Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum (Paspalum vaginatum Swartz)
Abstract
:1. Introduction
2. Results
2.1. Effect of Zinc Sulfate on the Accumulation of Zn and Cd in Different Organs of Seashore Paspalum under Cadmium Stress
2.2. Effect of Zinc Sulfate Spray on the Photosynthetic Parameters of Seashore Paspalum under Cadmium Stress
2.3. Effect of Zinc Sulfate Spray on the Antioxidant Metabolism of Seashore Paspalum under Cadmium Stress
2.3.1. Effect of Zinc Sulfate Spray on the Active Oxygen Content of Seashore Paspalum under Cadmium Stress
2.3.2. Effect of Zinc Sulfate Spray on the Antioxidant Metabolism of Seashore Paspalum under Cadmium Stress
2.3.3. Effect of Zinc Sulfate Spray at Different Concentrations on the Expression of Gene Families Related to Cd Absorption
2.4. Transcriptome Analysis of the Mechanism of Improving the Cadmium Tolerance of Seashore Paspalum by Zinc Sulfate Spray
2.4.1. Statistics Showing the Number of Differentially Expressed Genes
2.4.2. Enrichment Analysis of the KEGG Pathway of Differentially Expressed Genes
2.4.3. Zinc Sulfate Sprayed at Different Concentrations Reveals the Mechanism through Which the Glutathione Pathway Regulates the Cadmium Tolerance of Seashore Paspalum
2.5. Mechanism of Cadmium Tolerance of Seashore Paspalum by Zinc Sulfate Spray
3. Discussion
3.1. Effects of Zinc Sulfate Spraying at Different Concentrations on Cadmium and Chelate-and Transporter-Related Gene Family Members in Seashore Paspalum
3.2. The Cadmium Tolerance of Seashore Paspalum by Zinc Sulfate Spraying via the Glutathione Metabolic Pathway
4. Materials and Methods
4.1. Plant Materials and Experimental Treatments
4.2. Determination of the Cd Content in Plants
4.3. Determination of Plant Photosynthetic Capacity
4.4. Determination of the Active Oxygen Content
4.5. Determination of the MDA Content and Proline Content
4.6. Determination of the Total Antioxidant Capacity
4.7. Determination of the Antioxidant Enzyme Activity
4.8. Determination of the Total Glutathione (T-GSH)/Oxidized Glutathione (GSSG) Content
4.9. RNA Extraction and Transcriptome Sequencing
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weissmannová, H.D.; Mihočová, S.; Chovanec, P.; Pavlovský, J. Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. Int. J. Environ. Res. Public Health 2019, 16, 4495. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.L.; Bao, L.J.; Luo, P.; Wang, Z.Y.; Li, S.M.; Zeng, E.Y. Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particlebound heavy metals. J. Hazard. Mater. 2016, 317, 449–456. [Google Scholar] [CrossRef]
- Luo, J.S.; Huang, J.; Zeng, D.L.; Peng, J.S.; Zhang, G.B.; Ma, H.L.; Guan, Y.; Yi, H.Y.; Fu, Y.L.; Han, B.; et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 2018, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Kramer, U. Phytoremediation: Novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 2005, 16, 133–141. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, L.; Jin, Q.; Wang, Y.; Chen, X.; Zhao, H.; Xue, Z. Transcriptome-wide identification of miRNAs and their targets from Typha angustifolia by RNA-Seq and their response to cadmium stress. PLoS ONE 2015, 10, e0125462. [Google Scholar] [CrossRef] [Green Version]
- Cikili, Y.; Samet, H.; Dursun, S. Cadmium toxicity and its effects on growth and metal nutrient ion accumulation in Solanaceae. Plants J. Agric. Sci. 2016, 22, 576–587. [Google Scholar]
- Asgher, M.; Khan, M.I.; Anjum, N.A.; Khan, N.A. Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 2015, 252, 399–413. [Google Scholar] [CrossRef]
- Wang, L.; Cui, X.F.; Cheng, H.G.; Chen, F.; Wang, J.T.; Zhao, X.Y.; Lin, C.Y.; Pu, X. A review of soil cadmium contamination in China including a health risk assessment. Environ. Sci. Pollut. Res. 2015, 22, 16441–16452. [Google Scholar] [CrossRef]
- He, Q.H.; Zhou, T.; Sun, J.K.; Wang, P.; Bai, L.; Liu, Z.M. Effect of cadmium stress on transcriptome differences in roots and leaves of Koelreuteria Paniculata seedlings. Acta Sci. Circumstantiae 2022, 42, 467–481. [Google Scholar]
- Shang, E.P.; Xu, E.Q.; Zhang, H.Q.; Huang, C.H. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China. Environ. Sci. 2018, 39, 4670–4683. [Google Scholar]
- Chen, H.M. Heavy Metal Pollution in Soil-Plant System; Science Press: Beijing, China, 1996; p. 344. [Google Scholar]
- Hou, J.; Liu, X.H.; Cui, B.S.; Bai, J.H.; Wang, X.K. Concentration dependent alterations in gene expression induced by cadmium in Solanum lycopersicum. Environ. Sci. Pollut. Res. Int. 2017, 24, 10528–10536. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Rizwan, M.; Ali, S.; Parveen, A.; Malik, Z.; Wang, X.R. Cadmium uptake and translocation: Synergetic roles of selenium and silicon in Cd detoxification for the production of low Cd crops: A critical review. Chemosphere 2021, 273, 129690. [Google Scholar] [CrossRef]
- Haider, F.U.; Cai, L.Q.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.Z.; Ma, W.J.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Rabêlo, F.H.S.; Azevedo, R.A.; Monteiro, F.A. The proper supply of S increases amino acid synthesis and antioxidant enzyme activity in Tanzania Guinea grass used for Cd phytoextraction. Water Air Soil Pollut. 2017, 228, 394. [Google Scholar] [CrossRef]
- Oono, Y.; Yazawa, T.; Kanamori, H.; Sasaki, H.; Mori, S.; Handa, H.; Matsumoto, T. Genome-wide transcriptome analysis of cadmium stress in rice. Biomed Res. Int. 2016, 2016, 9739505. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.X.; Huang, D.Y.; Wu, J.S.; Zhu, Q.H.; Zhu, H.H.; Xu, C.; Xiong, J.; Wang, H.; Duan, M.M. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant. Environ. Pollut. 2018, 239, 198–204. [Google Scholar] [CrossRef]
- Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
- Nawrot, T.; Plusquin, M.; Hogervorst, J.; Roels, H.A.; Staessen, J.A.; Nawrot, T.; Plusquin, M.; Hogervorst, J.; Roels, H.A.; Staessen, J.A. Environmental exposure to cadmium and risk of cancer: A prospective population-based study. Lancet Oncol. 2006, 7, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.; Li, J.; Wang, P.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef]
- Kazantzis, G. Cadmium, osteoporosis and calcium metabolism. Biometals 2004, 17, 493–498. [Google Scholar] [CrossRef]
- Wu, Q.; Meng, Y.T.; Feng, Z.H.; Shen, R.F.; Zhu, X.F. The endo-beta mannase MAN7 contributes to cadmium tolerance by modulating root cell wall binding capacity in Arabidopsis thaliana. J. Integr. Plant Biol. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, Y.; Zhang, T.; Liu, J.; You, Z.; Huang, P.; Zhang, Z.; Wang, C. Plasma membrane-associated calcium signaling modulates cadmium transport. New Phytol. 2023, 38, 313–331. [Google Scholar] [CrossRef]
- Chen, L.; Hu, W.F.; Long, C.; Wang, D. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation. Chemosphere 2020, 262, 127809. [Google Scholar] [CrossRef]
- Yang, X.; Qin, J.; Li, J.; Lai, Z.; Li, H. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J. Hazard. Mater. 2021, 406, 124325. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Wang, X.; Qin, Z.; Liu, B.; Zhang, X.; Wang, G. Warming enhances the cadmium toxicity on macrophyte Myriophyllum aquaticum (Vell.) Verd. seedlings. Environ. Pollut. 2021, 268, 115912. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Najeeb, U.; Li, X.; Pan, J.; Huang, Q.; Zhou, W.; Liang, Z. Synergistic effects of EDDS and ALA on phytoextraction of cadmium as revealed by biochemical and ultrastructural changes in sunflower (Helianthus annuus L.) tissues. J. Hazard. Mater. 2021, 407, 124764. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Bao, Q.; Chu, Y.; Sun, H.; Huang, Y. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environ. Pollut. 2022, 304, 119178. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Zhang, J.; Wang, Y. Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Hortic. Plant J. 2021, 7, 10. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, C.; Mann, R.M.; Soares, A.M.V.M.; Lopes, T. Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environ. Exp. Bot. 2007, 60, 421–427. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Rea, E.; Colla, G. Grafting of cucumber as a means to minimize copper toxicity. Environ. Exp. Bot. 2008, 63, 49–58. [Google Scholar] [CrossRef]
- Savvas, D.; Ntatsi, G.; Barouchas, P. Impact of grafting and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd or Ni stress. Sci. Hortic. 2013, 149, 86–96. [Google Scholar] [CrossRef]
- Guo, Z.; Lv, J.; Zhang, H.; Hu, C.; Qin, Y.; Dong, H.; Zhang, T.; Dong, X.; Du, N.; Piao, F. Red and blue light function antagonistically to regulate cadmium tolerance by modulating the photosynthesis, antioxidant defense system and Cd uptake in cucumber (Cucumis sativus L.). J. Hazard. Mater. 2022, 429, 128412. [Google Scholar] [CrossRef] [PubMed]
- Lonard, R.I.; Judd, F.W.; Stalter, R. Biological flora of coastal dunes and wetlands: Paspalum vaginatum Sw. J. Coast. Res. 2015, 31, 213–223. [Google Scholar] [CrossRef]
- Papoyan, A.; Pineros, M.; Kochian, L.V. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol. 2007, 175, 51–58. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in crop production. Adv. Agron. 2002, 77, 189–272. [Google Scholar]
- Doolette, C.L.; Read, T.L.; Li, C.; Scheckel, K.G.; Donner, E.; Kopittke, P.M.; Lombi, E. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. J. Exp. Bot. 2018, 69, 4469–4481. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, G. Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J. Plant Nutr. 2002, 25, 2745–2761. [Google Scholar] [CrossRef]
- Hafeez, B.; Khanif, Y.M.; Saleem, M. Role of zinc in plant nutrition—A Review. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Outten, C.E.; O’Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488–2492. [Google Scholar] [CrossRef] [Green Version]
- Pandey, N.; Pathak, G.C.; Sharma, C.P. Zinc is critically required for pollen function and fertilisation in lentil. J. Trace Elem. Med. Bio. 2006, 20, 89–96. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, P.; Datta, S.P.; Gupta, V. Morphological and biochemical response of Cicer arietinum L. var. pusa-256 towards an excess of zinc concentration. Life Sci. J. 2010, 7, 95–98. [Google Scholar]
- Pedler, J.R.; Parker, D.E.; Crowley, D. Zinc deficiency-induced phytosiderophore release by the Triticaceae is not consistently expressed in solution culture. Planta 2000, 211, 120–126. [Google Scholar] [CrossRef]
- Brennan, R. Zinc Application and its Availability to Plants. Ph.D. Thesis, Murdoch University, Perth, Australia, 2005. [Google Scholar]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant Soil. 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Arduini, I.; Ercoli, L.; Mariotti, M.; Masoni, A. Response of miscanthus to toxic cadmium applications during the period of maximum growth. Environ. Exp. Bot. 2006, 55, 29–40. [Google Scholar] [CrossRef]
- Singh, S.; Eapen, S.; D’Souza, S.F. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 2006, 62, 233–246. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Lux, A.; Martinka, M.; Vaculík, M.; White, P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Adil, M.F.; Sehar, S.; Chen, G.; Chen, Z.H.; Jilani, G.; Chaudhry, A.N.; Shamsi, I.H. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. Ecotoxicol. Environ. Saf. 2020, 190, 110076. [Google Scholar] [CrossRef]
- Fontanili, L.; Lancilli, C.; Suzui, N.; Dendena, B.; Yin, Y.-G.; Ferri, A.; Ishii, S.; Kawachi, N.; Lucchini, G.; Fujimaki, S.; et al. Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-toshoot cadmium translocation in rice. Rice 2016, 9, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochicchio, R.; Sofo, A.; Terzano, R.; Gattullo, C.E.; Amato, M.; Scopa, A. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals. Plant Physiol. Biochem. 2015, 91, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Saifullah; Javed, H.; Naeem, A.; Rengel, Z.; Dahlawi, S. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ. Sci. Pollut. Res. Int. 2016, 23, 16432–16439. [Google Scholar] [CrossRef] [PubMed]
- Antonovics, J.; Bradshaw, J.A.D.; Turner, J.R.G. Heavy metal tolerance in plants. Adv. Environ. Sci. Technol. 1971, 7, 1–85. [Google Scholar]
- Clemens, S.; Antosiewicz, D.M.; Ward, J.M.; Schachtman, D.P.; Schroeder, J.I. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA 1998, 95, 12043–12048. [Google Scholar] [CrossRef] [Green Version]
- Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Trampczynska, A.; Clemens, S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ. 2006, 29, 950–963. [Google Scholar] [CrossRef]
- Chen, D.; Toone, W.M.; Mata, J.; Lyne, J.R.; Burns, J.G.; Kivinen, K.; Brazma, A.; Jones, N.; Bähler, J. Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell. 2003, 14, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Wang, M.; Zhang, T.; Liu, X.; Jiang, H.; Sun, Y.; Cheng, X.; Yan, Q. Enhanced Cadmium accumulation and tolerance in transgenic hairy roots of Solanum nigrum L. Expressing Iron-Regulated Transporter Gene IRT1. Life 2020, 10, 324. [Google Scholar] [CrossRef]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishi, H.; Nishizawa, N.K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef] [Green Version]
- Keeran, N.S.; Ganesan, G.; Parida, A.K. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco. Transgenic Res. 2017, 26, 247–261. [Google Scholar] [CrossRef]
- Pittman, J.K.; Hirschi, K.D. CAX-ing a wide net: Cation/H+, transporters in metal remediation and abiotic stress signalling. Plant Biol. 2016, 18, 741–749. [Google Scholar] [CrossRef]
- Song, W.Y.; Park, J.; Mendoza-Cózatl, D.G.; Suter-Grotemeyer, M.; Shim, D.; Hörtensteiner, S.; Geisler, M.; Weder, B.; Rea, P.A.; Rentsch, D.; et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA 2010, 107, 21187–21192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendre, D.; Czernic, P.; Conéjéro, G.; Pianelli, K.; Briat, J.F.; Lebrun, M.; Mari, S. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J. 2007, 49, 1–15. [Google Scholar] [CrossRef]
- Chen, X.M.; Shi, X.Y.; Ai, Q.; Han, J.Y.; Wang, H.S.; Fu, Q.S. Transcriptomic and metabolomic analyses reveal that exogenous strigolactones alleviate the response of melon root to cadmium stress. Hortic. Plant J. 2022, 8, 637–649. [Google Scholar] [CrossRef]
- Reddy, A.R.; Raghavendra, A.S. Photooxidative stress. In Physiology and Molecular Biology of Stress Tolerance in Plants; Madhava Rao, K.V., Raghavendra, A.S., Reddy, K.J., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 157–186. [Google Scholar]
- Ding, S.; Lu, Q.; Zhang, Y.; Yang, Z.; Wen, X.; Zhang, L.; Lu, C. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol. Biol. 2009, 69, 577–592. [Google Scholar] [CrossRef]
- Dixon, D.P.; Skipsey, M.; Edwards, R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 2010, 71, 338–350. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [Green Version]
- Noctor, G.; Foyer, C.H. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J. Exp. Bot. 1998, 49, 1895–1908. [Google Scholar] [CrossRef]
- Briviba, K.; Klotz, L.O.; Sies, H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol. Chem. 1997, 378, 1259–1265. [Google Scholar]
- Larson, R.A. The antioxidants of higher plants. Phytochemistry 1988, 27, 969–978. [Google Scholar] [CrossRef]
- Keunen, E.; Schellingen, K.; Vangronsveld, J.; Cuypers, A. Ethylene and metal stress: Small molecule, big impact. Front. Plant Sci. 2016, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Jozefczak, M.; Remans, T.; Vangronsveld, J.; Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012, 13, 3145–3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.H.; Wu, X.; Song, J.X.; Xing, G.P.; Liang, L.; Yin, Q.L.; Guo, A.J.; Cui, J. Transcriptomic and physiological comparsion of the short-term responses of two Oryza sativa L. varieties to cadmium. Environ. Exp. Bot. 2021, 181, 104292. [Google Scholar] [CrossRef]
- Ma, J.F.; Goto, S.; Ichii, T.M.; Ichii, M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 2001, 127, 1773–1780. [Google Scholar] [CrossRef]
- Cao, X.R.; Wang, X.Z.; Tong, W.B.; Gurajala, H.K.; Lu, M.; Hamid, Y.; Feng, Y.; He, Z.L.; Yang, X.E. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 2019, 252, 733–741. [Google Scholar] [CrossRef]
- Ma, L.; Tian, T.; Lin, R.; Deng, X.-W.; Wang, H.; Li, G. Arabidopsis FHY3 and FAR1 regulate light-induced myo-Inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol. Plant. 2016, 9, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.Y.; Zhang, J.H. Effect of abscisic acid on active oxygen species, antioxidant defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 2001, 42, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Fan, J.; Hu, L.; Hu, Z.; Xie, Y.; Zhang, Y.; Lou, Y.; Nevo, E.; Fu, J. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance. BMC Plant Biol. 2015, 15, 216. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Ai, H.; Cao, L.; Sui, R.; Ye, H.; Du, D.; Sun, J.; Yao, J.; Chen, K.; Chen, L. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress. Ecotoxicol. Environ. Saf. 2018, 160, 349–356. [Google Scholar] [CrossRef]
- Zhu, H.; Ai, H.; Hu, Z.; Du, D.; Sun, J.; Chen, K.; Chen, L. Comparative transcriptome combined with metabolome analyses revealed key factors involved in nitric oxide (NO)-regulated cadmium stress adaptation in tall fescue. BMC Genom. 2020, 21, 601. [Google Scholar] [CrossRef] [PubMed]
Treatment | Net Photosynthetic Rate μmol CO2 m−2·s−1 | Stomatal Conductance mol H2O m−2·s−1 | Transpiration Rate mmol H2O m−2·s−1 |
---|---|---|---|
0 Zn | 1.3536 ± 0.0367 b | 0.0236 ± 0.0011 b | 0.3204 ± 0.0099 c |
2.5 Zn | 4.2197 ± 0.0646 a | 0.0482 ± 0.0008 a | 0.6245 ± 0.0109 a |
40 Zn | 1.4184 ± 0.0510 b | 0.0276 ± 0.0009 b | 0.3661 ± 0.0091 b |
Parameter | Part | 0 Zn | 2.5 Zn | 40 Zn |
---|---|---|---|---|
SOD (U/g FW) | Root | 47.44 ± 4.16 c | 193.44 ± 4.76 a | 152.82 ± 7.01 b |
Stem | 46.16 ± 3.36 b | 71.35 ± 1.59 a | 83.98 ± 8.34 a | |
Leaf | 50.93 ± 3.72 b | 78.15 ± 6.67 a | 56.30 ± 3.32 b | |
APX (U/g FW) | Root | 0.17 ± 0.02 b | 0.73 ± 0.04 a | 0.23 ± 0.01 b |
Stem | 0.64 ± 0.02 a | 0.91 ± 0.08 a | 0.85 ± 0.08 a | |
Leaf | 2.93 ± 0.26 b | 4.59 ± 0.30 a | 3.19 ± 0.02 b | |
GR (U/g FW) | Root | 0.07 ± 0.01 b | 0.16 ± 0.01 a | 0.10 ± 0.02 b |
Stem | 0.10 ± 0.00 b | 0.18 ± 0.02 a | 0.16 ± 0.03 b | |
Leaf | 0.12 ± 0.00 b | 0.21 ± 0.01 a | 0.16 ± 0.01 b | |
GST (U/g FW) | Root | 0.01 ± 0.00 b | 0.04 ± 0.01 a | 0.03 ± 0.01 ab |
Stem | 0.04 ± 0.00 c | 0.33 ± 0.01 a | 0.21 ± 0.01 b | |
Leaf | 0.09 ± 0.00 b | 0.26 ± 0.01 a | 0.25 ± 0.02 a | |
GSH (μmol/g FW) | Root | 106.28 ± 9.40 b | 151.24 ± 3.58 a | 146.59 ± 5.52 a |
Stem | 190.91 ± 8.02 b | 357.58 ± 8.02 a | 321.21 ± 19.48 a | |
Leaf | 785.86 ± 34.34 c | 1244.44 ± 69.33 a | 949.49 ± 8.81 b | |
GSSG (μmol/g FW) | Root | 46.46 ± 2.67 b | 92.02 ± 7.07 a | 70.71 ± 3.77 c |
Stem | 111.71 ± 4.10 c | 152.02 ± 2.61 a | 130.31 ± 3.72 b | |
Leaf | 89.22 ± 4.32 b | 153.57 ± 7.87 a | 140.39 ± 5.19 a | |
T-AOC (U/mL) | Root | 126.10 ± 7.11 b | 363.62 ± 12.82 a | 323.45 ± 10.98 a |
Stem | 45.34 ± 2.47 c | 348.81 ± 13.62 b | 137.24 ± 6.57 b | |
Leaf | 17.10 ± 3.91 b | 40.86 ± 6.34 a | 36.37 ± 2.72 ab | |
MDA (nmol/L) | Root | 6.10 ± 0.34 a | 3.76 ± 0.08 b | 5.47 ± 0.18 a |
Stem | 3.69 ± 0.12 a | 1.24 ± 0.2 c | 2.30 ± 0.08 b | |
Leaf | 2.78 ± 0.19 a | 1.56 ± 0.12 b | 2.45 ± 0.25 a | |
PRO (μg/g FW) | Root | 17.01 ± 0.12 a | 4.54 ± 0.13 c | 6.80 ± 0.40 b |
Stem | 756.96 ± 22.87 a | 354.88 ± 69.18 b | 481.86 ± 55.12 b | |
Leaf | 1960.32 ± 128.02 a | 714.29 ± 52.29 b | 718.82 ± 75.45 b |
DEG Set | No. of DEGs | Upregulated | Downregulated |
---|---|---|---|
2.5 Zn vs. 0 Zn | 7291 | 3849 | 3442 |
40 Zn vs. 0 Zn | 7781 | 3137 | 4644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Chen, Y.; Liu, J.; Zhang, Q.; Xu, L.; Yang, Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum (Paspalum vaginatum Swartz). Plants 2023, 12, 1982. https://doi.org/10.3390/plants12101982
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum (Paspalum vaginatum Swartz). Plants. 2023; 12(10):1982. https://doi.org/10.3390/plants12101982
Chicago/Turabian StyleCui, Liwen, Yu Chen, Jun Liu, Qiang Zhang, Lei Xu, and Zhimin Yang. 2023. "Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum (Paspalum vaginatum Swartz)" Plants 12, no. 10: 1982. https://doi.org/10.3390/plants12101982
APA StyleCui, L., Chen, Y., Liu, J., Zhang, Q., Xu, L., & Yang, Z. (2023). Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum (Paspalum vaginatum Swartz). Plants, 12(10), 1982. https://doi.org/10.3390/plants12101982