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Abstract: Spodoptera frugiperda is a major pest of maize crops. The application of synthetic insecticides
and the use of Bt maize varieties are the principal strategies used for its control. However, due to
the development of pesticide resistance and the negative impact of insecticides on the environment,
natural alternatives are constantly being searched for. Accordingly, the objective of this review was
to evaluate the use of essential oils (EOs) as natural alternatives for controlling S. frugiperda. This
review article covers the composition of EOs, methods used for the evaluation of EO toxicity, EO
effects, and their mode of action. Although the EOs of Ocimum basilicum, Piper marginatum, and
Lippia alba are the most frequently used, Ageratum conyzoides, P. septuplinervium. O. gratissimum and
Siparuna guianensis were shown to be the most effective. As the principal components of these EOs
vary, then their mode of action on the pest could be different. The results of our analysis allowed
us to evaluate and compare the potential of certain EOs for the control of this insect. In order to
obtain comparable results when evaluating the toxicity of EOs on S. frugiperda, it is important that
methodological issues are taken into account.

Keywords: natural insecticides; insect pest; phytochemicals; mortality rate

1. Introduction

The demand for food commodities has increased exponentially with population
growth. It is estimated that the world population will be between 9.4 and 10.1 bil-
lion people in 2050 [1], implying a 35% increase in the demand for food [2]. Maize
(Zea mays L.) is among the most cultivated cereals in the world, with a global production of
1185.90 million metric tons being expected in 2022–2023 [3]. However, crop losses occur due
to the action of pests, such as insects and fungi [4]. To maximize crop yields, pest control
currently involves the application of approximately 2 million tons of synthetic pesticides
per year, of which 29.5% corresponds to insecticides [5].

The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctu-
idae) is among the most common pests of maize plants in the tropical regions of the
Americas [6]. In addition, as a result of the expansion of agricultural frontiers, it is now
considered to be an invasive pest in African countries, China, India and Australia [7–12].
Spodoptera frugiperda is a holometabolous insect [6,13]. From its eggs, the first of six larval
stages emerges. These larvae are initially light green, after which they become dark green
with three longitudinal yellowish and dark brown lines. Then, 15–25 days after emergence
from the egg, the sixth stage larvae pupate, preferably in the soil for between 7 and 13 days,
until completing the cycle again with the emergence of new adults [6,13].

The use of Bt maize varieties designed to resist chewing phytophagous insects, such
as FAW, has been carried out since 1996 [14]. However, due to the continuous use of these
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maize varieties, numerous instances of resistance of S. frugiperda to the Cry1 protein of
Bacillus thuringiensis (Bt) have been reported [15–23]. Therefore, the search for new pest
control strategies has to be continued. Related to this, the search for sustainable alternatives
is becoming more ever popular [15], with the exploitation of natural products obtained
from the secondary metabolism of plants being an ecofriendly attractive alternative [20–22].

Essential oils (EOs) are a possible source of novel pesticides, due to the fact that they
have contact, fumigant, attractant and repellent activities against several insect pests [24–28].
For example, the EO extracted from the aerial parts of Seriphidium brevifolium was re-
ported to be toxic for Aedes albopictus, a vector of several human and domestic animal
diseases [29], with Pimpinella anisum EOs causing toxic effects on the currant-lettuce aphid
Nasonovia ribisnigri [30]. In addition, the Rosmarinus officinalis EO showed a high fumigant
toxicity (Lethal concentration 95 (LC95) = 54.30 µL/L) and repellent effects
(RI0.2µL/L = −53.42 ± 12.54 µL/L) against the weevil Sitophilus zeamais [27]. Specifically,
these insecticidal and repellent effects against pest insects reported for different EOs could
indicate their potential value in insect control. Although there are numerous review arti-
cles that have addressed the effect of EOs on several pests [31–37], there are no reviews
that have also analyzed the toxicity of all the EOs tested on FAW. Moreover, numerous
articles have principally studied the mortality caused by the EOs, and their main pure
components, on other pest species of the genus Spodptera, S. exigua, S. littoralis and S. litura
(Supplementary Material File S1). Thus, the aim of this review is to examine the use made
of EOs and their main components as natural alternatives for the control of S. frugiperda.
Although many articles have addressed the study of sublethal effects of EOs on the fecun-
dity, development and feeding of this pest, in this present review, the focus is placed on the
determination of the insecticidal effects of EOs. To carry this out, a survey was performed
of relevant published research articles. In total, 2362 research articles were evaluated, but
only 27 of these contained information concerning the effects of EOs against S. frugiperda.
The selection criteria for articles to be included in our analysis were: (1) research articles
had to be published in scientific journals; (2) EOs had to be obtained by cold pressing
or hydrodistillation—solvent extracts were not considered; (3) only mortality data were
considered, with the effects on reproduction, development or feeding parameters not being
included in our analysis; (4) toxicity data on cell cultures were not considered; (5) essential
oils evaluated as nanoformulations or nanoencapsulates were not included in our analysis.

All the relevant information found is reported in the Supplementary Material File S2.
Our analysis of the methods used to assess toxicity, expression of results, positive controls,
and mechanisms of action yielded very different results, making it difficult to make com-
parisons. Consequently, in this work, we propose the standardization of what we consider
to be the best and most widely used method for assessing toxicity in FAW, which could
then be utilized in the design and development of future studies on this pest insect.

2. Essential Oils Evaluated against Spodoptera frugiperda

An analysis was carried out which indicated the 11 most used plant families for
obtaining EOs for toxicological studies on FAW (Table 1). More than 50% of the 27 selected
articles referred to EOs obtained from just three plant families: Piperaceae, Lamiaceae and
Verbenaceae, in order of decreasing frequency.

In total, 21 plant genera were identified in the bibliographical analysis (Table 2). The
most frequently studied genus was Piper (13), from the Piperaceae family, followed by the
genera Ocimum (9) and Lippia (9), both from the Lamiaceae family. In all, the evaluation
identified a total of 57 plant species (Table 3). Of these, Ocimum basilicum, commonly known
as “basil”, was the most used species, followed by Piper marginatum, the “marigold pepper,
Ti Bombé or Hinojo”, and the “purple sage” Lippia alba.
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Table 1. Occurrence of families whose essential oil has been studied as an insecticide against
Spodoptera frugiperda.

Plant Family Occurrence

Piperaceae 13
Lamiaceae 12

Verbenaceae 10
Myrtaceae 5
Asteraceae 5
Rutaceae 3
Poaceae 3

Zingiberaceae 2
Apiaceae 1

Siparunaceae 1
Geraniaceae 1

Total 56

Table 2. Plant genera whose essential oils have been evaluated as insecticides against
Spodoptera frugiperda.

Genera Occurrence in Literature

Piper 13
Ocimum 9

Lippia 9
Eucalyptus 5

Hyptis 3
Cymbopogon 3
Foeniculum 2
Corymbia 2

Citrus 2
Siparuna 1

Ruta 1
Pelargonium 1

Mentha 1
Malva 1
Hyptis 1

Eremanthus 1
Tanacetum 1
Artemisia 1
Ageratum 1
Zingiber 1

Vanillosmopsis 1

Total 60

Most of the EOs used were extracted from the aerial parts of the plants, mainly the
leaves, which were used dry or fresh. In general, the EOs were obtained from the aerial
plant parts by the steam dragging distillation technique. However, EOs were obtained by
cold pressing when extracted from the shell of the fruits belonging to the Citrus species. It
is interesting to note that 35% of the articles analyzed (27) did not specify the plant organ
used for the EO extraction.

From the compositional analysis of the 57 EOs tested, 56 different main organic com-
pounds were identified. The molecular structures of compounds mentioned in more than
5% of the literature are shown in Figure 1, with geranial, geraniol, linalool, α-pinene and
limonene being the most frequent. The volatile organic compounds (VOCs) cited as be-
ing the major components of the 57 EOs used as insecticides against FAW are listed in
Supplementary Material File S3. However, only 31% of the 27 articles analyzed comple-
mented their toxicity studies with the use of pure EO compounds. Thymol and linalool
were the most evaluated EO compounds (used in 17% of the studies), followed by limonene
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and geraniol (12%) (Figure 1). Two of the most widely used VOCs, linalool and limonene,
corresponded to the main components of EOs (Supplementary Material File S2).

Table 3. Plant species whose essential oils are evaluated as insecticides against Spodoptera frugiperda.

Plant Species Occurrences in the Literature

Ocimum basilicum 4
Lippia alba 3

Piper marginatum 3
Corymbia citriodora 2

Cymbopogon citratus 2
Eucalyptus staigeriana 2

Foeniculum vulgare 2
Hyptis marrubioides 2
Lippia microphylla 2

Lippia sidoides 2
Ocimum gratissimum 2

Piper arboreum 2
Piper corcovadensis 2
Piper hispidinervum 2
Ageratum conyzoides 1
Artemisia absinthium 1

Citrus aurantium 1
Citrus limon 1

Citrus sinensis 1
Cymbopogon winterianus 1

Eremanthus erythropappus 1
Eucalyptus citriodora 1

Eucalyptus urograndis 1
Eucalyptus urophylla 1

Hyptis suaveolens 1
Lippia gracilis 1

Lippia origanoides 1
Malva sp. 1

Mentha sp. 1
Ocimum selloi 1

Pelargonium graveolens 1
Piper aduncum 1

Piper septuplinervium 1
Piper subtomentosum 1

Ruta graveolens 1
Siparuna guianensis 1
Tanacetum vulgare 1

Vanillosmopsis arborea 1
Zingiber officinale 1

Total 57

Commercial insecticides can be a very useful tool for comparing the insecticidal effect
of EOs. Nevertheless, only 41.6% of the articles used a commercial synthetic insecticide
as the positive control, with 4% using the commercial natural insecticide neem extract
(Azadirachta indica). Deltamethrin (12.5%), a synthetic pyrethroid pesticide used in livestock,
aquaculture and agriculture due to its low residue and high toxicity, as well as because of its
great efficacy, was the most frequently used synthetic insecticide as the positive control [38]
(Table 4). Concerning the negative control, the one most used was acetone.

In the remaining 54.2% of the articles, positive controls were not used.
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Figure 1. Volatile volatile organic compounds (VOCs) used to evaluate toxicity against Spodoptera
frugiperda. The percentages indicate the proportion of appearance of these compounds in the literature.
Percentages were calculated based on 23% of articles (of 27 selected) that test pure VOCs.

Table 4. Commercial insecticides used as positive controls against Spodoptera frugiperda.

Positive Control Used in Bibliography Occurrences in the Literature

neem extract (Azadirachta indica) 2
deltamethrin 3

α-cypermethrin 1
β-cypermethrin 1
fenpropathrin 1
δ-cyhalothrin 1
Indoxacarb 1
chlorpyrifos 1

3. Routes of Entry of Essential Oils

The physicochemical properties of the EO molecules modulate the routes of entry into
the organism [39,40]. EOs are lipophilic complex mixtures of hydrocarbon compounds of
10 to 15 carbon atoms with different functional groups, such as phenols, aldehydes, ketones,
alcohols and hydrocarbons [24]. Lipophilicity is among the most important parameters
to take into account when selecting bioactive compounds and the methods to test them,
because the insect cuticle forms a physical defense barrier [41–43]. Thus, the lipophilicity
property of EOs makes it easier for them to reach their target within the body [43–46]. It is
widely known that organophosphate insecticides, such as Dichlorvos (DDVP), penetrate
through the integument until they reach the hemolymph and, subsequently, their site
of action [47,48]. In turn, there is a correlation between resistance to insecticides and
cuticular penetration [49–51]. The non-polar nature of the insect cuticle, composed mainly
of aliphatic hydrocarbons, chitin and waxes, could favor the entry of lipophilic compounds,
such as those present in EOs [35,42,49,52]. Thus, this is a critical property to be considered
when choosing a method to assess the toxicity of EOs on S. frugiperda.

Another important factor to consider in EOs is their high volatility. Therefore, the way
of applying the EOs and their persistence over time must be considered when evaluating
their toxicity, not only in terms of the method of application, but also of the development
temperature of the test [53]. Related to this, Papachristos and Stamopoulos [54] were the
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first to determine the importance of the temperature at which the test is carried out on the
rate of vapor release and the absorption levels of EOs, and also on the effectiveness of the
enzymatic machinery for detoxification of insects.

By considering the physicochemical properties of EOs, three main routes of access of
these to the target insect could be determined (Figure 2A)—ingestion, inhalation and direct
contact with the integument.
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Figure 2. (A) Routes of entry of EOs to lepidopteran larvae. Orange arrow: entry through the
respiratory spiracles. Purple arrow: entry through ingestion of treated food. Blue arrow: entry by
direct contact with the integument. (B) Optimal moments of chemical control thought the larval
stages of S. frugiperda. Red segments indicate the optimal stage for chemical control. (Modified from
Programa Manejo de Resistencia de Insectos (MRI) and the Insecticide Resistance Action Committee
(IRAC Argentina) [55].)

4. Toxicological Methods against Spodoptera frugiperda

The methods used to study the insecticidal effects of EOs on FAW are shown in
Figure 3. Thirty-three toxicity assays were identified in the analysis of the articles. Of these
assays, the most cited method for studying toxicity was the topical application of insects
(18), followed by toxicity by ingestion (8) and contact toxicity (4) techniques, with fumigant
toxicity (2) and immersion (1) being the least used methods. It should be noted that the
methodologies usually differed slightly between articles.
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Usually, the topical application technique consists of applying the EOs (1 µL solutions)
topically on the second thoracic segment of the larvae. Then, these larvae are separated and
placed with food in different containers, such as Petri dishes, flasks or microplates, to avoid
cannibalism. The incubation temperature and humidity conditions normally used for the
test are 25.5 ± 1.6 ◦C and 68.7 ± 7.3% RH, respectively, with the temperature and humidity
ranges reported being 25–28 ◦C and 65–70% RH, respectively, and with a photoperiod of
12 h/12 h. The evaluation of mortality is normally carried out 48 h after the start of the
experiment, and the results are expressed, in most cases, as a function of the lethal dose
(LD) 50 or 90. When the lethal dose could not be calculated, the articles expressed the
mortality was reported as a percentage.

The toxicity of EOs was mainly tested on larval stages (96%), while a few articles (4%)
evaluated the toxicity on eggs. The FAW has six different larval stages (Figure 2B). Of these,
61% of the EO toxicity studies were carried out on the third stage, while the remaining
ones were performed on the second (22%), first (14%) or fourth (3%) stages. There were no
studies reporting EO toxicity being carried out on the fifth or sixth stage larvae. This is in
agreement with numerous manuals about the control of S. frugiperda, which have indicated
that 4 to 10 days after oviposition is the optimal time to apply chemical controls (Figure 2B)
because the larvae are newly hatched, and also to minimize the damage that these insects
can cause to the maize crop [55–58].

It is interesting to note that only 9% of the studies evaluated the toxic effects of EOs in
the absence of food, with 78% of the studies being carried out in the presence of artificial
diet and 4% using maize or rice leaves as a food source. In all cases, the artificial diet was
made up from the following ingredients: beans; wheat germ; brewer’s yeast; sorbic acid;
ascorbic acid; methylparaben; agar; formaldehyde; and preservative solution (composed of
propionic acid, phosphoric acid and water).

5. Toxicity of Essential Oils against Spodoptera frugiperda

A high variability in the mortality results was observed among the articles, which
constituted a drawback for comparing the effectiveness of EOs. Thus, in order to make
a valid comparison of the toxic effects, we transformed the EO toxicity results, with
the results of the topical application method, the most cited, being shown in Table 5.
For this method, the EO of Ocimum gratissimum (LD50 = 2.5 × 10−4 mg/g insect) was
the most toxic as a topical agent [59] (Table 5), but Cruz et al. [60] reported an LD50 of
1.52 mg/g insect for the same EO. On analyzing the chemical composition of both EOs, it
can be seen that the variety used by Monteiro et al. [59] had thymol as its main component,
while for the EO used by Cruz et al. [61], the main component was trans-anethole. This
variation in the results allows us also to highlight the importance of using the correct
identification of the plant species and the variety that was used to carry out this type of
test. Moreover, EOs can present differences in chemical composition depending on the
environment in which the plant develops, thereby generating different chemotypes for
the same plant species [62–65], and these small variations can result in marked differ-
ences in their bioactivities [66–68]. Interestingly, Lima et al. [69] reported three different
LD50 values for the EO of P. hispidinervum. The lethal dose calculated at 48 h after ap-
plication was the most toxic (LD50 = 3.39 mg/g insect), followed by the dose at 96 h
(LD50 = 3.56 mg/g insect), despite no significant differences being found for the LD50 deter-
mined for 48 h. The lethal dose calculated at 24 h was being the least active
(LD50 = 4.62 mg/g insect) and was statistically different from the LD50 obtained for
48 and 96 h.
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Table 5. Lethal effects of essential oils tested by the topical application method.

Essential Oil 50% Lethal Doses
(LD50; mg/g Insect, CI) Larval Stage Reference

Ocimum gratissimum 2.5 (1.7–2.6) × 10−4 *2 3rd [59]
Lippia gracilis 1.2 (0.9–1.6) × 10−3 *2 3rd [70]

Artemisia absinthium 7.1 (5.3–7.2) × 10−2 *2 2nd [71]
Hyptis marrubioides 0.24 (0.21–0.26) *2 2nd [72]
Ocimum basilicum 0.49 (0.45–0.53) *2 2nd [72]

Pelargonium graveolens 1.13 (0.083–0.145) 2 3rd [73]
Lippia alba (LA-10) 1.2 (0.84–1.57) *2 3rd [73]
Lippia alba (LA-57) 1.21 (0.90–1.57) *2 3rd [73]

Ocimum gratissimum 1.52 (1.36–1.67) 2 3rd [60]
Ocimum gratissimum (White wild basil) 1.52 (1.36–1.67) 2 3rd [61]

Lippia alba (LA-22) 1.56 (1.18–2.02) *2 3rd [73]
Ocimum gratissimum (Wild basil) 2.84 (2.34–3.38) 2 3rd [61]

Eucalyptus staigeriana 3.2 (2.41–4.07) 2 3rd [60]
Lippia sidoides 3.21 (2.95–3.49) 2 3rd [74]

Piper hispidinervum 3.39 (3.42–4.15) *2 3rd [69]
Piper hispidinervum 3.56 (3.22–3.91) *3 3rd [69]
Piper corcovadensis 3.58 (nd) 2 3rd [75]
Piper marginatum 4.18 (nd) 2 3rd [75]

Eucalyptus citriodora 4.58 (4.09–5.08) 2 3rd [61]
Corymbia citriodora 4.59 (4.15–5.03) 2 2nd [76]
Piper hispidinervum 4.62 (4.10–5.22) *1 3rd [69]
Ocimum basilicum 4.86 (4.02–6.13) 2 3rd [61]
Foeniculum vulgare 5.05 (4.13–5.96) 2 3rd [61]
Lippia microphylla 5.35 (4.65–6.05) 2 2nd [76]
Ocimum basilicum 6.27 (5.80–6.73) *2 3rd [77]

Piper arboreum 10.91 (nd) 2 3rd [75]
Piper aduncum 12 (7.1–18.0) 2 3rd [78]

Vanillosmopsis arborea 172.86 (152.8–200.0) 2 3rd [66]

All values marked with an asterisk (*) were recalculated for comparison. 1 Determined at 24 h. 2 Determined at 48 h.
3 Determined at 96 h.

Another method used was the contact toxicity method, in which EOs are applied to a
filter paper. For this method, only three EOs were tested, with the most toxic EO of these
being Siparuna guianensis (LC50 = 0.034 µL/cm2 and 0.038 µL/cm2 for susceptible and
Bt-resistant strains, respectively [79]) (Table 6).

Table 6. Lethal effects obtained by contact toxicity method.

Essential Oil 50% Lethal Concentration
(LC50; µL/cm2, CI) Larval Stage Reference

Siparuna guianensis 0.034 (0.033–0.034) µL/cm2 *1 3rd [79]
Siparuna guianensis 0.038 (0.036–0.047) µL/cm2 *2 3rd [79]

Ocimum gratissimum 0.171 (0.150–0.193) µL/cm2 3rd [59]
Lippia gracilis 1.55 (1.51–1.59) µL/cm2 3rd [70]

All values marked with an asterisk (*) were recalculated for comparison. 1 Cry1A.105- and Cry2Ab-susceptible
strain of S. frugiperda. 2 Cry1A.105- and Cry2Ab-resistant strain of S. frugiperda.

It is useful to highlight the differences in the type of insect strain used by Lourenço
et al. since the responses obtained for the same EO can vary [79]. In addition, given that
among the most widely used methods for the control of this insect is the utilization of
transgenic varieties of maize, it would be interesting to observe how larvae resistant to the
Bt toxin would respond to alternative control methods, because genetically modified (GM)
maize is the main control method used for this insect and, as mentioned above, the first
cases of resistance to it have already been reported [15–23].
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On the other hand, for the ingestion toxicity methods, the EOs of Ageratum conyzoides
(LC50 = 3.43 ppm) and Piper hispidinervum (LC50 = 9.4 mg/mL) were the most toxic essential
oils when applied by immersion of the maize or rice leaf in solutions of increasing EO con-
centrations [69,80] (Table 7). In contrast, Cymbopogon citratus (LC50 = 0.19 µL/cm2) was the
most effective EO when applied on the ventral part of the leaf [71], with Citrus limon reveal-
ing the highest toxic effect when the EO was mixed with the artificial diet (98.29 ppm) [81].
As no toxicity was observed in the artificial diet mixed with C. sinensis EO, its LC50 could
not be calculated [82].

Table 7. Lethal effects of the EOs present in food.

Essential Oils EO Application
Method

Lethal
Concentration

50 (LC50)
Concentration Mortality (%)

at 96 h
Larval
Stage Reference

Cymbopogon citratus

On ventral part of
the leaf

0.19
(0.13–0.38) µL/cm2 1st [71]

Zingiber officinale 0.25
(0.20–0.35) µL/cm2 1st [71]

Mentha sp. 0.33
(0.16–1.93) µL/cm2 1st [71]

Ruta graveolens 0.62
(0.49–1.02) µL/cm2 1st [71]

Malva sp. 0.67
(0.58–0.82) µL/cm2 1st [71]

Artemisia absinthium 2.09
(1.64–2.96) µL/cm2 1st [71]

Citrus limon

Mixed in
artificial diet

98.29 ppm * 2nd [81]
Citrus aurantium 100 ppm * 2nd [81]

Ocimum selloi 600
(580–620) ppm * 3rd [83]

Citrus sinensis

ND 0.1 mg/g of diet 0 2nd

[82]

1 mg/g of diet 5 2nd
10 mg/g of diet 0 2nd
0.1 mg/g of diet 10 2nd
1 mg/g of diet 5 2nd

10 mg/g of diet 0 2nd

Ageratum conyzoides

By immersion of
the maize or rice

leaf in EOs
solutions

3430 ppm * 1st [80]

Piper hispidinervum

9400
(7900–11,100) ppm 1st

[69]
16,200

(14,400–18,400) ppm 1st

17000
(13,700–21,100) ppm 1st

17,900
(15,900–20,200) ppm 1st

18,200
(16,800–19,700) ppm 1st

28,300
(24,300–32,900) ppm 1st

All values marked with an asterisk (*) were recalculated for comparison.

The fumigant effect was determined only for four EOs (Table 8), with the highest
fumigant toxicity being observed for the EO of P. septuplinervium (LC50 = 9.4 µL/L of
air) [84], followed by that of P. subtomentosum (LC50 = 13.2 µL/L of air) [84]. It is interesting
to note that in the same study the lethal concentrations of the P. subtomentosum EO were
very dissimilar depending on the part of the plant from which the oil was extracted, with
EOs extracted from the inflorescence of P. subtomentosum being 12 fold more toxic than EOs
extracted from leaves of the same species. Therefore, this variability in the biological activity
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may be attributed to differences in the chemical composition of each EO when extracted
from different plant organs [85–87]. For this reason, it is important that information is
provided not only about the method used to test the EO toxicity, but also on the plant organ
from which it is extracted, the extraction method used, and its chemical composition.

Table 8. Lethal effects of EOs tested by fumigation.

Essential Oil 50% Lethal Concentration
(LC50; µL/L of Air) Larval Stage Reference

Piper septuplinervium 1 9.4 (7.72–11.4) * 2nd [84]
Piper subtomentosum 2 13.2 (10.3–16.6) * 2nd [84]
Corymbia citriodora 3 44.85 (36.89–52.81) * 2nd [76]
Lippia microphylla 3 116.52 (95.77–137.27) * 2nd [76]

Piper subtomentosum 3 146 (116–180) * 2nd [84]

All values marked with an asterisk (*) were recalculated for comparison. 1 Obtained from the aerial part of the
plant. 2 Obtained from the inflorescence. 3 Obtained from the leaves.

Only the P. marginatum EO was tested by immersion of the insects in the EO solution,
and the lethal concentration obtained was 152.95 ppm [88]. Furthermore, this was the only
method that was performed using S. frugiperda eggs.

The results obtained from the analysis of the methodologies used to test the toxicity
of EOs can be used as background knowledge for the standardized design of topical
application methods that facilitate the comparison of the registered effects. In turn, this
background serves as a justification for the selected larval stage, exposure time, laboratory
conditions, and the way in which the toxicity results are expressed, among other factors.
As can be seen in the previous tables, the most used larval stage for evaluating the lethality
of EOs is the third, followed by the second, and finally the first, which is in agreement
with the time proposed by the Insect Resistance Management Program (MRI) and the
Insecticide Resistance Action Committee (IRAC Argentina) [55] for the chemical control
of this pest insect. Moreover, the preferred exposure time chosen for the studies is 48 h,
when the most toxic effects are observed. Lastly, the most recommended way of expressing
the mortality results obtained is as a function of the lethal dose or concentration, in order
that the results can be compared. Considering that the most widely used method is that of
topical application, the recommended units to express the results are mg, ug or uL of EO
per g of larva or per larva, if their average weight is indicated.

5.1. Volatile Organic Compounds Tested against Spodoptera frugiperda

Of the 37 pure compounds tested in the articles analyzed, 20 of these compounds
were of natural origin, while 17 were compounds of synthetic origin, more specifically of
commercial insecticides. The topical application method was the most frequently used
technique for assessing the toxicity of pure compounds (78.4%), followed by the contact
method (10.8%), fumigant method (8.1%) and immersion (2.7%). It should be noted that
the toxic effect of the pure compounds was not evaluated by the ingestion method.

The lethal doses obtained by the topical application method are shown in Table 9. Four-
teen of the tested compounds were natural ones, while eleven were synthetic insecticides.
The most effective natural compound identified was trans-anethole (LD50 = 0.027 mg/g
of insect), followed by citronellal (LD50 = 0.07 mg/g of insect). Trans-anethole has been
widely reported for its toxic effects on arthropod pests such as N. ribisnigri, the currant-
lettuce aphid, T. castaneum, S. oryzae, Hyphantria cunea, the American white moth, and
Cryptolestes ferrugineus [30,89–92]. Both linalool and thymol were tested by different au-
thors using the same method, but with dissimilar results being reported. For linalool,
Silva et al. [93] obtained a LD50 of 2.10 mg/g of insect, while Cruz et al. [61] obtained a
LD50 2.5-fold higher (LD50 = 5.20 mg/g of insect). For thymol, the lethal doses obtained by
Monteiro et al. [59] and Lima et al. [74] were similar, but their confidence limits indicated
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statistically significant differences (LD50 = 3.19 mg/g of insect and 4.91 mg/g of insect,
respectively) (Table 7).

Table 9. Lethal effects of pure compounds tested, on Spodoptera frugiperda, by topical application.

Compound 50% Lethal Doses (LD50)
(mg/g of Insect, CI)

Mortality
(% ± SD) 1 Larval Stage LogP Reference

γ-cyhalothrin 2 1.4 (1.08–1.78) × 10−5 * 3rd 6.20 [78]
Chlorpyrifos 2 2.4 (0.83–4) × 10−4 * 2nd 4.77–3.71 [72]
Deltamethrin 2 2.45 (1.13–3.76) × 10−4 * 3rd 6.20 [93]
Deltamethrin 2 2.46 (1.14–3.78) × 10−4 * 3rd 6.20 [77]
Deltamethrin 2 3.07 (2.58–3.35) × 10−3 3rd 6.20 [74]

Decis 25 2

(Deltamethrin) 3.17 (2.20–4.57) × 10−3 * 3rd 6.20 [93]

Commercial product 2 3.2 (2.2–4.6) × 10−3 * 3rd [77]
trans-anethole 0.027 (0.021–0.032) 3rd 3.17 [61]

citronellal 0.07 (0.06–0.08) 3rd 3.48 [61]
Fenpropathrin 2 0.18 (0.17–0.23) * 3rd 5.48 [78]
α-cypermethrin 2 0.19 (0.12–0.28) * 3rd 6.27 [78]
β-cypermethrin 2 1.03 (0.016–1.37) * 3rd 6.27 [78]

linalool 2.10 (1.65–2.56) * 3rd 3.28 [93]
α-pinene 2.40 (2.06–2.67) * 3rd 4.37 [59]
thymol 3.19 (2.93–3.45) * 3rd 3.28 [59]
thymol 4.91 (4.35–5.56) 3rd 3.28 [74]
linalool 5.20 (4.21–6.27) 3rd 3.28 [61]

limonene 32.24 (27.73–36.55) 3rd 4.45 [61]
1,8-cineole 2.0 ± 2.0 3rd 2.82 [73]
limonene 4.00 ± 2.44 3rd 4.45 [73]
Azamax 2 14.00 ± 5.09 3rd [73]
geraniol 30.00 ± 8.84 3rd 3.28 [73]

citral 64.00 ± 7.07 3rd 3.17 [73]
carvone 84.00 ± 5.09 3rd 2.27 [73]
linalool 90.00 ± 3.16 3rd 3.28 [73]

All values marked with an asterisk (*) were recalculated for comparison. 1 Reported for compounds whose LD50
cannot be calculated. Concentration: 3 µg compound/mg insect (3 mg/g insect). 2 Synthetic insecticides.

It is interesting to note that the lethal doses determined for the synthetic insecticides
were between 2 and 3 fold less than those reported for the natural compounds (Table 9),
with γ-cyhalothrin being the most toxic synthetic insecticide (LD50 = 1.4 × 10−5 mg/g
of insect). For the synthetic insecticides, the 50% lethal doses determined by different
authors did not show a high variability. For example, for deltamethrin Silva et al. [93],
Silva et al. [77] and Lima et al. [74] reported very similar LD50 values (LD50 = 2.45 × 10−4,
2.46 × 10−4 and 3.07 × 10−3 mg/g of insect, respectively).

In addition, the 50% lethal concentration (LC50) values calculated for each of the
pure compounds for the contact, fumigant and immersion toxicity methods are shown
in Table 10. Thymol was the most toxic for the contact method (LC50 = 0.255 µL/cm2)
while α-pinene (LC50 = 0.0066 µL/L) was the most toxic for the fumigant method. Geran-
iol was the only pure natural compound tested by immersion (LC50 = 3793 ppm). A
synthetic insecticide was tested in the case of the contact method, with a lethal dose of
9 × 10−4 µL/cm2 being obtained for Cry1A.105 and Cry2Ab susceptible strains of FAW,
while for the resistant strain, the lethal dose obtained was almost double this value
(1.5 × 10−3 µL/cm2). However, these values were not statistically different.
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Table 10. Lethal effects of pure compounds tested, on Spodoptera frugiperda, by contact toxicity,
fumigant and immersion methods.

Compound 50% Lethal Concentration
(LC50, CI) Larval Stage LogP Reference

Contact toxicity per se

Indoxacarb
(Rumo 300 g a.i./L;

DuPont do Brasil S.A.)

0.0009 (0.0006–0.0018) µL/cm2 *1 3rd
2.77

[79]

0.0015 (0.0009–0.0021) µL/cm2 *2 3rd [79]

thymol 0.255 (0.195–0.317) µL/cm2 3rd 3.28 [59]
α-pinene 2.5 (2.11–2.91) µL/cm2 3rd 4.37 [59]

Fumigant toxicity

camphene 0.00067 µL/L * 2nd 4.37 [84]
α-pinene 0.0066 (0.0056–0.0079) µL/L * 2nd 4.37 [84]
β-pinene 0.016 (0.011–0.032) µL/L * 2nd 4.37 [84]

Immersion

Geraniol 3793 (173–1281) ppm 2nd 3 3.28 [88]

All values marked with an asterisk (*) were recalculated for comparison. 1 Use Cry1A.105- and Cry2Ab-susceptible
strain of S. frugiperda. 2 Use Cry1A.105- and Cry2Ab-resistant strain of S. frugiperda. 3 Larva 72 h old.

When the main components of the most effective EOs were analyzed for each of
the toxicity methods studied, only five of these had been individually evaluated against
S. frugiperda (Table 11). Limonene was the only pure compound tested that forms part of
the composition of the EO of C. limon, among the most toxic EOs by ingestion. However,
in its pure form, when tested by topical application (Table 9), it demonstrated a low toxic
effect (LD50 = 32.24 mg/g of insect) [61]. In contrast, the main components of the most
toxic EO by the fumigant method (P. septuplinervium), the isomers α and β pinene (Table 6),
presented high toxicity values (LD50α-pinene = 0.0066 µL/L; LD50βpinene = 0.016 µL/L) [84]
(Table 10), allowing the toxic fumigant effect of the EO to be associated with the presence
of these two major compounds. This EO has citronellal as the third main component,
which has also shown high toxicity when used in its pure form in the topical application
method (LD50 = 0.07 mg/g of insect) [61]. Finally, pure thymol, when tested by the
topical application method, presented a medium toxicity (LD50 = 3.19 and 4.91 mg/g of
insect) [59,74], suggesting that the effect observed with the EO of O. gratissium may be due,
in part, to the presence of thymol. These results demonstrate the importance of knowing
the chemical composition of the EOs in order to carry out subsequent experiments in which
the effect of their pure components can be studied and the mode of action elucidated.

Table 11. Principal components of the most toxic EOs against Spodoptera frugiperda.

Essential Oil Main Compounds
(Relative Percentage) Reference

Ingestion

Cymbopogon citratus Geranial
(47.53%)

Neral
(32.5%) nd [71]

Citrus limon Limonene *
(nd) nd nd [81]

Ageratum conyzoides Precocene
(87%)

β- caryophyllene
(7.1%)

α-humulene
(1.2%) [80]

Fumigation

Piper septuplinervium α-pinene *
(21%)

β-pinene *
(13.8%)

Citronellal *
(10.3%) [84]
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Table 11. Cont.

Essential Oil Main Compounds
(Relative Percentage) Reference

Topical application

Ocimum gratissimum Thymol *
(33.2%)

p-cymene
(22.5%)

γ-terpinene
(21%) [59]

Contact toxicity

Siparuna guianesis β-myrcene
(74.94%)

2-undecanone
(9.36%)

bicyclo-germacrene
(1.52%) [79]

Immersion

Piper marginatum Exalatacin
(9.12%)

α-pinene *
(8.45%)

α-phellandrene
(6.97%) [75]

All compounds marked with an asterisk (*) were tested in their pure form. nd: non determined.

5.2. Comparison of Insecticidal Effects of EOs between S. frugiperda and the S. littoralis-S. litura-
S. exigua Complex

When carrying out the bibliographic search on the insecticidal effects of EOs, and
their main components, against S. frugiperda, it was observed that, in addition to the great
variability in the methods implemented and the results obtained, this species had fewer
toxicity studies carried out than the other pest species of the same genus. In contrast,
Spodoptera littoralis, a generalist pest of legume crops such as Vigna radiata [94], is the species
most frequently used for the study of the toxicity of EOs and their main components,
followed by S. litura, the tobacco cutworm that attacks cotton, beans, tobacco, vegetables,
and rice [95], and S. exigua, the beet armyworm [96]. Based on these observations, an
analysis of the studies on toxicity in this complex of species was carried out in order to
make a comparison with results observed for S. frugiperda. The findings of this analysis are
shown in Supplementary Material File S1.

For the complex integrated by the other three species of Spodoptera, the most popular
method to evaluate toxicity of the EOs was topical application, as for S. frugiperda, followed
by the fumigant method (Table S2, Supplementary Material File S1). However, in contrast
to S. frugiperda, the mortality of these larvae exposed to EOs was mainly determined at
24 h (Table S3, Supplementary Material File S1), rather than at 48 h. Coinciding with that
observed for S. frugiperda, the most used larval stage in these other species is the third
(Table S4, Supplementary Material File S1). In turn, the families of plants most used to
evaluate the toxicity of their EOs on S. littoralis-S. litura-S. exigua were Lamiacea, Apiacea
and zingiberacea (Table S5, Supplementary Material File S1), while for S. frugiperda, these
were Piperacea, Lamiaceae and Verbenacea (Table 1). Nevertheless, the most used species
was F. vulgare belonging to the Apiaceae family for the complex composed of S. littoralis,
S. litura and S. exigua (Table S6, Supplementary Material File S1), while for S. frugiperda, the
toxicity of O. basilicum (Lamiaceae) was the most evaluated (Table 3).

The lethality of EOs on third-instar larvae of S. littoralis, S. litura and S. exigua evaluated
by the topical application method is summarized in Table S7 (Supplementary Material File S1).
This table was made by including only those LD50 values that were expressed in µg/insect
determined at 24 and 48 h. For S. littoralis, Nepeta cataria (Lamiacea) was the most toxic
tested EO while for S. litura, this was Alpinia pyramidata (Zingiberaceae) and R. officinalis
(Lamiaceae) for S. exigua (Table S7, Supplementary Material File S1). However, the toxicity
effect of none of these was evaluated on S. frugiperda. Therefore, it is interesting to propose
the study of these EOs on FAW. Ocimum gratissimum was the most toxic EO tested by
topical application on S. frugiperda. As for S. littoralis and S. exigua, this EO belongs to
the Lamiaceae family. On analyzing the LD50, it was observed that S. frugiperda is less
susceptible to the insecticidal effect of EO than S. littoralis or S. litura, with S. exigua being
the most resistant species. However, it should be noted that this comparison was made
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between the LD50 determined at 24 h for S. littoralis, S. litura and S. exigua and the LD50 for
S. frugiperda calculated at 48 h, so any difference in the toxic effects may be due to this.

For the pure compounds, the most used method was also that of topical appli-
cation followed by toxicity by ingestion (Table S9, Supplementary Material File S1) in
3-stage larvae and at 24 h. Once again, the most used species was S. littoralis, followed by
S. litura and S. exigua. The VOC most evaluated against these three Spodoptera species
was carvacrol, followed by eugenol (Table S12, Supplementary Material File S1) while
for S. frugiperda, these were linalool and limonene. In contrast to the results observed for
S. frugiperda, thymol was the most toxic compound for S. littoralis and S. litura (Table S13,
Supplementary Material File S1), with the values of LD50 being up to 20-fold lower than for
FAW. For S. exigua, the most toxic VOC was α-thujone, an α,β-unsatured ketone untested in
S. frugiperda, whose LD50 was slightly higher than that obtained for α-cypermethrin in FAW.

In the analysis of the effect of the EOs, and their main components, on three other
species of Spodoptera, differences were observed for the parameters evaluated and the origin
of the EOs with respect to S. frugiperda. This comparative analysis between the four species
allowed to identify plant species or VOCs whose toxic effect should be determined in FAW.
Based on this, we propose the study of the insecticidal effect of EOs such as A. pyramidata
and R. officinalis, and the α,β-unsaturated ketone such as α-thujone, on S. frugiperda, which,
based on these antecedents, could have great effectiveness.

5.3. Structure–Activity Relationship

The percentage of oxygenated and of non-oxygenated compounds present in the most
toxic EOs is shown in Table 12. The most effective EOs for topical application, fumigation,
contact toxicity and immersion were comprised of more than 50% non-oxygenated terpenes,
suggesting that their toxic effects are attributed to this diverse group of molecules. Although
numerous articles have determined that EOs rich in oxygenated compounds are more
effective than those with a higher percentage of non-oxygenated compounds, the opposite
was observed in this review when analyzing the composition of the most toxic EOs. In fact,
the only EO that fulfilled this premise was the C. citratus EO, since 79% of its composition
corresponded to oxygenated compounds [71].

Table 12. Percentage composition of oxygenated and non-oxygenated terpenes of the most toxic EOs
for Spodoptera frugiperda.

Essential Oils Non-Oxygenated
Terpenes (%)

Oxygenated
Terpenes (%) Reference

Ingestion

Ageratum conyzoides 98.2 nd [80]
Cymbopogon citratus nd 79.03 [71]

Fumigation

Piper septulinervium 81.4 11.7 [84]

Topical application

Ocimum gratissimum 60.2 37.6 [59]

Contact toxicity

Siparuna guianesis 80.83 10.39 [79]

Immersion

Piper marginatum 52.72 18.35 [75]
The complete composition of Citrus limon EO was not explained in the article, so the percentage of oxygenated
and non-oxygenated terpenes could not be determined. nd: non determined.

Information on the structure of the compounds that make up the most toxic essen-
tial oils serves as a basis for rational studies that can explain and predict bioactivities.
Structure–activity relationship (SAR) studies of complex mixtures of EOs are currently be-
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ing carried out in order to elucidate the parameters that provide them with their insecticidal
properties (SAR), and to predict the toxicity of novel compounds (quantitative structure–
activity relationship, QSAR). Although there are numerous studies that have identified
natural bioactive compounds in various insects, there are few antecedents of this type for
S. frugiperda.

Several SAR and QSAR investigations have been carried out on other insect pests. For
S. zeamais, these studies have revealed that the toxicity of the natural compounds are related
to descriptors such as LogP (the octanol–water partition coefficient) and the acidity (pKa),
with these playing a key role in reaching the target site of action [97]. Moreover, in addition
to these parameters, it was observed that the presence of carbonyl groups is also related to a
greater insecticidal effect [98]. The presence of the hydroxyl group (OH-), carbonyl carbons,
polar surface (amount of molecular surface arising from polar atoms) and aromatic ring
substituents are strongly related to the insecticidal capacity of the molecules [99,100]. In
addition, recent in silico molecular docking studies have revealed that the site of action
of acetylcholinesterase (AChE), among the main target enzymes for the development of
insecticides, has a lipophilic region at its site of action [101,102], in which non-oxygenated
terpenes could be interacting and may be involved in the toxic effect of these compounds.
It should be noted that as these are complex mixtures of natural compounds, the effect of
each of its components separately may not correlate with the effect observed as a whole.

The insecticidal effects of the α-β unsaturated ketones carvone, α and β-thujone,
pulegone and thymoquinone have been widely reported on numerous pests such as
S. exigua, S. litura, S. zeamais, Solenopsis invicta, and Trioza erytreae [103–110]. It is interesting
to note that QSAR studies have determined that the efficacy of these ketone compounds is
related to the presence of α-β unsaturated carbonyl carbons (ester function and a double
bond conjugated to the carbonyl group) in its structure [105]. This structural configuration
determines the interaction of the carbonyl group, through the Van der Waals force, with the
active site of AChE, indicating that these compounds present a great insecticidal effect [111].
These antecedents could imply that unsaturated α-β ketone compounds have a similar
toxic effect on S. frugiperda, since they act on a highly conserved site of action between
insect groups. However, there are few articles that have addressed the study of this class of
molecules. In fact, only one article has studied the toxic effect of carvone on FAW [73]; thus,
we suggest that rational studies focused on the insecticidal evaluation of α-β unsaturated
ketones should now be carried out to corroborate the effectiveness of these compounds on
this insect pest. Moreover, in the rational search for bioactive molecules, future studies on
structure–activity should be performed about the toxicity of natural compounds against
S. frugiperda.

6. Mode of Action of Essential Oil in Insects

Lucia and Guzman [112] proposed that the mode of action of VOCs on insects is
varied, with the nervous system being the main target. Neurotoxic effects can be observed
in the evolution of GABA receptors, the modulation of the synapse by octopamine, and the
inhibition of the enzyme acetylcholinesterase.

6.1. Acetylcholinesterase (AChE)

Acetylcholinesterase (AChE) is an enzyme responsible for catalyzing the hydrolysis
of the neurotransmitter acetylcholine to choline and acetate in the synaptic cleft, thereby
preventing its accumulation at the nerve terminal (Figure 4) [99–101,113]. An accumulation
of this neurotransmitter leads to overstimulation of the nervous system, hyperactivity,
paralysis, and the subsequent death of the insect [100,101].

Insect AChE has a specific cysteine residue that differs from that of the mammalian
enzyme [99], with achieving its inhibition being a point of interest in the search for natural
or synthetic insecticides. Therefore, AChE activity is the most studied enzymatic reaction
in relation to the toxicity of insecticides [40].
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Due to the complex nature of EOs, their effects usually differ from those of their main
pure components, making it difficult to determine their mode of action [40]. Moreover,
AChE inhibition can occur through two pathways: (1) EO components can act as com-
petitive inhibitors with respect to acetylcholine (ACh) binding to the active sites of the
enzyme; or (2) EO components can bind non-specifically to other sites on the enzyme
(non-competitive inhibitors) and allosterically modify them. In the first case, the activity
of the enzyme remains normal, but the reaction product (choline + acetate) is not formed,
while the activity of the enzyme is modified in the second case [40,112]

De Oliveira et al. [102] showed that both the EO of C. flexuosus and citral (its main
component) inhibited FAW AChE by 450 fold more than the methomyl insecticide used
as a positive control. H. marrubioides (inhibitory concentration 50 (IC50) = 0.0510 mg/mL)
and O. selloi (IC50 = 0.0660 mg/mL) EOs also inhibited the FAW AChE, in agreement
with the results obtained for toxicity, with H. marrubioides EO being the most effective
(LD50 = 0.24 mg/g insect) [83]. In another study, Fergani et al. [115] observed an increase
of 64% in AChE activity in vitro in 3rd instars of S. littoralis larvae exposed to the “basil”
EO (O. gratissimum) compared to the control, despite the fact that in S. frugiperda it pre-
sented a high toxicity (LD50 = 2.5 × 10−4 mg/g insect) [59]. The EO of Thymus vulgaris,
whose main component is thymol, presented an IC50 of 3.17% v/v in S. littoralis, thereby
allowing the authors to infer that this inhibitory effect could have been due to the high
concentration of thymol, considering its known toxic effects [116]. The inhibitory effects
of α-pinene, trans-anethole, and thymol were also investigated on Ephestia kuehniella, a
lepidopteran pest of stored products [117]. Of these three compounds, the most effective
was thymol (IC50 = 0.137 µL/L), followed by anethole (IC50 = 0.49 µL/L) and α-pinene
(IC50 = 0.864 µL/L) [80], suggesting that the toxic effects of these compounds observed in
S. frugiperda could have involved an inhibition of AChE activity. In S. frugiperda, thymol
presents a medium toxicity, which may be due to the fact that it acts as a non-competitive
inhibitor, thus decreasing the enzyme’s capacity, while anethole, which presents a high
toxicity, could be directly interacting with the AChE site of action and thereby causing it
inhibition. On the other hand, it is important to highlight the scarcity of studies that have
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addressed the toxicity caused by α,β-unsaturated ketone compounds in FAW, which, as
previously mentioned, have high toxic effects on other pest insects. In these compounds
the orbital electronegativity of the carbonyl group is related to AChE inhibition [105].

6.2. GABA Receptor

γ-aminobutyric acid (GABA) is a neurotransmitter that inhibits the nervous system by
binding to its receptors (GABARs) (Figure 5), and is mainly related to olfactory processing
and learning, memory and behavior in insects [118,119]. The disturbance of the correct
functioning of the GABA/GABARs complex leads to a continuous excitation of the nervous
system, causing stress and subsequent death [40].
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As the GABA/GABAR complex presents differences between different groups of
animals, it is an interesting target in the search for insecticides, which can take advantage
of the different chemical sensitivities between insects and mammals [121]. In fact, the
GABA/GABARs complex has been proposed as being the site of action of several EOs and
their principal components in different insects [70,74,110,119,122,123]. Nevertheless, there
are few studies that have directly studied the effect of EOs on GABA, with these studies
generally relating behavioral aspects to the effects that bioactive molecules have on this
neurotransmitter. Lourenço [79] observed that the S. guianensis EO reduces locomotion
in S. frugiperda, which may be related to the activation of GABARs, as seen in honey
bees [119]. In S. exigua, the lipophilic compounds of Salvia hispanica EO may increase the
cuticular penetration of α-thujone, its principal compound, enabling it to reach the chloride
channels regulated by GABA and disturbing their correct functioning [110]. Furthermore,
the effects of pure natural compounds on the GABA/GABAR complex have been reported.
Thymol was found to exhibit neurotoxic action by binding GABARs, thereby preventing
the closure of sodium channels [74]. Moreover, limonene (IC50 = 11.37 mM), α-pinene
(IC50 = 12.70 mM) and (−)-citronellal (IC50 = 24.17 mM) caused a high inhibition of the mite
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Tetranychus urticae γ-aminobutyric acid-transminase (GABA-T), the enzyme responsible for
degrading the GABA neutrotransmitter [124]. These antecedents allow us to suppose that
the bioactivity of the EOs observed on S. frugiperda could be due, in part, to the effect of
these compounds on GABA. Nevertheless, there are few studies on the specific mode of
action and the expression of genes associated with this complex [125–127]. Both essential
oils and synthetic insecticides act as non-competitive allosteric modulators of GABARs by
binding to them and maintaining a constant flow of chloride ions into the cell, thus keeping
the nervous system in permanent excitement [40,101,113,122,128,129].

6.3. Octopamine

The neurotransmitter octopamine (OA) in insects is capable of influencing the neural
mechanisms that generate the motor programs for different types of behavior, for example,
foraging [130]. Specifically, octopamine is related to high-energy-cost activities such as
oviposition, movement, appetitive stimulation, and stress response [40,101,113,131–137].

Octopamine possesses G protein-coupled membrane receptors (OAr) throughout the insect
nervous system. OA binds to OAr and activates an adenylyl cyclase that converts ATP to cAMP,
which behaves as a signal molecule that activates diverse cellular processes [40,113] (Figure 6).
Although these OArs are structurally and functionally related to the α2 adrenergic receptors
of mammals, they are not found in this class of animals [138], thereby making them a target
of interest for the development of insecticides [113].
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Figure 6. Functioning of the OA/OAr complex. (A) OA at rest. (B) Activation of OAr by OA binding.
Modified from Jankowska et al. [113].

Numerous studies have addressed the OA/OAr complex as being a mediator of the
toxicity of EOs and their main components in several pest insects. As for GABA, there are
few studies that have been carried out directly on the octopamine neurotransmitter. In
general, behavioral issues have been investigated with respect to the effect of these on the
site of action. Lourenço et al. [79] associated a decrease in locomotion in the population
of S. frugiperda, when exposed to the EO of S. guianensis, with alterations related to the
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neurotransmitter octopamine, among others. Moreover, the EO of S. hispanica, which has
1,8-cineole among its main components, acts as an antagonist of octopamine receptors of
S. exigua [110]. Further, eugenol, among the principal components of O. gratissimum EO,
acts in a mimetic way with octopamine, inducing cellular changes that could determine
its insecticidal capacity against the weevil Rhynchophorus ferrugineus [139]. The effect of
these EOs could be due to two modes of action: (1) blocking OArs [101]; or (2) acting
agonistically on OA [113], with the latter being the most often mentioned. The effects of
EOs and their main components are mainly related to alteration of the OA/OAr complex,
due to the similarity of the changes that these natural compounds present at the level of
cellular processes, for example, the increase in cellular calcium levels [113,140–144].

6.4. Other Modes of Action

Another mode of action of EOs reported was due to the alteration of cellular integrity
through modifying the permeability of the ion channels of the cell membrane, thus inter-
fering with cellular biosynthesis and operation [112], with the S. officinalis EO affecting
the DNA integrity and inhibiting the electrons entering the respiratory chain in A. aegypti
larvae of third and fourth instars [145]. β-asarone, the principal compound of Acorus
calamus rhizome EO, has cytotoxic effects and induces apoptosis in the S. frugiperda cell line
(Sf9) [146]. Moreover, the effect of α-pinene, trans- anethole and thymol on the antioxidant
system of Ephestia kuehniella were evaluated, demonstrating that the superoxide dismutase,
peroxidase, glutathione S-transferase and catalase activity were significant higher than the
untreated larvae, indicating that its antioxidant system was overstimulated by the presence
of terpenes [117]. On the other hand, the evaluation of lipid peroxidation products can
give hints concerning the effects of EOs [112]. Malondialdehyde (MDA) and Conjugates
Dienes (CD), among others, are indicators of oxidative stress whose levels, and those of
their related enzymes, are generally increased in insects exposed to EOs [117,147–149]. For
example, the lipid peroxidase enzyme activity showed a significant increase in Agrotis ipsilon
larvae after 96 h of lemongrass (C. citratus) EO exposure [148]. In M. domestica, this EO
also causes an increase in the lipid peroxidation reflected in an increase in the amount of
MDA [149]. Tagetes filifolia also produces an increase in T. castaneum MDA content [147].

The knowledge of these alternative mechanisms of toxicity, in addition to classic
neurological ones, could help in the design of natural formulations that can attack several
different target sites.

7. Final Considerations

In this review, we have compiled information concerning the methods used to evaluate
the toxicity of EOs on S. frugiperda carried out in laboratory conditions. The results of the
analysis showed that there is a large number of EOs that have a great potential to be used
as natural alternatives for the control of this pest under these conditions. However, as we
observed that there is great variability in the methods implemented and also in the way of
expressing the results, the ability to draw useful comparisons is very restricted. Based on
this limitation, the objective of this article was to carry out a complex analysis of the toxicity
methods used to evaluate the effects of EOs against S. frugiperda, from which conclusions
could then be drawn and a standardization proposed of the main parameters that should
be taken into account.

Although these natural products have a high potential for being used as biopesticides
by attacking the same sites of action as those targeted by the synthetic insecticides, studies
on a higher scale, such as pilot and field, should now be carried out to determine the
effectiveness of these EOs under natural conditions. In turn, due to their high volatility
and photodegradation, feasible ways of applying EOs must be found to enable them to be
used in cultivars [150]. Currently, several studies are being performed on the formulation
of biodegradable nanoemulsions or encapsulates that contain EOs, or their main compo-
nents, with insecticidal activity that prolongs their effects over time and facilitates their
application in the field, as an alternative technology for the implementation of biopesti-
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cides in agroecosystems. For example, the toxicity of an oil-in-water (O/W) nanoemulsion
made with Tween 80 and Span 80 (non-ionic surfactants) and Cedrela odorata EOs against
S. frugiperda has been determined [151]. Furthermore, it was observed that chitosan nanopar-
ticles (CSNPs) loaded with S. leucantha EO decreased the activity of digestive enzymes
in S. litura, H. armígera and P. xylostella [152]. Further, CSNPs loaded with citronella EO
caused the interruption of the development of S. littoralis [153]. Nanostructured lipid
carriers (NLCs), another innovative bioformulation, were made using 10% w/v lipid and
10% w/v oil (L. angustifolia). This bioformulation caused high mortality and the reduced
progeny of Aphis gossypii, even when applying the nanocarrier alone [154]. Thus, as can
be seen, nanotechnology allows the development of bioformulations with an optimum
dosage of their bioactive components in order to improve agricultural productivity, thereby
generating efficient and ecofriendly alternatives [155].

Despite EOs being classified by the US Food and Drug Administration (FDA) as
Generally Recognized as Safe, we suggest that toxicity studies on other non-target organ-
isms, animals and plants should also be performed [44]. In addition, phytotoxicity studies
of EOs effects on the maize plant should accompany the mortality studies. The cost of
producing EOs must also be taken into account when designing alternative strategies for
pest control. Although this cost is high, there is a tendency for producers worldwide to
change the cost/efficiency paradigm to one where the health of people, animals and the
environment is a central issue [156,157]. Nevertheless, the number of natural pesticides
in the market is still low, which may be due not only to the cost of production but also
to the small number of studies carried out and with the results being applicable only in
the short term. Other issues are the strict legislation hampering their incorporation into
the market and the low persistence of their effects [32]. Using the knowledge of the main
compounds that constitute the EOs and, in many cases, of their bioactivity, carrying out
synthesizing of these compounds could lower the costs [158,159]. Furthermore, due to the
high efficacy that has been demonstrated of these natural compounds, a future challenge
would be for researchers and industries to work together to increase the scale of production
of biopesticides and to insert them in the global market [32].

Based on the present findings, we list the following final considerations:

• The method most used for evaluating the toxicity of EOs on S. frugiperda was topical
application, where the bioactive compound enters the organism through the cuticle.
Considering the field application method of traditional insecticides, this method of
topical application simulates what happens when the insect pest is found in the
cultivar and is reached by traditional spraying. Thus, this testing method could be
recommended for laboratory study using mainly third-instar larvae, in order to obtain
comparable results with already published articles.

• The most effective EOs were Ocimum gratissimum, Siparuna guianesis, Piper marginatum,
Piper septuplinervium, Cymbopogon citratus, Citrus limon, and Ageratum conyzoides for the
methods of topical application, contact toxicity, immersion, fumigant and ingestion,
respectively. In general, these essential oils presented a high percentage of non-
oxygenated volatile compounds, with the exception of C. citratus EO, thereby allowing
us to predict that against this insect, terpene hydrocarbon-type compounds would
present a greater toxicity. However, mostly only pure oxygenated compounds have
been tested, with anethole being the most toxic of these. We suggest that mixtures of
lipophilic and hydrophilic compounds could have a greater toxic effect as the former
act as vehicles for the latter to cross the insect cuticle and facilitate their arrival at the
active site.

• EOs and their pure compounds are approximately 1000 to 100,000 fold less toxic than
most insecticides. Although it is known that these synthetic insecticides produce
health and environmental problems, it is important to highlight that the effect of
natural compounds is significantly lower, so they may not be widely accepted by rural
producers. However, alternatives could be implemented such as the formulation of
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synergistic mixtures between EOs, or their more bioactive components, and traditional
synthetic insecticides, in order to reduce their applied concentrations.

Finally, we propose the use of the topical application method for the evaluation
of the effect of EOs, and their main compounds, on third-instar larvae of S. frugiperda.
In turn, we propose that the mortality records be carried out at 48 h. Lethal doses
(50 or 90), should be expressed as a function of mg, ug or ul of EO per g of larva or
per larva, if their average weight is indicated, to favor the comparison of results. Further, a
positive control (commercial insecticide) should be included in the studies to be used as a
reference of the effectiveness of the new EOs or VOCs evaluated. Based on the comparison
of the toxic effects of EOs on other species of Spodoptera, we propose the study of EOs
such as Rosmarinus officinalis, Salvia hispanica, Nepeta cataria and Alpinia pyramidata, and of
α, β-unsaturated ketones, such as carvone and α-thujone, against S. frugiperda. Moreover,
structure–activity relationship studies should be carried out in order to permit a rational
search for compounds with insecticidal effects on this pest. The information reported in
this review can serve as a guide for future studies on the effects of EOs against S. frugiperda.
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