Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of SFE Parameters on Extract Yield
2.2. Effects of Process Variables on Total Phenolic Compounds
2.3. Antioxidant Properties of ME
2.4. Antibacterial Activity of ME
2.5. Optimization of the Extraction Process
2.6. GC-MS Chemical Compositions
2.7. Comparison of Supercritical Fluid Extraction with the Conventional ME
2.7.1. Antioxidant Activity
2.7.2. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Materials, Cultures, and Chemicals
3.2. Supercritical Fluid Extraction
3.3. Hydro-Distillation Extraction
3.4. Total Phenolic Content (TPC)
3.5. Antioxidant Measurements of ME
3.5.1. DPPH Radical Scavenging Activity
3.5.2. ABTS Radical Scavenging Activity
3.5.3. Ferric Reducing Antioxidant Power
3.6. Antimicrobial Activities
3.6.1. Agar Well Radical Diffusion Assay
3.6.2. Determination of Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
3.7. Gas Chromatographic/Mass Spectrometry (GC/MS) Analysis of Essential Oil Compositions
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bubpawan, P.; Boonphong, S.; Sriwattanawarunyoo, C.; Udeye, V. Characterization of the essential oil and fatty oil from Makhwaen fruit (Zanthoxylum rhetsa (Roxb.) DC). NU Int. J. Sci. 2015, 12, 1–10. [Google Scholar]
- Wongkattiya, N.; Akekawatchai, C.; Sanguansermsri, P.; Fraser, I.; Pratoomsoot, C.; Sanguansermsri, D. Chemical compositions and biological properties of essential oils from Zanthoxylum rhetsa. (Roxb.) DC and Zanthoxylum limonella Alston. Afr. J. Tradit. Complement Altern. Med. 2018, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Tangjitjaroenkun, J.; Chantarasriwong, O.; Chavasiri, W. Chemical constituents of the stems of Zanthoxylum limonella Alston. Phytochem. Lett. 2012, 5, 443–445. [Google Scholar] [CrossRef]
- Li, H.L.; Zhou, N.; Guo, D.Q. The complete chloroplast genome of Zanthoxylum acanthopodium DC. (Rutaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour. 2020, 5, 3636–3637. [Google Scholar] [CrossRef]
- Kruewong, W.; Auamcharoen, W. Acaricidal and repellent activity of Zanthoxylum myriacanthum (Rutaceae) fruit extracts against Tetranychus urticae and Tetranychus truncatus (Acari: Tetranychidae). J. Insect Sci. 2023, 58, 119–134. [Google Scholar] [CrossRef]
- Sriwichai, T.; Junmahasathien, T.; Sookwong, P.; Potapohn, N.; Sommano, S.R. Evaluation of the optimum harvesting maturity of Makhwaen fruit for the perfumery industry. Agriculture 2019, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Kuo, J.; Chang, C.F.; Chi, W.C. Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance. Folia Microbiol. 2021, 66, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, C.H.; Napitupulu, F.I.; Karnady, V.; Indariani, S. A review of the bioactivity and flavor properties of the exotic spice “andaliman” (Zanthoxylum acanthopodium DC.). Food Rev. Int. 2019, 35, 1–19. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Li, R.; Yan, Y.; Yin, J.; Dai, Q.; Guo, X.; Li, W.; Li, Y.; Liu, M.; et al. In vitro and in vivo antiviral activity of Maqian (Zanthoxylum myriacanthum var. pubescens) essential oil and its major constituents against strains of influenza virus. Ind. Crops Prod. 2022, 177, 114524. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, D.; He, L.; Wang, D.; Wang, L.; Tang, D.; Zhao, R.; Ye, X.; Wu, C.; Peng, W. Application of response surface methodology (RSM) for optimization of the supercritical CO2 extract of oil from Zanthoxylum bungeanum pericarp: Yield, composition and gastric protective effect. Food Chem. 2022, 15, 100391. [Google Scholar] [CrossRef]
- Arumugham, T.K.R.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. Trends Anal. Chem. 2019, 118, 182–193. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C. Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modeling and solubility evaluation. J. Supercrit. Fluids. 2019, 151, 30–39. [Google Scholar] [CrossRef]
- Tan, W.K.; Lee, S.Y.; Lee, W.J.; Hee, Y.Y.; Zainal Abedin, N.H.; Abas, F.; Chong, G.H. Supercritical carbon dioxide extraction of pomegranate peel-seed mixture: Yield and modeling. J. Food Eng. 2021, 301, 110550. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, H.; King, J.W.; Ehsani, A.; Yousefi, M. Supercritical fluid extraction of seed oils—A short review of current trends. Trends Food Sci. Technol. 2021, 111, 249–260. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Putra, N.; Hazim, A.; Abdul Aziz, A.H.; Idham, Z.; Ruslan, M.S.; Che Yunus, M.A. Diffusivity optimization of supercritical carbon dioxide extraction with co-solvent-ethanol from peanut skin. Malays. J. Fundam. Appl. Sci. 2018, 14, 9–14. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. In vitro antibacterial activities of methanolic extracts of fruits, seeds, and bark of Zanthoxylum armatum DC. J. Trop. Med. 2020, 2020, 2803063. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, J.; Jia, Y.; Xiao, Z.; Li, P.; Xie, Y.; Zhang, A.; Liu, R.; Ren, Z.; Zhao, M.; et al. Essential oil extracted from Cymbopogon citronella leaves by supercritical carbon dioxide: Antioxidant and antimicrobial activities. J. Anal. Chem. 2019, 2019, 8192439. [Google Scholar] [CrossRef] [Green Version]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; Al-Farga, A.M. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Van de Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent advances in the application of antibacterial complexes using essential oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Camargo, A.d.P.; Parada-Alonso, F.; Ibáñez, E.; Cifuentes, A. Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J. Sep. Sci. 2019, 42, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.J.; Guo, S.S.; You, C.X.; Geng, Z.F.; Liang, J.Y.; Deng, Z.W.; Wang, C.F.; Du, S.S.; Wang, Y.Y. Chemical composition of essential oils from Zanthoxylum bungeanum Maxim. and their bioactivities against Lasioderma serricorne. J Oleo Sci. 2016, 65, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Udenigwe, C.C. Zanthoxylum Species: A comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications. Molecules 2021, 26, 4023. [Google Scholar] [CrossRef]
- Supabphol, R.; Tangjitjaroenkun, J. Chemical constituents and biological activities of Zanthoxylum limonella (Rutaceae): A Review. Trop. J. Pharm. Res. 2015, 13, 2119. [Google Scholar] [CrossRef] [Green Version]
- Sriwichai, T.; Wisetkomolmat, J.; Pusadee, T.; Sringarm, K.; Duangmal, K.; Prasad, S.K.; Chuttong, B.; Sommano, S.R. Aromatic profile variation of essential oil from dried Makwhaen fruit and related species. Plants 2021, 10, 803. [Google Scholar] [CrossRef] [PubMed]
- Dhami, A.; Singh, A.; Palariya, D.; Kumar, R.; Prakash, O.; Rawat, D.S.; Pant, A.K. α-Pinene rich bark essential oils of Zanthoxylum armatum DC. from three different altitudes of Uttarakhand, India and their antioxidant, in vitro anti-inflam matory and antibacterial activity. J. Essent. Oil Bear. Plants 2019, 22, 660–674. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodivers. 2019, 16, 1900434. [Google Scholar] [CrossRef]
- Quan, N.V.; Anh, L.H.; Lam, V.Q.; Takami, A.; Teschke, R.; Khanh, T.D.; Xuan, T.D. Anti-diabetes, anti-gout, and anti-leukemia properties of essential oils from natural spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. Molecules 2022, 27, 774. [Google Scholar] [CrossRef]
- Lopresto, C.G.; Meluso, A.; Di Sanzo, G.; Chakraborty, S.; Calabrò, V. Process-intensified waste valorization and environment tally friendly D-limonene extraction. EMJE 2019, 4, 31. [Google Scholar] [CrossRef]
- Sriwichai, T.; Sookwong, P.; Siddiqui, M.W.; Sommano, S.R. Aromatic profiling of Zanthoxylum myriacanthum (makwhaen) essential oils from dried fruits using different initial drying techniques. Ind. Crops Prod. 2019, 133, 284–291. [Google Scholar] [CrossRef]
- Değirmenci, H.; Erkurt, H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef]
- Chaiwong, N.; Phimolsiripol, Y.; Leelapornpisid, P.; Ruksiriwanich, W.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Sommano, S.R.; Leksawasdi, N.; Simirgiotis, M.J.; et al. Synergistics of carboxymethyl chitosan and mangosteen extract as enhancing moisturizing, antioxidant, antibacterial, and deodorizing properties in emulsion cream. Polymers 2022, 14, 178. [Google Scholar] [CrossRef]
- Toazza, C.E.B.; Marques, C.; Amaral, W.d.; Masson, M.L. Comparative study of Elionurus muticus and Cymbopogon essential oils: Potential as food preservative and surface coating of strawberries. J. Essent. Oil Res. 2021, 33, 359–368. [Google Scholar] [CrossRef]
- Clain, E.; Baranauskienė, R.; Kraujalis, P.; Šipailienė, A.; Maždžierienė, R.; Kazernavičiūtė, R.; El Kalamouni, C.; Venskutonis, P.R. Biorefining of Cymbopogon nardus from Reunion Island into essential oil and antioxidant fractions by conventional and high pressure extraction methods. Ind. Crops Prod. 2018, 126, 158–167. [Google Scholar] [CrossRef]
- Phimolsiripol, Y.; Buadoktoom, S.; Leelapornpisid, P.; Jantanasakulwong, K.; Seesuriyachan, P.; Chaiyaso, T.; Leksawasdi, N.; Rachtanapun, P.; Chaiwong, N.; Sommano, S.; et al. Shelf life extension of chilled pork by optimal ultrasonicated Ceylon spinach (Basella alba) extracts: Physicochemical and microbial properties. Foods 2021, 10, 1241. [Google Scholar] [CrossRef] [PubMed]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Mitsagga, C.; Giavasis, I. The in vitro and in vivo synergistic antimicrobial activity assessment of vacuum microwave-assisted aqueous extracts from pomegranate and avocado fruit peels and avocado seeds based on a mixtures design model. Plants 2021, 10, 1757. [Google Scholar] [CrossRef] [PubMed]
- Charoensup, R.; Duangyod, T.; Phuneerub, P.; Singharachai, C. Pharmacognostic specification of Zanthoxylum limonella (Dennst.) Alston: Fruits and seeds in Thailand. J. Adv. Pharm. Technol. Res. 2016, 7, 134–138. [Google Scholar] [CrossRef] [PubMed]
Treatment | SFE Conditions | Properties | |||||
---|---|---|---|---|---|---|---|
Temperature (C°) | Pressure (MPa) | Extract Yield (%) | Total Phenols (mg GAE/mL) | IC50 DPPH (µg/mL Extract) | IC50 ABTS (µg/mL) | FRAP ns (mgFeSO4/mL) | |
1 (−1, −1) | 45 | 10 | 9.33 | 14.02 ± 0.13 | 97.80 ± 1.56 | 70.82 ± 1.34 | 157.7 ± 2.37 |
2 (+1, −1) | 60 | 10 | 9.33 | 26.7 ± 1.69 | 49.87 ± 1.37 | 30.59 ± 0.84 | 190.48 ± 1.72 |
3 (−1, +1) | 45 | 20 | 11.09 | 15.73 ± 0.13 | 48.12 ± 0.24 | 42.56 ± 0.34 | 173.86 ± 1.08 |
4 (+1, +1) | 60 | 20 | 17.43 | 31.04 ±1.82 | 40.43 ± 2.72 | 28.46 ± 0.26 | 165.17 ± 0.86 |
5 (−α, 0) | 40 | 15 | 7.92 | 14.92 ± 0.47 | 76.71 ± 2.33 | 73.55 ± 1.70 | 190.48 ± 5.17 |
6 (+α, 0) | 65 | 15 | 14.48 | 29.40 ± 1.03 | 32.68 ± 2.92 | 25.05 ± 1.87 | 152.97 ± 9.06 |
7 (0, −α) | 55 | 8 | 9.24 | 16.02 ± 0.27 | 75.81 ± 1.37 | 44.63 ± 0.61 | 187.73 ± 0.86 |
8 (0, +α) | 55 | 22 | 20.49 | 19.52 ± 0.57 | 31.62 ± 1.45 | 30.21 ± 0.48 | 152.36 ± 1.72 |
9 (0, 0) | 55 | 15 | 13.73 | 23.31± 1.98 | 59.90 ± 1.22 | 34.75 ± 1.02 | 184.38 ± 5.17 |
10 (0, 0) | 55 | 15 | 14.48 | 21.64 ±1.58 | 58.88 ± 1.08 | 34.42 ± 1.45 | 152.97 ± 9.06 |
11 (0, 0) | 55 | 15 | 12.66 | 26.08±2.03 | 60.56 ± 1.36 | 34.12 ± 1.25 | 140.78 ± 4.31 |
Adj. R2 | 0.875 | 0.767 | 0.990 | 0.998 | 0.366 | ||
p-value | 0.0002 | 0.0030 | <0.0001 | <0.0001 | 0.3341 |
Test Set | SFE Conditions | Inhibitory Activity of ME (mm) | ||||
---|---|---|---|---|---|---|
Temperature (C°) | Pressure (MPa) | S. aureus | B. subtilis | P. aeruginosa | E. coli | |
1 (−1, −1) | 45 | 10 | 14.56 ± 0.36 | - | - | 9.00 ± 0.05 |
2 (+1, −1) | 60 | 10 | 12.11 ± 0.18 | - | 9.33 ± 0.71 | 10.33 ± 0.09 |
3 (−1, +1) | 45 | 20 | 21.67 ± 0.27 | - | 7.00 ± 0.00 | 8.11 ± 0.03 |
4 (+1, +1) | 60 | 20 | 17.00 ± 0.25 | 7.56 ± 1.51 | 8.11 ± 0.33 | 8.11 ± 0.03 |
5 (−α, 0) | 40 | 15 | 12.22 ± 0.04 | 8.67 ± 1.12 | - | 8.00 ± 0.00 |
6 (+α, 0) | 65 | 15 | 11.33 ± 0.05 | 8.33 ± 0.50 | 8.00 ± 0.00 | 8.00 ± 0.00 |
7 (0, −α) | 55 | 8 | 15.44 ± 0.19 | - | 7.89 ± 1.54 | 14.11 ± 0.11 |
8 (0, +α) | 55 | 22 | 11.89 ± 0.03 | - | - | 8.11 ± 0.06 |
9 (0, 0) | 55 | 15 | 17.00 ± 0.13 | - | 7.44 ± 0.53 | 8.00 ± 0.05 |
10 (0, 0) | 55 | 15 | 12.11 ± 0.08 | - | 8.33 ± 0.50 | 8.33 ± 0.07 |
11 (0, 0) | 55 | 15 | 12.56 ± 0.09 | - | 8.00 ± 1.22 | 8.00 ± 0.05 |
Tetracycline (30 µg/mL) | 25.89 ± 1.62 | 47.60 ± 0.26 | 12.22 ± 0.04 | 8.67 ± 1.12 |
Treatment | SFE Conditions | MIC (%v/v) | MBC (%v/v) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Temperature (C°) | Pressure (MPa) | S. aureus | B. subtilis | P. aeruginosa | E. coli | S. aureus | B. subtilis | P. aeruginosa | E. coli | |
1 (−1, −1) | 45 | 10 | 20 | 80 | 40 | 10 | 20 | 80 | 40 | 10 |
2 (+1, −1) | 60 | 10 | 20 | 80 | 20 | 10 | 10 | 80 | 40 | 10 |
3 (−1, +1) | 45 | 20 | 10 | 80 | 40 | 10 | 20 | 80 | 20 | 10 |
4 (+1, +1) | 60 | 20 | 10 | 40 | 40 | 10 | 5 | 80 | 40 | 5 |
5 (−α, 0) | 40 | 15 | 20 | 80 | 40 | 10 | 20 | 80 | 40 | 10 |
6 (+α, 0) | 65 | 15 | 10 | 40 | 40 | 10 | 10 | 80 | 40 | 10 |
7 (0, −α) | 55 | 8 | 10 | 40 | 40 | 10 | 10 | 80 | 40 | 10 |
8 (0, +α) | 55 | 22 | 10 | 40 | 20 | 10 | 10 | 80 | 20 | 20 |
9 (0, 0) | 55 | 15 | 10 | 40 | 20 | 10 | 10 | 80 | 10 | 5 |
10 (0, 0) | 55 | 15 | 10 | 40 | 20 | 10 | 10 | 80 | 20 | 20 |
11 (0, 0) | 55 | 15 | 10 | 40 | 20 | 10 | 10 | 80 | 20 | 10 |
Compound | SFE | Hydro-Distillation | ||
---|---|---|---|---|
RT | Peak Area% | RT | Peak Area% | |
alpha-pinene | 5.31 | 7.43 | 5.55 | 9.37 |
Sabinene | 5.42 | 1.13 | 5.87 | 3.87 |
beta-pinene | 6.41 | 23.10 | 6.37 | 11.20 |
Beta-myrcene | 6.63 | 4.08 | 6.54 | 3.32 |
Alpha-phellandrene | 7.13 | 6.81 | 7.24 | 8.61 |
d-limonene | 7.73 | 16.08 | 7.84 | 22.94 |
Beta-ocimene | 7.86 | 6.40 | 8.05 | 1.44 |
Gamma-terpinene | 8.06 | 3.87 | 8.48 | 2.44 |
1-octanol | 8.42 | 3.57 | 8.60 | 3.50 |
Cyclohexanol | 9.09 | 1.05 | 9.12 | 0.46 |
Linalool | 9.39 | 1.15 | 9.44 | 1.60 |
Cyclohexanal | 10.22 | 0.55 | 10.23 | - |
Gamma-terpinene | 11.08 | 0.50 | 11.10 | 0.66 |
Terpinene-4-ol | 11.87 | 8.13 | 11.88 | 4.48 |
Alpha-terpinol | 12.18 | 1.41 | 12.25 | 1.24 |
Octyl acetate | - | - | 12.42 | 0.73 |
2-dodecanal | 12.39 | 1.71 | 12.44 | 1.94 |
2-cyclohexen-1-ol | 12.60 | 0.59 | 12.53 | 0.63 |
Thymol | 13.50 | 0.28 | 13.53 | 0.99 |
2-undecanone | 14.68 | 0.29 | 14.70 | 0.24 |
2,6-octadien-1-ol | 16.95 | 2.38 | 16.98 | 3.18 |
Gemacrene | 18.29 | 0.45 | 18.29 | 0.53 |
9-octadecenamide | - | - | 19.84 | 0.31 |
Physical and Chemical | SFE | Hydro-Distillation |
---|---|---|
% Yield | 19.19 ± 1.78 a | 11.80 ± 0.69 b |
Total phenols (mg GAE/mL) | 31.54 ± 1.72 b | 41.19 ± 0.81 a |
IC50 DPPH (mg/mL) | 26.06 ± 0.00 b | 77.38 ± 0.01 a |
IC50 ABTS (mg/mL) | 19.90 ± 0.00 b | 31.29 ± 0.00 a |
Bacteria | Inhibition Zone (mm) | MIC (%v/v) | MBC (%v/v) | |||
---|---|---|---|---|---|---|
SFE | Hydro- Distillation | SFE | Hydro- Distillation | SFE | Hydro- Distillation | |
B. subtilis | 8.17 ± 0.41 b | 12.11 ± 0.93 a | 40 | 40 | 80 | 40 |
S. aureus | 11.50 ± 0.84 b | 28.90 ± 0.18 a | 5 | 0.625 | 10 | 0.625 |
P. aeruginosa | 8.67 ± 0.52 b | 20.11 ± 0.33 a | 10 | 10 | 20 | 5 |
E. coli | 9.00 ± 0.63 b | 27.00 ± 0.13 a | 2.5 | 2.5 | 5 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadon, S.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Ruksiriwanich, W.; Sommano, S.R.; Khaneghah, A.M.; Castagnini, J.M.; Barba, F.J.; Phimolsiripol, Y. Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide. Plants 2023, 12, 2211. https://doi.org/10.3390/plants12112211
Nadon S, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Ruksiriwanich W, Sommano SR, Khaneghah AM, Castagnini JM, Barba FJ, Phimolsiripol Y. Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide. Plants. 2023; 12(11):2211. https://doi.org/10.3390/plants12112211
Chicago/Turabian StyleNadon, Sudarut, Noppol Leksawasdi, Kittisak Jantanasakulwong, Pornchai Rachtanapun, Warintorn Ruksiriwanich, Sarana Rose Sommano, Amin Mousavi Khaneghah, Juan M. Castagnini, Francisco J. Barba, and Yuthana Phimolsiripol. 2023. "Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide" Plants 12, no. 11: 2211. https://doi.org/10.3390/plants12112211
APA StyleNadon, S., Leksawasdi, N., Jantanasakulwong, K., Rachtanapun, P., Ruksiriwanich, W., Sommano, S. R., Khaneghah, A. M., Castagnini, J. M., Barba, F. J., & Phimolsiripol, Y. (2023). Antioxidant and Antimicrobial Properties and GC-MS Chemical Compositions of Makwaen Pepper (Zanthoxylum myriacanthum) Extracted Using Supercritical Carbon Dioxide. Plants, 12(11), 2211. https://doi.org/10.3390/plants12112211