The Ancient Olive Trees (Olea europaea L.) of the Maltese Islands: A Rich and Unexplored Patrimony to Enhance Oliviculture
Abstract
:1. Introduction
2. Results
2.1. Fruits Harvested from Indigenous Maltese Genotypes Had Traits Suitable for Oil Production and for the Preparation of Table Olives
2.2. The Main Phenolic Compounds Contained in the Maltese Olive Pulp Were Highly Variable
2.3. Variation of Squalene and Sterol Content in Drupes
2.4. The Acidic Composition in the Fruit Pulp of 19 Maltese Olive Trees
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Assessment of Drupe Characteristics
4.2. Extraction and Analysis of Fruit Phenolic Compounds
4.3. Sterol and Squalene Analyses
4.4. Fatty Acid Methyl Esters (FAMEs) Analyses
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Internationa Olive Council (IOC). Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/12/IOC-Olive-Oil-Dashboard-1.html#consumption-1 (accessed on 10 February 2023).
- Fenech, K. Human-Induced Changes in the Environment and Landscape of the Maltese Islands from the Neolithic to the 15th Century AD: As Inferred from a Scientific Study of Sediments from Marsa, Malta; University of Michigan Press: Ann Arbor, MI, USA, 2007; ISBN 9781407301204. [Google Scholar]
- Godwin, H. Appendix I, Report on a Pollen Sample from the Late Borg in-Nadur Cistern at Tal-Mejtin. In Report on the Working of the Museum Department for the Year 1961; Wirt iż-Żejtun: Valletta, Malta, 1961; p. 8. [Google Scholar]
- Gambin, B.; Andrieu-Ponel, V.; Médail, F.; Marriner, N.; Peyron, O.; Montade, V.; Gambin, T.; Morhange, C.; Belkacem, D.; Djamali, M. 7300 years of vegetation history and climate for NW Malta: A Holocene perspective. Clim. Past 2016, 12, 273–297. [Google Scholar] [CrossRef]
- Gambin, T. A Drop in the Ocean—Malta’s Trade in Olive Oil during the Roman Period; Wirt iż-Żejtun: Valletta, Malta, 2012; ISBN 9789995703790. [Google Scholar]
- Bonanno, A. The economic history of Roman and Byzantine Malta—Brunella Bruno, L’arcipelago Maltese In Età Romana E Bizantina: Attività Economiche E Scambi Al Centro Del Mediterraneo (Bibliotheca Archaeologica 14; Edipuglia, Bari2004). Pp. 198, figs. 48. ISBN 88-722. J. Rom. Archaeol. 2007, 20, 519–524. [Google Scholar] [CrossRef]
- Galdies, C.; Meli, A. An Analysis of the Impacts of Climate on the Agricultural Sector in Malta: A Climatological and Agronomic Study. In Climate Change Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 403–420. ISBN 9783030879341. [Google Scholar]
- Agrikoltura.gov.mt. National Agricultural Policy for the Maltese Islands 2018–2028. Available online: https://agrikoltura.gov.mt/en/agric/Pages/nationalAgriPolicy.aspx (accessed on 20 February 2023).
- Mazzitelli, O.; Calleja, A.; Sardella, D.; Farrugia, C.; Zammit-Mangion, M. Analysis of the molecular diversity of Olea europaea in the Mediterranean Island of Malta. Genet. Resour. Crop Evol. 2015, 62, 1021–1027. [Google Scholar] [CrossRef]
- Buhagiara, J. Perspectives on olive cultivation and pro- cessing in maltese roman antiquity. In The Żejtun Roman Villa: Research—Conservation—Management; Wirt iż-Żejtun: Valletta, Malta, 2012; pp. 98–107. [Google Scholar]
- Lageard, J.G.A.; Sultana, D.; Brearley, F.Q. Veteran trees in an historic landscape: The Bidnija olive grove, Malta. J. Archaeol. Sci. Reports 2021, 38, 103094. [Google Scholar] [CrossRef]
- Bazan, G.; Baiamonte, G.; Cancellieri, A.; Schicchi, R. BioCultural Landscapes per la rigenerazione innovativa dei territori di montagna. In Proceedings of the Atti della XIX Conferenza Nazionale SIU. CAMBIAMENTI. Responsabilità e strumenti per l’urbanistica al servizio del paese, Catania, Italy, 16–18 June 2016; Planum Publisher: Rome, Italy, 2016. [Google Scholar]
- Schicchi, R.; Speciale, C.; Amato, F.; Bazan, G.; Di Noto, G.; Marino, P.; Ricciardo, P.; Geraci, A. The Monumental Olive Trees as Biocultural Heritage of Mediterranean Landscapes: The Case Study of Sicily. Sustainability 2021, 13, 6767. [Google Scholar] [CrossRef]
- Lia, F.; Zammit-Mangion, M.; Farrugia, C. A First Description of the Phenolic Profile of EVOOs from the Maltese Islands Using SPE and HPLC: Pedo-Climatic Conditions Modulate Genetic Factors. Agriculture 2019, 9, 107. [Google Scholar] [CrossRef]
- Verde, T. The white olives of Malta. Aramco World 2017, 68, 22–27. [Google Scholar]
- Giuffrè, A.M. Biometric evaluation of twelve olive cultivars under rainfed conditions in the region of Calabria, South Italy. Emirates J. Food Agric. 2017, 29, 696. [Google Scholar] [CrossRef]
- Khadivi, A.; Mirheidari, F.; Moradi, Y.; Paryan, S. Identification of the promising olive (Olea europaea L.) cultivars based on morphological and pomological characters. Food Sci. Nutr. 2022, 10, 1299–1311. [Google Scholar] [CrossRef]
- Famiani, F.; Baldoni, L.; Sebastiani, L.; Caruso, T. Analisi Morfologica Delle Varietà Di Olivo. In Tematicai-Manuale Per L’identificazione e Il Riordino del Patrimonio Varietale di Olvo; Progetto fi Ricerca Interregionale-OLVIVA; Editore Università degli studi di Bari “Aldo Moro”-Dipartimento di Biologia e Chimica Agroforestale: Bari, Italy, 2011; pp. 22–38. ISBN 978-88-88793-93-1. [Google Scholar]
- Besnard, G.; Breton, C.; Baradat, P.; Khadari, B.; Bervillé, A. Cultivar Identification in Olive Based on RAPD Markers. J. Am. Soc. Hortic. Sci. 2001, 126, 668. [Google Scholar] [CrossRef]
- D’Imperio, M.; Viscosi, V.; Scarano, M.-T.; D’Andrea, M.; Zullo, B.A.; Pilla, F. Integration between molecular and morphological markers for the exploitation of olive germoplasm (Olea europaea). Sci. Hortic. 2011, 130, 229–240. [Google Scholar] [CrossRef]
- Sion, S.; Savoia, M.A.; Gadaleta, S.; Piarulli, L.; Mascio, I.; Fanelli, V.; Montemurro, C.; Miazzi, M.M. How to Choose a Good Marker to Analyze the Olive Germplasm (Olea europaea L.) and Derived Products. Genes 2021, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Carvalho, J.; Trujillo, I.; Prado, M. Microsatellite Markers in Olives (Olea europaea L.): Utility in the Cataloging of Germplasm, Food Authenticity and Traceability Studies. Foods 2021, 10, 1907. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, V.; Sion, S.; Taranto, F.; D’Agostino, N.; Montemurro, C.; Fanelli, V.; Sabetta, W.; Boucheffa, S.; Tamendjari, A.; Pasqualone, A.; et al. Genetic flow among olive populations within the Mediterranean basin. PeerJ 2018, 6, e5260. [Google Scholar] [CrossRef] [PubMed]
- Valeri, M.C.; Mifsud, D.; Sammut, C.; Pandolfi, S.; Lilli, E.; Bufacchi, M.; Stanzione, V.; Passeri, V.; Baldoni, L.; Mariotti, R.; et al. Exploring Olive Genetic Diversity in the Maltese Islands. Sustainability 2022, 14, 10684. [Google Scholar] [CrossRef]
- Velasco, L.; Fernández-Cuesta, Á.; De la Rosa, R.; Victoria Ruiz-Méndez, M.; León, L. Selection for Some Olive Oil Quality Components Through the Analysis of Fruit Flesh. J. Am. Oil Chem. Soc. 2014, 91, 1731–1736. [Google Scholar] [CrossRef]
- Díez, C.M.; Trujillo, I.; Barrio, E.; Belaj, A.; Barranco, D.; Rallo, L. Centennial olive trees as a reservoir of genetic diversity. Ann. Bot. 2011, 108, 797–807. [Google Scholar] [CrossRef]
- Mousavi, S.; de la Rosa, R.; Moukhli, A.; El Riachy, M.; Mariotti, R.; Torres, M.; Pierantozzi, P.; Stanzione, V.; Mastio, V.; Zaher, H.; et al. Plasticity of fruit and oil traits in olive among different environments. Sci. Rep. 2019, 9, 16968. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Stevens, D.T.; Lanfranco, E.; Mallia, A.; Schembri, P.J. Biodiversity Conservation and Utilisation in the Maltese Islands. In Proceedings of the Commonwealth Science Council Conference on Identifying and Monitoring Biodiversity and its Utilization in Commonwealth Small Island Developing States, Valletta, Malta, 30 October—3 November 1995; pp. 1–33. [Google Scholar]
- Sabatini, N. A Comparison of the Volatile Compounds, in Spanish-style, Greek-style and Castelvetrano-style Green Olives of the Nocellara del Belice Cultivar: In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 219–231. ISBN 9780123744203. [Google Scholar]
- Barone, E.; La Mantia, M.; Marchese, A.; Marra, F.P. Improvement in yield and fruit size and quality of the main Italian table olive cultivar “Nocellara del Belice”. Sci. Agric. 2014, 71, 52–57. [Google Scholar] [CrossRef]
- Accardi, G.; Aiello, A.; Gargano, V.; Gambino, C.M.; Caracappa, S.; Marineo, S.; Vesco, G.; Carru, C.; Zinellu, A.; Zarcone, M.; et al. Nutraceutical effects of table green olives: A pilot study with Nocellara del Belice olives. Immun. Ageing 2016, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Blazakis, K.N.; Kosma, M.; Kostelenos, G.; Baldoni, L.; Bufacchi, M.; Kalaitzis, P. Description of olive morphological parameters by using open access software. Plant Methods 2017, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Rallo, P.; Morales-Sillero, A.; Brenes, M.; del Rocio Jiménez, M.; Sánchez, A.H.; Suarez, M.P.; Casanova, L.; Romero, C. Elaboration of Table Olives: Assessment of New Olive Genotypes. Eur. J. Lipid Sci. Technol. 2018, 120, 1800008. [Google Scholar] [CrossRef]
- Ucceda, M.; Hermoso, M. La calidad del aceite de olive. In El Cultivo del Olivo; Barranco, D., Fernàndez-Escobar, R., Rallo, L., Eds.; Ediciones Mundi-Prensa: Madrid, Spain, 1998; pp. 547–572. [Google Scholar]
- León, L.; de la Rosa, R.; Velasco, L.; Belaj, A. Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition. Front. Plant Sci. 2018, 9, 232. [Google Scholar] [CrossRef]
- Elgadi, S.; Ouhammou, A.; Zine, H.; Maata, N.; Ait Babahmad, R.; El Antari, A. Comparative Oil Composition Study of the Endemic Moroccan Olive (Olea europaea subsp. maroccana) and Wild Olive (var. Sylvestris) in Central West Morocco. J. Food Qual. 2021, 2021, 8869060. [Google Scholar] [CrossRef]
- Abdul Hamid, R.; Hag Husein, H.; Bäumler, R. Characteristics of Some Wild Olive Phenotypes (Oleaster) Selected from the Western Mountains of Syria. Sustainability 2022, 14, 5151. [Google Scholar] [CrossRef]
- Besnard, G.; Khadari, B.; Navascués, M.; Fernández-Mazuecos, M.; El Bakkali, A.; Arrigo, N.; Baali-Cherif, D.; Brunini-Bronzini de Caraffa, V.; Santoni, S.; Vargas, P.; et al. The complex history of the olive tree: From Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122833. [Google Scholar] [CrossRef]
- Besnard, G.; Hernández, P.; Khadari, B.; Dorado, G.; Savolainen, V. Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biol. 2011, 11, 80. [Google Scholar] [CrossRef]
- Emma, M.R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, G.; Cervello, M.; Cusimano, A. Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int. J. Mol. Sci. 2021, 22, 1234. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.C.; Navarro-Pérez, M.L.; Blanco-Roca, M.T.; Gómez-Navia, C.; Pérez-Giraldo, C.; Vadillo-Rodríguez, V. Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols also Found in Olive Oil and High Amounts of Flavonoids. Molecules 2020, 25, 3318. [Google Scholar] [CrossRef] [PubMed]
- Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L. The Nutraceutical Value of Olive Oil and Its Bioactive Constituents on the Cardiovascular System. Focusing on Main Strategies to Slow Down Its Quality Decay during Production and Storage. Nutrients 2019, 11, 1962. [Google Scholar] [CrossRef]
- Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Miho, H.; Moral, J.; Barranco, D.; Ledesma-Escobar, C.A.; Priego-Capote, F.; Díez, C.M. Influence of genetic and interannual factors on the phenolic profiles of virgin olive oils. Food Chem. 2021, 342, 128357. [Google Scholar] [CrossRef] [PubMed]
- Losito, I.; Abbattista, R.; De Ceglie, C.; Castellaneta, A.; Calvano, C.D.; Cataldi, T.R.I. Bioactive Secoiridoids in Italian Extra-Virgin Olive Oils: Impact of Olive Plant Cultivars, Cultivation Regions and Processing. Molecules 2021, 26, 743. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, R.; Belaj, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Exploration of genetic resources to improve the functional quality of virgin olive oil. J. Funct. Foods 2017, 38, 1–8. [Google Scholar] [CrossRef]
- Karkoula, E.; Melliou, E.; Magiatis, P.; Demopoulos, V.; Karkoula, E.; Magiatis, P.; Melliou, E.; Kotsiras, A.; Mouroutoglou, C.; Skantzari, A.; et al. Quantitative Measurement of Major Secoiridoid Derivatives in Olive. J. Agric. Food Chem. 2014, 62, 600–607. [Google Scholar] [CrossRef]
- Trombetta, D.; Smeriglio, A.; Marcoccia, D.; Giofrè, S.; Toscano, G.; Mazzotti, F.; Giovanazzi, A.; Lorenzetti, S. Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. Int. J. Mol. Sci. 2017, 18, 797. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Lanza, B.; Ninfali, P. Antioxidants in extra virgin olive oil and table olives: Connections between agriculture and processing for health choices. Antioxidants 2020, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Sicari, V.; Leporini, M.; Giuffré, A.M.; Aiello, F.; Falco, T.; Pagliuso, M.T.; Ruffolo, A.; Reitano, A.; Romeo, R.; Tundis, R.; et al. Quality parameters, chemical compositions and antioxidant activities of Calabrian (Italy) monovarietal extra virgin olive oils from autochthonous (Ottobratica) and allochthonous (Coratina, Leccino, and Nocellara Del Belice) varieties. J. Food Meas. Charact. 2021, 15, 363–375. [Google Scholar] [CrossRef]
- Mousavi, S.; Stanzione, V.; Mariotti, R.; Mastio, V.; Azariadis, A.; Passeri, V.; Valeri, M.C.; Baldoni, L.; Bufacchi, M. Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype. Antioxidants 2022, 11, 672. [Google Scholar] [CrossRef] [PubMed]
- Gulfraz, M.; Kasuar, R.; Arshad, G.; Mehmood, S.; Minhas, N.; Asad, M.J.; Ahmad, A.; Siddique, F. Isolation and characterization of edible oil from wild olive. African J. Biotechnol. 2009, 8, 3734–3738. [Google Scholar]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. Factors Affecting Extra-Virgin Olive Oil Composition. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; Volume 38, pp. 83–147. ISBN 9780470872376. [Google Scholar]
- Hannachi, H.; Nasri, N.; Elfalleh, W.; Tlili, N.; Ferchichi, A.; Msallem, M. Fatty Acids, Sterols, Polyphenols, and Chlorophylls of Olive Oils Obtained from Tunisian Wild Olive Trees (Olea europaea L. Var. Sylvestris). Int. J. Food Prop. 2013, 16, 1271–1283. [Google Scholar] [CrossRef]
- Bouarroudj, K.; Tamendjari, A.; Larbat, R. Quality, composition and antioxidant activity of Algerian wild olive (Olea europaea L. subsp. Oleaster) oil. Ind. Crops Prod. 2016, 83, 484–491. [Google Scholar] [CrossRef]
- Espínola, F.; Vidal, A.M.; Espínola, J.M.; Moya, M. Processing effect and characterization of olive oils from spanish wild olive trees (Olea europaea var. sylvestris). Molecules 2021, 26, 1304. [Google Scholar] [CrossRef]
- Lanza, B. Nutritional and Sensory Quality of Table Olives. In Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy; InTech: Rijeka, Croatia, 2012; Volume 4, pp. 22–26. [Google Scholar]
- Iaria, D.L.; Chiappetta, A.; Muzzalupo, I. A de novo transcriptomic approach to identify flavonoids and anthocyanins “switch-off” in olive (Olea europaea L.) drupes at different stages of maturation. Front. Plant Sci. 2016, 6, 1246. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Contreras, C.; Stanzione, V.; Tivani, M.; Mastio, V.; Gentili, L.; Searles, P.; Brizuela, M.; Fernández, F.; et al. Thermal regime and cultivar effects on squalene and sterol contents in olive fruits: Results from a field network in different Argentinian environments. Sci. Hortic. 2022, 303, 111230. [Google Scholar] [CrossRef]
- Ronco, A.L.; De Stéfani, E. Squalene: A multi-task link in the crossroads of cancer and aging. Funct. Foods Heal. Dis. 2013, 3, 462. [Google Scholar] [CrossRef]
- Micera, M.; Botto, A.; Geddo, F.; Antoniotti, S.; Bertea, C.M.; Levi, R.; Gallo, M.P.; Querio, G. Squalene: More than a step toward sterols. Antioxidants 2020, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Osada, J. Could squalene be an added value to use olive by-products? J. Sci. Food Agric. 2020, 100, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.; Chaudhary, P. Squalene: Miraculous Triterpene. Int. Med. Leg. Report. J. 2020, 3, 19–28. [Google Scholar]
- Fernández-Cuesta, A.; León, L.; Velasco, L.; De la Rosa, R. Changes in squalene and sterols associated with olive maturation. Food Res. Int. 2013, 54, 1885–1889. [Google Scholar] [CrossRef]
- Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother. 2020, 131, 110702. [Google Scholar] [CrossRef]
- Lukić, M.; Lukić, I.; Moslavac, T. Sterols and triterpene diols in virgin olive oil: A comprehensive review on their properties and significance, with a special emphasis on the influence of variety and ripening degree. Horticulturae 2021, 7, 493. [Google Scholar] [CrossRef]
- Kyçyk, O.; Aguilera, M.P.; Gaforio, J.J.; Jiménez, A.; Beltrán, G. Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. J. Sci. Food Agric. 2016, 96, 4143–4150. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Louadj, L. Influence of crop season and cultivar on sterol composition of monovarietal olive oils in Reggio Calabria (Italy). Czech J. Food Sci. 2013, 31, 256–263. [Google Scholar] [CrossRef]
- Rey-Giménez, R.; Sánchez-Gimeno, A.C. Authenticity in Olive Oils from an Empeltre Clonal Selection in Aragon (Spain): How Environmental, Agronomic, and Genetic Factors Affect Sterol Composition. Foods 2022, 11, 2587. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Perdomo, L.; Beneit, N.; Otero, Y.F.; Escribano, Ó.; Díaz-Castroverde, S.; Gómez-Hernández, A.; Benito, M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 2015, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Gnoni, A.; Longo, S.; Damiano, F.; Gnoni, G.V.; Giudetti, A.M. Oleic acid and olive oil polyphenols downregulate fatty acid and cholesterol synthesis in brain and liver cells. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 651–657. ISBN 9780128195284. [Google Scholar]
- Polley, K.R.; Miller, M.K.; Johnson, M.; Vaughan, R.; Paton, C.M.; Cooper, J.A. Metabolic responses to high-fat diets rich in MUFA v. PUFA. Br. J. Nutr. 2018, 120, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Sacanella, E.; Tahiri, I.; Casas, R. Mediterranean diet and role of olive oil. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2021; pp. 205–214. [Google Scholar]
- Di Stefano, V. Extra-virgin olive oils storage: Effect on constituents of biological significance. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2021; pp. 291–297. [Google Scholar]
- IOC. Trade Standard Applying to Olive Oils and Olive Pomace Oils; International Olive Council: Madrid, Spain, 2019; Volume 15, pp. 1–17. [Google Scholar]
- Rodrigues, N.; Casal, S.; Pinho, T.; Cruz, R.; Peres, A.M.; Baptista, P.; Pereira, J.A. Fatty Acid Composition from Olive Oils of Portuguese Centenarian Trees Is Highly Dependent on Olive Cultivar and Crop Year. Foods 2021, 10, 496. [Google Scholar] [CrossRef]
- Beltrán, G.; Del Rio, C.; Sánchez, S.; Martínez, L. Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual. J. Agric. Food Chem. 2004, 52, 3434–3440. [Google Scholar] [CrossRef] [PubMed]
- García-Inza, G.P.; Castro, D.N.; Hall, A.J.; Rousseaux, M.C. Responses to temperature of fruit dry weight, oil concentration, and oil fatty acid composition in olive (Olea europaea L. var. ’Arauco’). Eur. J. Agron. 2014, 54, 107–115. [Google Scholar] [CrossRef]
- Hernández, M.L.; Padilla, M.N.; Sicardo, M.D.; Mancha, M.; Martínez-Rivas, J.M. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry 2011, 72, 178–187. [Google Scholar] [CrossRef]
- Contreras, C.; Mariotti, R.; Mousavi, S.; Baldoni, L.; Guerrero, C.; Roka, L.; Cultrera, N.; Pierantozzi, P.; Maestri, D.; Gentili, L.; et al. Characterization and validation of olive FAD and SAD gene families: Expression analysis in different tissues and during fruit development. Mol. Biol. Rep. 2020, 47, 4345–4355. [Google Scholar] [CrossRef]
- Borges, T.H.; Pereira, J.A.; Cabrera-Vique, C.; Lara, L.; Oliveira, A.F.; Seiquer, I. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem. 2017, 215, 454–462. [Google Scholar] [CrossRef]
- Chehade, A.; Bitar, A.; Kadri, A.; Choueiri, E.; Nabbout, R.; Youssef, H.; Smeha, M.; Awada, A.; Chami, Z.; Dubla, E.; et al. In situ evaluation of the fruit and oil characteristics of the main Lebanese olive germplasm. J. Sci. Food Agric. 2016, 96, 2532–2538. [Google Scholar] [CrossRef]
- Cayuela, J.A.; García, J.M.; Caliani, N. NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas Aceites 2009, 60, 194–202. [Google Scholar] [CrossRef]
- Crawford, L.M.; Holstege, D.M.; Wang, S.C. High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea). J. Food Compos. Anal. 2018, 66, 136–144. [Google Scholar] [CrossRef]
- Del Río, J. Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food Chem. 2003, 83, 75–78. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef] [PubMed]
- Garces, R.; Mancha, M. One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fresh Plant Tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99. [Google Scholar] [CrossRef]
Sample Name | Matched Genotype | Cultivation Area and Tree Status, Brief Description |
---|---|---|
1Bidni | Bidni | Deep soil in a cultivated field. Status of tree: not abandoned but needs to be taken care of |
1Plattini | Nocellara del Belice | Deep soil in an uncultivated field. Status of tree: abandoned |
1Bingemma Malta | Unknown | Deep soil in a cultivated field. Status of tree: abandoned |
1Caritas | Leucocarpa | Deep soil in a cultivated orchard. Status of tree: good maintenance |
1Haz Zebbug | Unknown | Deep soil in an uncultivated field. Status of tree: abandoned |
1Mellieha | Unknown | Shallow rocky soil in a garigue habitat in an uncultivated field. Status of tree: abandoned |
1Pembroke | Unknown | Medium level of soil in a maquis habitat in a valley. Status of tree: abandoned |
2Pembroke | Unknown | Medium level of soil in a maquis habitat in a valley. Status of tree: abandoned |
1Wardija | Unknown | Deep soil slope in a maquis/woodland environment. Status of tree: abandoned |
2Wardija | Unknown | Deep soil slope in a maquis/woodland environment. Status of tree: abandoned |
2Qnotta | Unknown | Deep soil in a cultivated field. Status of tree: abandoned |
2Gudja | Unknown | Deep soil in an uncultivated field. Status of tree: abandoned |
3Gudja | Ottobratica | Deep soil in a cultivated field. Status of tree: abandoned |
2Kappara | Unknown | Deep soil in an uncultivated patch of the field. Status of tree: abandoned |
2Mtarfa | Unknown | Rocky shallow soil in a transition between a garigue and maquis environment. Status of tree: abandoned |
5Mtarfa | Unknown | Rocky shallow soil in a transition between a garigue and maquis environment. Status of tree: abandoned |
6Mtarfa | Unknown | Rocky shallow soil in a transition between a garigue and maquis environment. Status of tree: abandoned |
3Loretu | Unknown | Deep soil in a cultivated garden. Status of tree: fair maintenance |
1Lunzjata | Unknown | Deep soil in a cultivated orchard. Status of tree: abandoned |
Sample Name | Year | FW (g) | FrM (%) | (P/P) | OCFW (%) | OCDW (%) |
---|---|---|---|---|---|---|
1Bidni | 2020 | 0.87 ± 0.04 ghi | 58.34 ± 0.56 bcd | 2.41 ± 0.01 e | 10.09 ± 0.17 c | 24.81 ± 0.50 de |
2022 | 0.55 ± 0.02 jk | 52.81 ± 0.94 ij | 2.11 ± 0.005 j | 11.38 ± 0.70 ef | 24.14 ± 0.48 f | |
1Bingemma Malta | 2020 | 1.90 ± 0.07 d | 61.95 ± 0.04 a | 3.20 ± 0.07 c | 10.74 ± 1.00 c | 28.24 ± 2.62 cd |
2022 | 4.26 ± 0.01 d | 57.87 ± 0.22 fg | 6.27 ± 0.001 c | 18.14 ± 0.23 ab | 43.05 ± 0.23 b | |
2Gudja | 2020 | 0.78 ± 0.03 ghi | 60.50 ± 0.80 abc | 2.22 ± 0.01 f | 4.31 ± 0.09 e | 10.90 ± 0.22 f |
2022 | 0.72 ± 0.02 j | 57.24 ± 0.39 g | 1.75 ± 0.01 m | 3.80 ± 0.23 ij | 8.89 ± 0.08 i | |
3Gudja | 2020 | 1.57 ± 0.06 de | 58.37 ± 0.48 bcd | 3.23 ± 0.01 c | 14.59 ± 0.18 b | 35.05 ± 0.43 bc |
2022 | 2.03 ± 0.03 f | 57.43 ± 1.04 fg | 3.24 ± 0.03 i | 15.76 ± 0.27 d | 37.06 ± 0.89 c | |
2Kappara | 2020 | 1.42 ± 0.10 ef | 59.52 ± 1.53 abc | 1.86 ± 0.02 g | 6.89 ± 0.22 d | 20.03 ± 0.54 e |
2022 | 1.34 ± 0.01 h | 54.80 ± 0.03 hi | 1.92 ± 0.02 kl | 7.82 ± 0.34 g | 17.30 ± 0.01 g | |
2Mtarfa | 2020 | 0.51 ± 0.001 i | 50.06 ± 0.31 e | 1.08 ± 0.01 h | 2.91 ± 0.03 e | 6.58 ± 0.08 f |
2022 | 0.41 ± 0.003 k | 56.69 ± 0.09 gh | 1.29 ± 0.01 n | 2.52 ± 0.18 jk | 5.82 ± 0.01 j | |
5Mtarfa | 2020 | 1.06 ± 0.01 fgh | 46.86 ± 0.71 f | 2.28 ± 0.05 ef | 15.63 ± 0.62 b | 29.42 ± 1.16 cd |
2022 | 0.92 ± 0.004 i | 51.91 ± 0.19 j | 2.00 ± 0.01 jk | 6.82 ± 0.20 h | 13.06 ± 0.05 h | |
6Mtarfa | 2020 | 1.18 ± 0.04 defg | 45.23 ± 0.19 f | 2.96 ± 0.01 d | 10.51 ± 0.001 c | 19.19 ± 0.002 e |
2022 | 0.40 ± 0.01 k | 54.41 ± 0.08 i | 1.72 ± 0.01 m | na | na | |
1Pembroke | 2020 | 0.50 ± 0.04 i | 48.93 ± 0.21 e | 1.04 ± 0.01 h | 2.23 ± 0.04 e | 4.82 ± 0.05 f |
2022 | 0.52 ± 0.003 jk | 49.55 ± 0.23 k | 1.03 ± 0.01 o | 2.52 ± 0.18 jk | 5.00 ± 0.02 j | |
1Plattini | 2020 | 5.30 ± 0.05 b | 61.32 ± 0.18 ab | 6.67 ± 0.04 a | 15.72 ± 0.27 b | 39.92 ± 1.07 b |
2022 | 5.14 ± 0.05 c | 64.25 ± 0.11 ab | 6.80 ± 0.04 b | 16.55 ± 0.30 cd | 46.28 ± 0.14 a | |
2Qnotta | 2020 | 2.38 ± 0.17 c | 62.46 ± 0.57 a | 2.38 ± 0.18 b | 9.66 ± 1.17 c | 25.73 ± 3.11 de |
2022 | 1.89 ± 0.05 fg | 61.49 ± 0.05 cd | 4.08 ± 0.02 g | 12.47 ± 0.23 e | 32.39 ± 0.04 d | |
1Wardija | 2020 | 6.60 ± 0.19 a | 58.17 ± 0.15 cd | 6.60 ± 0.19 a | 24.59 ± 0.06 a | 58.19 ± 0.15 a |
2022 | 7.96 ± 0.04 a | 58.56 ± 0.02 efg | 6.97 ± 0.03 a | 19.00 ± 0.23 a | 45.85 ± 0.02 a | |
2Wardija | 2020 | 1.49 ± 0.06 def | 56.40 ± 0.28 d | 1.72 ± 0.03 g | 9.33 ± 0.07 c | 23.21 ± 0.02 de |
2022 | 1.29 ± 0.03 h | 60.30 ± 0.05 de | 4.79 ± 0.02 e | 5.60 ± 0.26 h | 14.10 ± 0.02 h | |
1Caritas | 2022 | 5.77 ± 0.10 b | 58.49 ± 0.01 efg | 5.05 ± 0.07 d | 17.42 ± 0.27 bc | 41.97 ± 0.03 b |
1Haz Zebbug | 2022 | 0.52 ± 0.01 jk | 48.62 ± 0.45 k | 1.02 ± 0.01 o | 4.06 ± 0.23 i | 7.90 ± 0.07 i |
3Loretu | 2022 | 1.76 ± 0.04 g | 62.44 ± 0.10 bc | 4.33 ± 0.02 f | 10.82 ± 0.21 f | 28.81 ± 0.08 e |
1Lunzjata | 2022 | 0.62 ± 0.01 j | 64.55 ± 0.01 a | 1.89 ± 0.01 kl | 2.19 ± 0.26 k | 6.16 ± 0.002 j |
1Mellieha | 2022 | 2.58 ± 0.07 e | 54.55 ± 0.19 i | 3.38 ± 0.01 h | 17.06 ± 0.23 bcd | 37.55 ± 0.16 c |
2Pembroke | 2022 | 0.40 ± 0.01 k | 59.38 ± 0.31 ef | 1.83 ± 0.004 lm | 3.28 ± 0.35 ijk | 8.07 ± 0.06 i |
Sample Name | Year | Squalene | Total Sterols |
---|---|---|---|
1Bidni | 2020 | 315.99 ± 52.78 c | 406.39 ± 39.08 ab |
2022 | 122.70 ± 16.58 e | 177.32 ± 20.97 cde | |
1Bingemma Malta | 2020 | 2557.86 ± 163.96 b | 441.12 ± 8.87 ab |
2022 | 5554.26 ± 769.43 b | 286.84 ± 6.21 ab | |
1Pembroke | 2020 | 54.34 ± 1.28 c | 61.48 ± 1.51 d |
2022 | 21.91 ± 2.32 e | 76.93 ± 4.64 f | |
1Plattini | 2020 | 6020.81 ± 774.80 a | 374.37 ± 2.89 abc |
2022 | 9558.08 ± 1096.13 a | 231.74 ± 15.87 bc | |
1Wardija | 2020 | 5697.61 ± 407.18 a | 405.51 ± 185.20 ab |
2022 | 4604.50 ± 721.08 bc | 287.96 ± 5.84 ab | |
2Gudja | 2020 | 196.69 ± 12.54 c | 88.75 ± 4.12 d |
2022 | 115.78 ± 6.03 e | 106.54 ± 4.31 ef | |
2Kappara | 2020 | 959.88 ± 91.76 c | 550.28 ± 16.22 a |
2022 | 333.55 ± 44.31 e | 217.70 ± 16.72 bcd | |
2Mtarfa | 2020 | 63.79 ± 5.20 c | 68.23 ± 7.85 d |
2022 | 31.30 ± 0.97 e | 106.97 ± 7.89 ef | |
2Qnotta | 2020 | 83.75 ± 3.96 c | 226.07 ± 11.57 bcd |
2022 | 2517.33 ± 175.66 cd | 281.62 ± 37.27 ab | |
2Wardija | 2020 | 298.11 ± 20.49 c | 120.94 ± 8.31 cd |
2022 | 104.53 ± 8.56 e | 174.95 ± 10.96 cde | |
3Gudja | 2020 | 377.54 ± 9.04 c | 180.55 ± 5.11 bcd |
2022 | 630.15 ± 56.69 de | 332.73 ± 15.15 a | |
5Mtarfa | 2020 | 402.59 ± 5.82 c | 168.38 ± 1.39 bcd |
2022 | 127.32 ± 18.49 e | 140.04 ± 13.15 def | |
6Mtarfa | 2020 | 170.81 ± 19.79 c | 87.82 ± 5.35 d |
2022 | 51.72 ± 5.75 e | 83.74 ± 11.73 f | |
1Caritas | 2022 | 5185.78 ± 731.16 b | 266.69 ± 22.81 ab |
1Haz Zebbug | 2022 | 14.39 ± 0.68 e | 98.38 ± 4.62 ef |
3Loretu | 2022 | 2025.60 ± 250.64 de | 235.40 ± 15.14 bc |
1Lunzjata | 2022 | 33.03 ± 6.99 e | 220.73 ± 2.14 bcd |
1Mellieha | 2022 | 775.28 ± 141.45 de | 285.95 ± 27.51 ab |
2Pembroke | 2022 | 19.95 ± 1.61 e | 71.63 ± 6.43 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passeri, V.; Sammut, C.; Mifsud, D.; Domesi, A.; Stanzione, V.; Baldoni, L.; Mousavi, S.; Mariotti, R.; Pandolfi, S.; Cinosi, N.; et al. The Ancient Olive Trees (Olea europaea L.) of the Maltese Islands: A Rich and Unexplored Patrimony to Enhance Oliviculture. Plants 2023, 12, 1988. https://doi.org/10.3390/plants12101988
Passeri V, Sammut C, Mifsud D, Domesi A, Stanzione V, Baldoni L, Mousavi S, Mariotti R, Pandolfi S, Cinosi N, et al. The Ancient Olive Trees (Olea europaea L.) of the Maltese Islands: A Rich and Unexplored Patrimony to Enhance Oliviculture. Plants. 2023; 12(10):1988. https://doi.org/10.3390/plants12101988
Chicago/Turabian StylePasseri, Valentina, Clayton Sammut, David Mifsud, Andrea Domesi, Vitale Stanzione, Luciana Baldoni, Soraya Mousavi, Roberto Mariotti, Saverio Pandolfi, Nicola Cinosi, and et al. 2023. "The Ancient Olive Trees (Olea europaea L.) of the Maltese Islands: A Rich and Unexplored Patrimony to Enhance Oliviculture" Plants 12, no. 10: 1988. https://doi.org/10.3390/plants12101988
APA StylePasseri, V., Sammut, C., Mifsud, D., Domesi, A., Stanzione, V., Baldoni, L., Mousavi, S., Mariotti, R., Pandolfi, S., Cinosi, N., Famiani, F., & Bufacchi, M. (2023). The Ancient Olive Trees (Olea europaea L.) of the Maltese Islands: A Rich and Unexplored Patrimony to Enhance Oliviculture. Plants, 12(10), 1988. https://doi.org/10.3390/plants12101988