citrus. Plants also employ antimicrobial peptides (AMPs) as a defense mechanism.
These cationic molecules can interact with the negatively charged pathogen membranes by
changing their electrochemical potential and altering the membrane permeability, which
eventually leads to cell death. Because of their antimicrobial activity, broad spectrum, and
low cytotoxicity, AMPs could potentially replace traditional antibiotics. As there is no
immune cultivar available, it is therefore difficult to discover some plausible clue about
greening tolerance. It was observed that grape fruit showed some tolerance against citrus
greening [273]. Transcriptome analysis of US-897 (C. reticulata Blanco) cultivar identified
two genes, 2-oxoglutarate and Fe (II)-dependant oxygenase, as responsible for the disease
tolerance [274,275].

5.2. Transgenic Approach

To mitigate HLB, there is a need to trigger the citrus plant’s immunity against the
CLas pathogen. In the past, conventional breeding methods have been used to improve
citrus cultivars to develop new varieties. This traditional breeding method has some lim-
itations due to the woody nature of the plant, juvenility, incompatibility, heterozygosity,
polyembryony, parthenocarpy, and male or female sterility. Additionally, the traditional
breeding of citrus cultivars was time-consuming and restricted to the traits related to fruit
quality, like fruit ripening time, seed number, and flesh color [276]. Therefore, genetic
engineering is an attractive approach for faster development of disease-resistant citrus
plants and could provide an advantage for the combined management of citrus diseases
like HLB. The immunity of the citrus plants can be triggered by expressing different genes
involved in the plant defense system or suppressing the expression of some important
CLas pathogenicity genes. The various strategies that have been used to enhance resis-
tance/tolerance in citrus against HLB include overexpression of endogenous or exogenous
antimicrobial protein and exploration of host–pathogeninteraction pathway [277]. The
Environmental Protection Agency in the United States has approved the field testing of
a transgenic citrus cultivar expressing spinach defensin genes against HLB [278]. The
expression of the NPR1 gene of Arabidopsis spp. in citrus enhanced resistance against HLB,
which induces the expression of several native genes involved in the plant defense signal-
ing pathways by acting as a regulator of the transcription factor. The transcription factor
induces the expression of the PR (pathogenesis-related) gene and ultimately mediates the
SA-induced SAR pathways [279] (Figure 10). According to Wang et al. (2016), HLB-tolerant
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‘Jackson’-grapefruit-like hybrid trees expressed 619 genes differently than susceptible culti-
vars (Marsh tree) [280]. It has also been reported that the cationic lytic peptide cecropin B
from the Chinese tasar moth (Antheraea pernyi) is effective against CLas when expressed in
the phloem tissues of citrus using a GRP1.8 promoter [275].The transgenic citrus expressing
natural lytic peptide cecropin B has decreased their susceptibility to greening and showed
strong activity against CLas [275]. Ramadugu et al. (2016) have conducted a six-year field
trial to identify resistance against citrus greening among citrus-related subfamilies [281].
The high level of tolerance was observed in various non-citrus genera, e.g., Eremocitrus
and Microcitrus, which are sexually compatible with sweet orange and grapefruit. These
Australian citrus relative genera could be useful for improvingthe citrus genome against
HLB through breeding trials or genetic engineering [281].
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The flagellin protein of bacteria is also recognized as PAMP by the R-gene flagellin
receptor 2 (FLS2). It is observed that the flagellin peptide (flg22Xcc) of Xanthomonas
campestris pv. citri (Xcc) induces ROS and the expression of a defense-responsive gene
in resistant citrus genotypes ‘Sun Chu Sha’ mandarin and ‘Nagami’ kumquat [282]. The
overexpression of the FLS2 protein causes the reduction in susceptibility to Xcc. The FLS2
protein is also present in the sweet orange citrus but has very low homology to the known
functional FLS2 isoforms, which may be the reason for the lack of a defense response [283].
The grapefruit citrus plants expressing FLS2-1 and FLS2-2 have increased the expression of
the defense-related genes WRKY22, GST1, and EDS1 [283]. These resistance genes could be
used to generate cisgenic lines to enhance PTI in the citrus against the bacterial diseases like
citrus canker and HLB. There are various R-genes that can be used as potential targets in
citrus improvement programs, such as the NDR1 gene (a positive regulator of salicylic acid
accumulation), Xa21 from rice (already used in the citrus cultivar Hamlin, Natal, and Pera,
against the Xcc), and the disease susceptibility gene (CsLOB1 gene). Currently, research
has emphasized genome-editing tools like CRISPR/Cas9 and single-guide RNA (sgRNA)
for crop improvement. CRISPR/Cas9 is a specific and straightforward method used to
alter the genome of crops to generate disease-resistant/tolerant plants, and it might be the
most accepted method for crop improvement in the future [284,285]. Furthermore, genome-
editing technology has already been used in citrus: a canker disease susceptibility gene
CsLOB1 has been modified to generate a canker-resistant plant [286,287]. These emerging



Plants 2023, 12, 160 33 of 57

and efficient genome-editing tools could be used in the triangular approach for complete
eradication of HLB in the near future.

In addition to structure-based inhibitor studies, the foreign resistance (antimicrobial
and insecticidal) genes derived from other species can be introduced into the citrus host by
genetic engineering [288]. Plant seed storage protein performs vital roles in plant survival,
acting as molecular reserves for plant growth, maintenance, and defense mechanism by
virtue of their antimicrobial and insecticidal properties [289]. Antimicrobial molecules
present in plants and many animal species involved in the defense mechanism are known
as AMPs. The plant serine proteinase inhibitors play an important role in plant defense
against pathogens and pests [290]. For instance, the genes encoding potent protease
inhibitor and AMPs might be used as sources of the transgene for the development of
citrus resistance [291]. The genome sequencing and transcriptome studies demonstrate
the structural diversity and expression of constitutive disease resistance (CDR) genes
in HLB-tolerant trifoliate orange (Poncirus trifoliata) and its hybrid plant. This study
validated the potential role of CDR genes in HLB development and provided insight
into the genetic manipulation of the citrus plant [292]. Different potential antimicrobial
peptides which have been studied against different pathogens include Cercopin B, Attacins,
Thionin, D2A21, Dermaseptin, Sarcotoxin IA, and Linalool. The transgenic sweet orange
plants expressing phloem-specific antimicrobial geneattacinA have been evaluated against
HLB [293]. The thioninis is a family of AMPs which attack the bacterial cell membrane,
causing cellular leakage and death. Transgenic Carrizo rootstocks expressing a thionin
gene exhibited reduced canker symptoms with a concomitant decrease in bacterial growth.
When inoculated with HLB-infected budwood, these transgenic plants had lower CLas
titers in comparison to the controls. These findings indicate that the modified thionin might
be a helpful AMP in the fight against citrus bacterial diseases [283]. The use of two or
more transgenes (with different defense mechanisms) for the development of transgenic
citrus plants would prevent the emergence of a mutant strain of pathogen. It is possible to
overcome the HLB crisis with the development of transgenic citrus crops that have multiple
defense genes (antimicrobial and insecticidal).

5.2.1. Emerging Potential Genes as Transgene

2S Albumin

Based on solubility, plant seed storage proteins have been classified into differ-
ent groups, such as albumin (water), globulins (saline), prolamins (alcohol/water), and
glutelins (alkali). Furthermore, these proteins are classified based on their sedimentation
coefficients [294]. The term 2S albumin is defined based on their water solubility and sedi-
mentation coefficient [295]. 2S albumins are small heterodimeric proteins having two chains
(~3–4 kDa for small and 6–9 kDa for big chains), and both chains are stabilized by inter-
and intra-chaindisulfide bridges. 2S albumin from Brassica napus (napins) is a basic protein
(pI ~11) having a broad range of antibacterial activity and antifungal activity against Fusar-
ium oxysporum, Fusarium culmorum, Botrytis cinerea, and Alternaria brassicola. It is believed
that the antimicrobial activity of napin is due to the presence of a high proportion of pos-
itivelycharged amino acids, calmodulin antagonist, and trypsin-inhibitory activity [296].
2S albumins from Brassica oleracea (kohlrabi), Sinapis arvensis (charlock), and Brassica nigra
(black mustard) showed trypsin- and subtilisin-inhibitory activity, and 2S albumin from
Sinapis arvensis also showed α-chymotrypsin-inhibitory activity [297–299]. The first crystal
structure of 2S albumin from Moringa oleifera (Mo-CBP3-1) has been determined. It is made
up of two proteolytically processed α-helical chains, stabilized by four disulfide bridges.
Mo-CBP3-1 is thermostable (melting temperature ~98 ◦C) and pH-resistant. The presence of
a polyglutamine motif and surface arginines has supported its antifungal and antibacterial
activities [300]. The 16 kDa 2S albumin (heterodimer of ~11 kDa and ~5 kDa) from Wrightia
tinctoria (WTA) has Dnase and antibacterial activity against the human pathogen Morexella
catarrhalis [301]. The 2S albumin from Putranjiva roxburghii is thermally stable and exhibits
antifungal, DNase, RNase, and in vitro translational inhibitory activities [302]. Biochemical
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characterization of pumpkin (Cucurbita maxima) 2S albumin showed antifungal, DNase,
RNase, and cell-free translationalinhibitory and anticancer activities [303]. The plant ef-
ficacy studies of 2S albumin protein (~12.5 kDa) from Cucurbita maxima, coupled with
Nano-ZnO at 1:1 molar ratio, showed a potent antimicrobial effect. The 2S albumin-nano-
ZnO formulation showed a remarkable decrease in CLas population by 96.2% of the initial
bacterial load after 30 days of treatment in planta [106].

Miraculin-Like Proteins (MLPs)

The native miraculin (24.6 kDa) protein purified from Richadelladulcifica (red berries)
has a unique taste-modifying property [304]. Miraculin is a homodimer of the glycosylated
subunit (191 amino acids long) and cross-linked with a disulfide bridge through Cys138.
The proteins, which exhibit 30–50% sequence identity with native miraculin protein, were
designated miraculin-like proteins (MLPs) [305]. Both MPLs and miraculin are grouped
into the Kunitz-type soybean trypsin inhibitor (STI) family due to sequence identity
(30% identity with STI) [306]. Several MLPs characterized from different plant species have
been shown to have a role in plant defense and trypsin-inhibitory activity. The two distinct
MLPs (I and II) reported in Citrus jambhiri showed potential trypsin-inhibitory activity and
are involved in plant defense [175]. The phylogenetic studies of MLPs from the soybean
Kunitz super family showed that Rutaceae MLP (I and II) clustered on separate branches,
and miraculin, along with other MLPs, grouped into distinct clusters. Structure analysis
showed that most of the Kunitz-type inhibitors have the same overall fold (β-trefoil fold)
and consist of 12 antiparallel β-strands connected by long loops [307]. The 3D structure
of MLP from Murraya koenigii (MKMLP) has been determined at 2.9 Å resolution (PDB
ID: 3IIR). The structural analysis showed that MKMLP is made up of twelve antiparallel
β-strands connected through the loop and two short helices. Despite a similar overall
fold, a significant difference in the structure was observed in comparison to other reported
structures of Kunitz trypsin inhibitors [308]. The serine protease inhibitor of the Kunitz
trypsin inhibitor superfamily has been shown to inhibit the serine protease of several
lepidopteran insect pests [309].The bioinsecticidal studies of MKMLP against insect pests
(Helicoverpa armigera and Spodoptera litura) have been shown to inhibit the trypsin-like
and total protease activity of Helicoverpa armigera gut protease (HGP) by 78.5% and 40%,
respectively, and Spodoptera litura gut protease (SGP) by 81% and 48%, respectively.The
prominent proteolytic activity of MKMLP against total insect gut proteinases validates their
potential for development as a plant defense agent [310]. In CLas-infected sweet orange
(Citrus sinensis) leaves, noticeable up-regulations of MLP were observed [172].

Putranjiva Roxburghii Trypsin Inhibitor (PRTI)

Putranjiva roxburghii is an ornamental plant of the Euphorbiaceae family. The highly
stable and potent trypsin inhibitor from the seed of Putranjiva roxburghii was purified
and characterized. The PRTI is a single-chain protein with a molecular weight (Mw)
of ~34 kDa that has remarkable stability at a wide range of pH (2–12) and temperature
(up to 80 ◦C). The purified native protein inhibits trypsin with a dissociation constant
of 1.4 × 10−11 M (at a 1:1 molar ratio). The sequence analysis revealed that it belongs
to the Purine Nucleoside Phosphorylase-Uridine Phosphorylase (PNP-UDP) family, and
a ~46-residue insert disrupts the PNP domain. The biochemical studies of full length
and truncated (without a 46-residue insert) recombinant Putranjiva roxburghii PNP family
protein (PRpnp) revealed that the active site for trypsin-inhibitory activity is located within
the 46-residue insert. The truncated PRpnp (without insert) showed strong PNP enzymatic
activity, and the full-length PRpnp showed weak PNP enzyme activity. These results
specify the evolution of PRpnp to a potent trypsin inhibitor through a 46-amino-acid-long
inhibitory residue to cater to the needs of plant defense [175].
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5.3. Systemic Acquired Resistance (SAR)

The systemic phenomenon triggered by SA to gain the resistance against pathogen
attack, termed as SAR, is also responsible for the expression of defense-related genes [311].
The transgenic-tobacco-expressing SA biosynthesis genes show constitutively the expres-
sion of pathogenesis-related (PR) proteins which ultimately lead to resistance against viral
and fungal infection [311,312]. Exogenous SA also induces PR genes involved in resis-
tance against viral infection. The induction of SAR, either exogenously or endogenously,
would be a potential approach for developing resistance against citrus greening (Figure 10).
The defense strategy should be designed to elicit SAR as the pathogens invade the citrus
plant. This can be achieved by either applying SA externally or through overexpressing
SAR-related genes [191,279]. The NPR1 gene (SAR-inducing proteins) has been used for
the induction of the SAR defense system in transgenic citrus. The working principal was
an oligomer form of the NPR1 protein that gets converted to a monomeric form after
pathogen infection and moves to the nucleus where it activates defense-related genes [313].
The transcription factor induces the expression of the PRgene and ultimately mediates
the SA SAR [279]. Transgenic citrus ‘Duncan’ and ‘Hamlin’ lines have been developed by
expressing the Arabidopsis NPR1 (AtNPR1) gene against the HLB and citrus canker. The
developed lines have displayed an increased tolerance/resistance against HLB and citrus
canker [279]. The citrus NPR1 homolog was also overexpressed in ‘Duncan’ grapefruit and
reported to activate defense-related genes [283]. A higher level of expression of defense-
related genes, i.e., PR1, PR2, and WRKY70, were reported in transgenic sweet orange [314].
The overexpression of the hrpN gene (obtained from Erwinia amylovora) in transgenic
citrus ‘Hamlin’ also triggered the SAR and hypersensitive response with the consequent
reduced severity of citrus canker by 79% [315]. Brassinosteroids activate ZmMPK5, which
is involved in self-propagation of apoplastic H2O2 via regulation of NADPH oxidase gene
expression [191]. In brief, there could be a probable correlation between NADPH oxidase
gene regulation and the antioxidant defense system of CLas. It was also observed that the
production of H2O2 was blocked by pre-treatment with mitogen-activated protein kinase
kinase (MAPKK) inhibitors and H2O2 inhibitors or scavengers. The down-regulation of
these inhibitors and scavengers would help for up-regulating the expression of NADPH
oxidase. This might be useful in enhancing the immunity of citrus plants against CLas by
decreasing the amplitude of the antioxidant defense system.

The SA analogues have an ability to block the APX (ascorbate peroxidise) activity to
induce defense-related genes in tobacco against tobacco mosaic virus (TMV) [316]. This
information would help to down-regulate ascorbate peroxidise via genetic engineering
for achieving broad immunity against CLas and other pathogens. The degradation of SA
by CLas salicylate hydroxylase to catechol has been observed [317]. It would be good
to develop molecular strategies to down-regulate or inhibit the expression levels of both
salicylate hydroxylase and ascorbate peroxidise to enhance/maintain SA levels through
design of an antisense cassette for both genes.

6. Management of Asian Citrus Psyllid (ACP)

The ACP damages citrus trees directly byfeedingon newly emerged tender leaves
(new flush). However, more seriously, the ACP acts as an insect vector of CLas and CLam,
which are associated with the fatal citrus disease HLB. The psyllid takes the CLas bacterium
into its body when it sucks the sap of infected citrus plants. The psyllid acts as a carrier
of CLas and transfers it to the healthy plant. According to reports, bacterial acquisition
and multiplication in the nymph and adult are essential for effective transmission [318,319].
Before eventually spreading to plants, CLas multiplies and forms a mutually beneficial
association with its insect vector [320]. Eggs of the ACP are oval shaped, 0.3 mm long, and
yellow/orange in color, which are laid individually or in small clusters, mainly on the tips
of growing shoots and also in small cracks on stems. The size of nymphs when they first
emerge from the eggs is less than 0.3 mm, which excrete a large quantity of sugary liquid,
and they pass through five instars before becoming an adult. External wing pads of the
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ACP become visible on the later (3rd–5th) instars. The ACP possesses piercing-sucking
mouthparts to suck the plant sap as well as inject toxic saliva into the host plant during
feeding. Feeding of large numbers of ACPs on newly formed citrus leaves causes the
deformation of leaves and shoots and even the death of young flush. Honeydew produced
by both nymphs and adults promotes the growth of sooty mold, which covers the leaves
and reduces photosynthesis. Injection of salivary toxins during feeding stops terminal
elongation and causes the malformation of leaves and shoots.

The new flush on the citrus plant attracts the psyllid females, which lay the eggs,
leading to nymph development. In the absence of the new flush on the citrus, psyllid sur-
vive on alternative hosts; however, they are metabolically highly active at the temperature
ranges from 25 ◦C to 30 ◦C. Therefore, the alternative host, i.e., Murraya paniculata and
Severinia buxifolia should be eradicated from citrus groves [321]. Different strategies have
been employed for eradication of ACP infestation in the affected citrus groves (Figure 11).
The chemical control of the psyllid is the currently preferred strategy, which is highly
effective to reduce psyllid populations [322]. The systemic insecticides applied in the soil,
like imidacloprid, thiamethoxam, and clothianidin, have been used in large quantities to
control psyllids. To achieve the best results, the citrus orchards should be sprayed with
effective insecticide just after hedging or topping before initiation of any new flush. The
second insecticide spray should be applied after initiation of any new flush to prevent the
attack of psyllids. The broad-spectrum insecticides like neonicotinoid, organophosphate,
carbamate, and pyrethroid are highly effective against ACP, but they are toxic to other
beneficiary insects or natural enemies of psyllids [323].
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Natural enemies of any vector (parasitoids, predators, and pathogens) are the main
controlling factors which cause the natural mortality in the ecosystem and are some of
the basic components of integrated pest management. The ACP can be controlled in the
citrus groves using biologically controlling agents, i.e., Tamarixia radiata and Diaphorencyrtus
aligarhensis, which act as parasitoids on D. citri (ACP). A number of other entomopathogens
like Isaria fumosorosea, H.citriformis, Lecanicillium lecanii, and Beauveria bassiana can act as
a biopesticide against the ACP [324,325]. The parasitoid Tamarixia radiata is the most ef-
fective natural enemy that has been successfully used against D. citri in various parts of
the world [326]. Insecticides like horticultural oil, diflubenzuron, and kaolin clay are most
compatible with the T. radiata while controlling the psyllid population. Additionally, ento-
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mopathogenic fungi I. fumosorosea and B. bassiana [327] and entomopathogenic bacteria such
as Bacillus thuringiensis (Bt) [328] have been screened and investigated in recent years. The
Bt technology can be considered a potential option in integrated management, as screened
Bt strains induced medium to high levels of mortality in D. citri 3rd instar nymphs [328].
Alternatively, Bt toxins can be expressed directly in the phloem as bioinsecticides by devel-
oping transgenic citrus lines, which could be a promising weapon to control D. citri in the
war against HLB.

The major predators like spiders, ladybeetles, syrphids, and lacewings that attack the
ACP and antifeedants (neonicotinoids, flonicamid, pymetrozine, andimidacloprid), which
affect the fertility, are useful to reduce psyllid population in the citrus orchards. The chemi-
cal repellents, including noxious plant products, horticultural oil, and physical repellents
are complimentary tools for reducing pathogen-transmission-related behaviors [329,330].

The initial recommendation was that symptomatic or diseased trees up to eight years
of age had to be destroyed or protected to reduce the pathogen inoculums within an orchard
in disease-prone locations. The federal authorities of Brazil recommended (Normative
Instruction N◦53) that citrus orchards with more than a 28% incidence of symptomatic trees
had to be completely eradicated to prevent the spread of HLB [331]. However, most of
the citrus producers are cautious of this strategy due to direct fruit loss after eradication
of the citrus trees or orchards, thus it is not very well accepted. Considering a scenario
in which HLB is present and resistant cultivars are unavailable, there is a need to adopt
the strategy that contemplates recommended measures of tree eradication. In order to
compensate for the HLB impact and obtain the good citrus yield, citrus growers should
concentrate their attention on proper management of citrus orchards. Different ideal
conditions have been recommended for citrus grove management, like establishing high-
density groves, adequate management of irrigation, and planting varieties with similar
phenology. In high-density groves, more citrus plants are planted in order to attain a better
yield. The traditional spacing recommendations for a plantation of citrus were 7 to 9 m
between rows and 4 to 6 m in the planting row; however, sweet oranges produced well
with spacings of 5 to 7 m between rows and 2 to 4 m in the planting row. However,
increased planting density in citrus allowed 50% higher harvests in the first eight years
than traditional spacings, making it a straightforward tool for enhancing citrus productivity
while compensating for the HLB impact [331]. Considering a buffer effect, an orchard with a
greater number of trees would be less affected by the tree eradication strategy after infection.
It has also been demonstrated that high-density orchards coupled with strict psyllid control
had a lower cumulative incidence of HLB over time [332]. If a high-density planting
strategy is used around the core orchard, it leads to the control of secondary HLB infections
within the citrus groves. This could be due to a “dilution effect” for pathogen inoculum
sources arriving via psyllid vector from outside-infected orchards, as high-density orchards
have relatively more trees per area than traditional plantings [333]. The orchard can be built
by using a higher planting density (up to 200 m) along the farm boundaries to anticipate
productivity and reduce HLB impact (Figure 12). The performance of acid lime plantations
has been evaluated for two types of density planting systems (high-density, 5 × 2.5 m and
ultra-high-density, 2.5 × 2.5 m) and over-conventional (5 × 5 m) planting spacing. High
planting density in acid lime helped to maximize the use of cultivated land, light, water,
and fertilizer inputs and recorded a two-fold increase in fruit yield (8.24–35.36 t/ha) in the
UHD plantation system compared to the control (3.08–11.64 t/ha), implying that more
plants can be accommodated into a smaller space to boost production [334]. Currently,
the Brazilian citrus planting density has been stabilized around 615–640 trees/ha; the
density was increased from 337 to 676 trees/ha. A high-density planting approach with
dwarf citrus rootstocks like the ‘Flying Dragon’ trifoliate orange, which has less shoot flush
abundance and much lower cumulative HLB incidence than the ‘Rangpur’ lime, can be
employed to improve HLB management [333,335].
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Figure 12. The effect of high tree density along the edge of well-managed orchards on citrus greening
spread is depicted schematically. The orchards are mostly affected from the outside by a carrier
psyllid vector. The high planting around the orchards may act as a temporary barrier for movement
of ACP, resulting in a larger ratio of healthy to infected trees (dilution effect).

Planting ACP-repelling citrus hosts, citrus relatives, or other crops around the bound-
ary or as an intercrop may enhance the orchards’ establishment-based HLB management
of strategy. Antibiosis (inhibitory) and antixenosis (less attractive) mechanism have been
reported in the Poncirus and a few citrus relatives as unfavorable hosts for the ACP [336].
Thus, the breeding approach might be used to develop novel scion cultivars that can repel
adult ACP or reduce the survivability of nymphs.
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As insecticides have a negative impact on the environment and a severe toxic effect on
the other living organisms, including beneficiary insects or natural enemies of the psyllid,
there should be an alternative management strategy with the least negative impact on
the environment. Nowadays, there are different strategies emerging to control insects.
RNA interference (RNAi) is a promising technology that has been used in agriculture to
achieve different goals. Furthermore, RNAi is being exploited for the control of insects
by silencing the critical gene of the insect through the RNA interference mechanism. This
approach can used to inhibit insect growth, increase insecticide susceptibility, affect insect
fertility, and cause insect mortality. Tiwari et al. (2011) investigated expression levels of
family four cytochrome P450 (CYP4) genes in the CLas-infected and uninfected psyllid
and reported a higher level of expression of the four genes in uninfected than infected
psyllid [337]. They suggested five promising candidate CYP4 genes (CYP4C67, CYP4DA1,
CYP4C68, CYP4DB1, and CYP4G70) associated with insecticide resistance in D. citri for
RNAi-mediated silencing. The silencing of these five genes by topical application of double-
stranded RNA leads to the suppression of insecticide resistance in Diaphorina citri [338].
The abnormal wing disc (awd) gene involved in the development of the wing in the psyllid
(instar 5th) has been targeted for silencing. The silencing of the awd gene by topical
application of dsRNA interfered with wing development, produced malformed wings in
adults, and caused significant nymphal mortality [339]. It is reported that a cathepsin-B-like
cysteine peptidase (DCcathB) gene gets highly expressed (75- to 3333-fold) in the gut of the
adult psyllid compared to other tissue. The abundant expression of this gene in the gut
may have some correlation with the CLas habitat in the gut and therefore is a suggested
promising target for HLB control [340]. The muscle protein 20 gene (DcMP20) expresses
at a maximum level in the last instar (fourth-fifth) of the nymphal, which isconsidered to
be involved in psyllid muscle development. Effort has been made to impair the muscle
development in psyllids through RNAi by silencing the DcMP20 gene, which resulted
in the significant mortality and reduced body weight in psyllids [341]. Currently, most
of the farmers are utilizing heavy doses of insecticide to control the psyllid infestation
in citrus orchards, causing the development of insecticide resistance. The development
of insecticide resistance in the psyllid can be minimized by silencing the genes that are
responsible for gaining resistance. Kishk et al. (2017) used the RNAi approach to silence the
genes carboxyesterases (EstFE4) and acetylcholinesterases (AChe) implicated in pesticide
resistance in order to increase the susceptibility of the psyllid towards the insecticides by
topical application of the dsRNA [342]. They observed that a topical application of the
dsRNA caused concentration-dependent nymph mortality.

Advanced research on RNAi indicates that the knockdown of target genes chitin
synthase, cathepsin D, andgenes inhibiting apoptosis can be carried out through oral
feeding of dsRNA as well as through topical feeding. Ultimately, it causes mortality
in nymphs and adults of D. citri [343,344]. Developing transgenic citrus plants express-
ing antisense RNA or direct application of dsRNA of critical genes involved in psyllid
growth/metabolism/skeleton could serve as a potential approach for psyllid and HLB
management. Besides that, the silencing of targeted genes can also be carried out through
the infectious viral-based vector system. The major advantage of the viral-based vector
system is that it is faster than the transgenic approach for RNAi. Citrus tristeza virus
(CTV) can be used as a transient expression vector to control the HLB disease because
of its stability. A viral vector could act as a gun and RNAi and antimicrobial peptides
could act as bullets to fight against disease [345–348]. The CTV-based vector can be used
simultaneously against CLas by expressing the antimicrobial peptides and psyllid through
RNAi-mediated silencing to mitigate the HLB in citrus plants.

The sterile insect technique (SIT)/self-limiting genetic technology is one of the promis-
ing control aspectsthat could be used to decrease the insect population, in which the
reproductive process of the vector insect is disrupted [349,350]. Such sterile insects can
be used to control their own population by releasing them in the environment. The eggs
produced by native females mating with sterile insects will not hatch. Most of the females
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will produce sterile eggs, ultimately causing the ratio of sterile to normal insects to increase,
and the native insect population will become extinct [351,352]. This approach includes
the release of only sterile male insects near the commercial citrus production areas, but
there is no successful report of SIT application for ACP. However, at the University of
California, the research is ongoing to take the initiative on SIT application to control the
psyllid population [353].

7. Conclusions

Several efforts have been undertaken to effectively manage HLB around the world.
In the absence of a cure, most citrus producers have chosen to live with infected trees
rather than eradicating them. Antimicrobial compounds (such as antibiotics and nanoparti-
cles), potential resistance inducers, phytohormones, thermotherapy, improved nutritional
programming (ENP), and symptomatic branch trimming are among the disease control
strategies that have been evaluated to mitigate disesase impact. Although a couple of these
approaches have shown to be beneficial for combating the disease, it would be prohibitively
expensive to implement on a broad scale in the field. Therefore, there is a need to further
evaluate disease control strategies by targeting the pathogen spread at three different levels.
(i) Pathogen (a) Targeting and inhibiting an important proteins of CLas, like transport pro-
teins (ABC transporter, Znu system, amino acid uptake system, Sec-translocase/translocon),
transcription regulators, hydrolase family enzymes (phosphatase, serine protease), proteins
involved in antioxidant defense system, proteins involved in nucleotide biosynthesis (ATIC,
Inosine-5′-monophosphate dehydrogenase), proteins involved in fatty acid biosynthesis
(FabI, FabZ), and proteins involved in amino acid biosynthesis. (b) Use of the most ef-
ficient antimicrobial or immunity-inducing compound to suppress the growth of CLas,
viz., antibiotics, brassinosteroids, salicylic acid, stable antimicrobial peptides (SAMPs), and
engineered nanomaterials. (c) Use of methodology to kill the CLas, viz., thermotherapy
and cryotherapy. (ii) Host (a) Improvement of host immune system, (b) Effective use of
transgenic approach to build the host resistance against CLas, (c) Induction of systemic
acquired resistance. (iii) Vector (a) Chemical control, (b) Biological control, (c) Adopt the
strategy that contemplates recommended measures of trees’ eradication (proper citrus
orchard management, use of a high-density planting approach, planting ACP-repelling
trees), (d) Use of advanced technology (RNAi, genome-editing technology, sterile insect
technique technology).

Here, we introduced triangular disease management strategies by keeping the check-
points for pathogen spread at three different levels. In order to establish HLB-free citrus
orchards, several check points or obstacles should be implemented to prevent pathogen
spread to a healthy orchard. The first line of defense includes the selection of naturally
tolerant mother plants, the use of disease-free planting material for propagation during
the establishment of the orchard at the initial stage, and cultural management approaches
to avoid infection from other diseases (Figure 13A,B). The quest for a disease-resistant
citrus cultivar and the integrated triple action (healthy nursery trees, orchard surveillance
and infected tree destruction, and vector control) are important subjects for mitigating the
adverse impact of HLB. Thus, during the establishment of new citrus orchards, there is
a need to use psyllid-repellent or suitable intercropping plants or border plants. There
are various alternative hosts that have been reported for psyllid. Therefore, alternative
hosts should be removed from the orchard. An HLB-free citrus belt should be saved from
the introduction of a new pathogen through effectual quarantine measures for the host or
alternative host. Alternatively, vectors can be managed by applying different chemicals
in the orchard after the appropriate duration to avoid D. citri infestation. The orchards
should be under inspection and examined regularly for the psyllid/disease, and if any
symptomatic tree is observed in the orchard, the affected trees should be isolated using
insect-proof nets or destroyed. The pruning of effected trees is also beneficial to avoid
disease spread. Management of vector population only by insecticide application is a chal-
lenging job. To address such challenges, several research strategies are being explored,
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including the investigation of the mechanism of the acquisition of CLas and antagonistic
microorganisms by D. citri, with the goal of eliminating or limiting pathogen colonization
in the vector [354].
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The proper application of enhanced nutritional programs (ENPs) in the citrus orchard
to reduce HLB symptoms is important. The ENPs’ formulation containing essential mi-
cronutrients, such as phosphate and salicylate, is shown to reduce nutrient deficiency
symptoms [355]. A high-density planting with dwarf citrus rootstocks like the ‘Flying
Dragon’ trifoliate orange, which has much lower cumulative HLB incidence than the ‘Rang-
pur’ lime, can be employed to compensate for the HLB impact [333,335]. It was speculated
that the intercropping of guava plants in citrus orchards reduces infestations of the psyllid
population, termed the “guava effect” on HLB [356]. Certain volatile compounds which
are present in guava plants are shown to inhibit/block the psyllid response towards the
citrus odor. The volatile compound reported in the guava is (E)-β-caryophyllene, which
has an ACP-repellent property, leading to low HLB incidence in groves. Mango (Mangifera
indica) is another plant that serves as a psyllid deterrent, whereas orange jasmine (Murraya
paniculata) is the most attractive host for the psyllid. The appropriate utilization of such
promising intercrops results in just 3–20% HLB incidence, compared to 76% incidence in
citrus without intercropping [333]. As a result, proper planting of both psyllid-repellant
and attractive plants across the entire grove may reduce the HLB effect.

To ensure sustainable citriculture, obtaining a resource of genetic resistance for CLas
is a prerequisite. However, no resistant citrus genotype has been reported, with the ex-
ception of a few Rutaceae family citrus relatives, the subfamily Aurantioideae, which
are incompatible with citrus. The researchers are aggressively looking for CLas-resistant
graft-compatible genotypes.It was reported that Citrinae species did not allow bacterial pro-
liferation (Microcitrus and Eremocitrus). These sources could be used in breeding programs
to develop new CLas-resistant citrus rootstocks [203]. The development of CLas-resistant
citrus rootstocks by hybridization with graft-compatible genotypes would be a significant
step in combating HLB.

As a result of the unavailability of natural resistance in citrus and similar genera, the
genetic engineering approach for the development of an HLB-resistant commercial variety
would have a high chance of success [2]. Transgenic citrus plants having an inherent ability
to emit (E)-β-caryophyllene could potentially be used as new protection strategies for citrus
trees from psyllid as well as HLB [357]. The release of exogenous dsRNAs on the citrus plant
to silence/shutdown the essential genes of insects using the RNA interference technique
has considerable potential in insect pest management, particularly psyllid control [347].
Allowing psyllids to feed on antisense dsRNA-coated citrus plant leaves or transgenic
citrus plants producing dsRNA can trigger the RNAi process.

A hypothetical model depicted below step-by-step could potentially save the citrus
industry from the HLB pandemic (Figure 14). (i) Choose the mother plants having desired
horticultural traits and index them for all virus and virus-like pathogens (including CLas)
using molecular techniques (ii) Use healthy mother plantsfor the production of large-scale
planting material using the meristem tissue culture technique. (iii) Treat the apical meristem
tissue with thermotherapy, cryotherapy, and chemotherapy for obtaining pathogen-free
explants. (iv) Use such explants for the production ofa large number of pathogen-free
planting materialsby plant tissue culture techniques. (v) Supply hardened planting material
with appropriate nutrition. (vi) Introduce these pathogen-free trees to the newly designed
orchard with proper intercropping (such as guava, garlic, soybean) to avoid psyllid invasion
or preferably protect with a psyllid-attractive border crop. (vii) Manage the orchard with
multipronged chemical and biological tools, which are backed by strong scientific evidence.
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