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Abstract: Metal oxide nanoparticles are considered to be good alternatives as fungicides for plant
disease control. To date, numerous metal oxide nanoparticles have been produced and evaluated as
promising antifungal agents. Consequently, a detailed and critical review on the use of mono-, bi-,
and tri-metal oxide nanoparticles for controlling phytopathogenic fungi is presented. Among the
studied metal oxide nanoparticles, mono-metal oxide nanoparticles—particularly ZnO nanoparticles,
followed by CuO nanoparticles —are the most investigated for controlling phytopathogenic fungi.
Limited studies have investigated the use of bi- and tri-metal oxide nanoparticles for controlling
phytopathogenic fungi. Therefore, more studies on these nanoparticles are required. Most of the eval-
uations have been carried out under in vitro conditions. Thus, it is necessary to develop more detailed
studies under in vivo conditions. Interestingly, biological synthesis of nanoparticles has been estab-
lished as a good alternative to produce metal oxide nanoparticles for controlling phytopathogenic
fungi. Although there have been great advances in the use of metal oxide nanoparticles as novel
antifungal agents for sustainable agriculture, there are still areas that require further improvement.

Keywords: shape; size; sustainable agriculture; crop protection; antifungal activities

1. Introduction

Agriculture is considered to be the backbone of countries around the world. However,
it is plagued with numerous global challenges [1,2]. For instance, diseases caused by
nematodes [3], bacteria [4], fungi [5,6], and other pathogens present in the environment
cause large losses of crops. In particular, phytopathogenic fungi produce various types
of diseases in economically important crops, directly impacting the world economy [7,8].
They can also affect the different stages of a crop (e.g., sowing, growth, production, and
postharvest) [9,10]. Therefore, it is essential to control these microorganisms.

Currently, phytopathogenic fungi can be controlled using agrochemical products,
which are cheap and easily available on the market. However, these chemicals have not
only negatively affected both soil and air, but have also led to the eutrophication of water
bodies worldwide [11,12]. Thus, many researchers have proposed novel, ingenious, and
ecofriendly alternatives for controlling phytopathogenic fungi in agriculture.

Recently, different environmentally friendly and efficient alternatives have been pro-
posed to control phytopathogenic fungi, such as plant extracts [13], biological control [14],
essential oils [15], and engineered nanomaterials [16]. Among these alternatives, the use of
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nanomaterials has been the most explored. Engineered nanomaterials have gained great
importance for controlling phytopathogenic fungi, owing to their different physicochemical
properties compared to their bulk counterparts [16]. Consequently, various nanomaterials
have shown better results than conventional agrochemicals for plant disease control [17].

To date, different types of nanomaterials have been explored as alternatives for con-
trolling phytopathogenic fungi, such as nanopolymers [18], carbon nanomaterials [19],
and metal nanoparticles [20–23]. In particular, metal oxide nanoparticles are considered
to be an efficient and ecofriendly alternative for controlling phytopathogenic fungi in
agriculture [24–33].

Today, there are several review articles on the use of nanomaterials in sustainable
agriculture. However, these reviews generally explore various types of nanomaterials (e.g.,
nanopolymers, nanocarbons, metal nanoparticles) and applications (e.g., fertilizers, nemati-
cides, bactericidal, fungicides) in agriculture, where the use of metal oxide nanoparticles
for controlling phytopathogenic fungi is not analyzed in detail [24–31]. In other cases, the
reviews are focused on the use of metal oxide nanoparticles forming composite materials
for the control of phytopathogenic fungi [32]. Therefore, to date, there is a lack of review
articles—critical and detailed—on the current progress of metal oxide nanoparticles for
controlling phytopathogenic fungi. Therefore, this review discusses and analyzes the role
of mono-, bi-, and tri-metal oxide nanoparticles for controlling phytopathogenic fungi in
sustainable agriculture. Furthermore, this review article provides the challenges and future
directions regarding the application of metal oxide nanoparticles as potential antifungal
agents in sustainable agriculture.

2. Antifungal Properties of Mono-Metal Oxide Nanoparticles
2.1. Zinc Oxide Nanoparticles

Zinc oxide nanoparticles (ZnO-NPs) have wide applications in different fields ow-
ing to their excellent characteristics, including cost-effectiveness, ease of manufacture,
chemical stability, and non-toxicity [28–30,34–37]. In agriculture, there have been many
studies on the use of ZnO-NPs as novel antifungal agents, with promising results [38–86].
These nanoparticles were prepared using biological [38,39,43–61,64] and chemical syn-
theses [62,63,65–75]. Figure 1 illustrates the different synthesis methods used to produce
ZnO-NPs. For biological synthesis, different extracts from plants and microorganisms
have been used (Figure 1), while for chemical synthesis, easy and inexpensive synthesis
routes have been employed (Figure 1). Biological routes are more used than chemical
routes for the synthesis of ZnO-NPs to control phytopathogenic fungi, because this is an
environmentally friendly approach [30].

It has been reported that the characteristics of nanoparticles (e.g., shape, size distribu-
tion, crystallinity, composition, crystalline phase, surface chemistry, and agglomeration)
substantially determine their antifungal activities [87–89], which can be controlled based
on the methods and conditions of synthesis. Therefore, several studies have analyzed the
effects of the methods and conditions of synthesis on the characteristics of ZnO-NPs for
their application as antifungal agents in agriculture [90–93]. For instance, a previous study
investigated the effects of green (using Aloe vera plant extract) and chemical synthesis on
the size and shape of ZnO-NPs [92]. The authors reported that the average size of ZnO-NPs
synthesized by chemical and biological routes was 75 nm and 95 nm, respectively. In
addition, ZnO-NPs obtained from chemical synthesis were spherical, while those obtained
by biological routes were hexagonal. They also showed that ZnO-NPs obtained by chemical
routes were more effective against Alternaria solani than the ZnO-NPs obtained using the
biological route [92]. In another study, ZnO-NPs synthesized by chemical routes showed
good crystallinity and a spheroidal shape, while ZnO nanobiohybrids obtained by a green
route presented low crystallinity and a laminar morphology [93]. The ZnO-NPs obtained
by chemical routes caused the highest percentage inhibition against Cercospora sp.
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Figure 1. Synthesis methods used to produce ZnO-NPs for the control of phytopathogenic fungi
in agriculture.

Different biological synthesis conditions and extracts (from plants and organ-
isms) have also been evaluated to produce ZnO-NPs for controlling phytopathogenic
fungi [43,47,53,55,58]. In recent years, different extracts (e.g., Beta vulgaris, Cinnamomum
tamala, Cinnamomum verum, and Brassica oleracea) have been used to produce ZnO-NPs [47].
As shown in Figure 2, the type of extract also affected the size and shape of the ZnO-
NPs. ZnO-NPs prepared using Beta vulgaris and Brassica oleracea were found to be active
against Aspergillus niger, showing that the characteristics of the ZnO-NPs substantially
influence their antifungal activity. More recently, ZnO-NPs were obtained using aqueous
extracts of different seaweeds (e.g., Ulva lactuca and Solanum marginatum). The sizes of the
nanoparticles synthesized using Ulva lactuca and Solanum marginatum were in the range of
12–17 nm and 6–11 nm, respectively [58]. ZnO-NPs synthesized using Solanum marginatum
showed the best results against various species of phytopathogenic fungi. In another study,
ZnO-NPs were synthesized using Cinnamomum camphora leaf extracts with different pH
values (i.e., 7, 8, and 9), and their effects against Alternaria alternata were evaluated [53]. The
average sizes of the ZnO-NPs synthesized at pH 7, pH 8, and pH 9 were about 13.92 nm,
15.19 nm, and 21.13 nm, respectively. ZnO-NPs at pH 7 were found to be spherical, but
they showed irregular spherical shapes when the pH value increased. The nanoparticles
of 13.92 nm and spherical shape (synthesized at pH 7) showed the best antifungal activity
compared to the other nanoparticles synthesized at other pH values. Recently, ZnO-NPs
were obtained through a biological approach using Justicia adhatoda leaf extracts with differ-
ent precursors (e.g., zinc sulfate, zinc nitrate, and zinc acetate dihydrate) [55]. By varying
the type of metal precursor, different sizes and shapes of ZnO-NPs were obtained. For
example, ZnO-NPs synthesized from a zinc sulfate precursor were orthogonal/nanorod,
with an average diameter of ~30 nm. The ZnO-NPs synthesized from zinc sulfate showed
the best antifungal activity against Aspergillus niger and Aspergillus fumigatus.
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namomum Tamala, (C) Cinnamomum verum, and (D) Brassica oleracea. Reproduced from reference [47]
with permission from Elsevier.

Different chemical synthesis methods and conditions have been evaluated to produce
ZnO-NPs for the control of phytopathogenic fungi [62,65–68,71]. For example, ZnO-NPs
were synthesized with and without surfactants in [62]. The nanoparticles obtained without
a surfactant were larger than those synthesized with surfactants. Moreover, ZnO-NPs
obtained without a surfactant presented better antifungal activities than those synthesized
with surfactants [62]. In another study, ZnO-NPs of different sizes, shapes, and states of
agglomeration were produced with different concentrations of the precursor and different
volumes of the solvent [65]. ZnO-NPs synthesized with 13.17 g of zinc acetate dihydrate
in 400 mL of ethanol presented two types of morphology (i.e., spherical and acicular)
and sizes between 20 and 35 nm, while nanoparticles produced from the same amount
of metal precursor but dissolved in 600 mL of ethanol were spherical nanoparticles with
sizes between 30 and 45 nm. ZnO-NPs synthesized in 400 mL of ethanol presented better
antifungal activities against Erythricium salmonicolor than those synthesized in 600 mL of
ethanol. Recently, ZnO-NPs were synthesized using the coprecipitation and hydrother-
mal methods of chemical synthesis [66]. The average size of the ZnO-NPs obtained by
the coprecipitation method was smaller than that of those formed by the hydrothermal
procedure [66]. ZnO-NPs synthesized exhibited good antifungal activity results against
Colletotrichum gloeosporioides. In another study, the precipitation method with different
synthesis conditions was used to produce ZnO-NPs that were either rod or spheroidal
structures [67]. ZnO-NPs with a rod shape had a higher antifungal efficiency than those
with a spheroidal shape. More recently, colloidal and hydrothermal routes were used to
produce spheroidal, platelet, and rod morphologies of ZnO-NPs [71]. The diameters of
the spheroidal, platelet, and rod structures were 18 ± 4, 246 ± 40, and 786 ± 142 nm,
respectively. Moreover, ZnO structures with a platelet shape presented better antifungal
activities than the other two structures against three species of fungi (Fusarium oxysporum,
Fusarium solani, and Colletotrichum gloeosporioides). For both synthesis routes (e.g., chemical
and biological), the different characteristics of the nanoparticles, obtained by modifying the
synthesis conditions and methods, directly influenced their antifungal activities.
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Research works have also showed that other factors, such as the concentration of
nanoparticles used to inhibit the growth of phytopathogenic fungi and characteristics of
fungal species, influence the antifungal activity [87]. In general, the inhibition of phy-
topathogenic fungi tends to increase under in vitro evaluations when the concentration of
the ZnO-NPs increases [46,48–51,53,54,60,63–67,69–85]. Interestingly, low concentrations
(100–1000 ppm) of ZnO-NPs have shown excellent results for controlling phytopathogenic
fungi. Moreover, the antifungal activity of ZnO-NPs has been studied against different
species of phytopathogenic fungi [44,48–50,52,54,55,58,70–73,75,77,78,81,84,85]. It was ob-
served that the morphological and physiological characteristics of fungal species affect
the inhibition properties of the ZnO-NPs. Figure 3 illustrates the most common fun-
gal species evaluated. Most of these evaluations have been carried out under in vitro
conditions. Fortunately, there have been some studies carried out under in vivo con-
ditions [42,51,54,74,83–86]. For instance, ZnO-NPs were tested against A. alternata in
tomato fruit (Lycopersicon esculentum cv mojito) with uniform maturity, shape, and size [42].
In another study, ZnO-NPs obtained from olive leaf extracts were evaluated against B.
cinerea in faba bean plants (Vicia faba major L.) [51]. Moreover, synthesized ZnO-NPs were
evaluated against R. solani, Fusarium sp., and M. phaseolina on cotton cultivars [54]. In
another study, ZnO-NPs were evaluated against F. oxysporum in tomato plants (S. lycoper-
sicum) [74]. These studies demonstrated the favorable role of ZnO-NPs for plant disease
control [42,51,54,74,83–86].

Plants 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 

in 600 mL of ethanol. Recently, ZnO-NPs were synthesized using the coprecipitation and 

hydrothermal methods of chemical synthesis [66]. The average size of the ZnO-NPs ob-

tained by the coprecipitation method was smaller than that of those formed by the hydro-

thermal procedure [66]. ZnO-NPs synthesized exhibited good antifungal activity results 

against Colletotrichum gloeosporioides. In another study, the precipitation method with dif-

ferent synthesis conditions was used to produce ZnO-NPs that were either rod or sphe-

roidal structures [67]. ZnO-NPs with a rod shape had a higher antifungal efficiency than 

those with a spheroidal shape. More recently, colloidal and hydrothermal routes were 

used to produce spheroidal, platelet, and rod morphologies of ZnO-NPs [71]. The diame-

ters of the spheroidal, platelet, and rod structures were 18 ± 4, 246 ± 40, and 786 ± 142 nm, 

respectively. Moreover, ZnO structures with a platelet shape presented better antifungal 

activities than the other two structures against three species of fungi (Fusarium oxysporum, 

Fusarium solani, and Colletotrichum gloeosporioides). For both synthesis routes (e.g., chemical 

and biological), the different characteristics of the nanoparticles, obtained by modifying 

the synthesis conditions and methods, directly influenced their antifungal activities. 

Research works have also showed that other factors, such as the concentration of na-

noparticles used to inhibit the growth of phytopathogenic fungi and characteristics of fun-

gal species, influence the antifungal activity [87]. In general, the inhibition of phytopath-

ogenic fungi tends to increase under in vitro evaluations when the concentration of the 

ZnO-NPs increases [46,48–51,53,54,60,63–67,69–85]. Interestingly, low concentrations 

(100–1000 ppm) of ZnO-NPs have shown excellent results for controlling phytopatho-

genic fungi. Moreover, the antifungal activity of ZnO-NPs has been studied against dif-

ferent species of phytopathogenic fungi [44,48–50,52,54,55,58,70–73,75,77,78,81,84,85]. It 

was observed that the morphological and physiological characteristics of fungal species 

affect the inhibition properties of the ZnO-NPs. Figure 3 illustrates the most common fun-

gal species evaluated. Most of these evaluations have been carried out under in vitro con-

ditions. Fortunately, there have been some studies carried out under in vivo conditions 

[42,51,54,74,83–86]. For instance, ZnO-NPs were tested against A. alternata in tomato fruit 

(Lycopersicon esculentum cv mojito) with uniform maturity, shape, and size [42]. In another 

study, ZnO-NPs obtained from olive leaf extracts were evaluated against B. cinerea in faba 

bean plants (Vicia faba major L.) [51]. Moreover, synthesized ZnO-NPs were evaluated 

against R. solani, Fusarium sp., and M. phaseolina on cotton cultivars [54]. In another study, 

ZnO-NPs were evaluated against F. oxysporum in tomato plants (S. lycopersicum) [74]. 

These studies demonstrated the favorable role of ZnO-NPs for plant disease control 

[42,51,54,74,83–86]. 

 

Figure 3. The most common fungal species evaluated using ZnO-NPs. 

As previously mentioned, there are several factors (e.g., characteristics of nanoparti-

cles, the concentration of nanoparticles used to control phytopathogenic fungi, morpho-

logical and physiological characteristics of fungal species) that influence the antifungal 

activity of metal oxide nanoparticles. Therefore, various action mechanisms of the metal 

oxide nanoparticles on the phytopathogenic fungi have been proposed [32,87,88]. Figure 

4 illustrates the different possible antifungal action mechanisms of these nanoparticles. 

Figure 3. The most common fungal species evaluated using ZnO-NPs.

As previously mentioned, there are several factors (e.g., characteristics of nanoparticles,
the concentration of nanoparticles used to control phytopathogenic fungi, morphological
and physiological characteristics of fungal species) that influence the antifungal activity
of metal oxide nanoparticles. Therefore, various action mechanisms of the metal oxide
nanoparticles on the phytopathogenic fungi have been proposed [32,87,88]. Figure 4
illustrates the different possible antifungal action mechanisms of these nanoparticles.

2.2. Copper Oxide Nanoparticles

Copper oxide nanoparticles (CuO-NPs) have numerous applications in medicine,
agriculture, catalysis, cosmetics, and electronics, among others [29,94,95]. In agri-
culture, CuO-NPs have been widely used to inhibit the growth of phytopathogenic
fungi [38,52,73,80,81,86,95–105]. These nanoparticles are produced mainly by biological
methods [38,52,73,96–100]. In addition, the antifungal properties of commercial CuO-NPs
have also been evaluated [80,81,86,101–104]. Various biological synthesis conditions and
extracts (from plants and organisms) have also been employed to produce CuO-NPs for the
control of phytopathogenic fungi [52,73,96–100]. The type of extracts used in the biosyn-
thesis affects the size of the CuO-NPs, and most of the different types of extracts produce
spherical nanoparticles [52,73,96–100]. As previously mentioned, the concentration of
nanoparticles and the species of the fungi are important factors that influence antifungal
activity [87]. As in the case of ZnO-NPs, the antifungal activity of CuO-NPs tends to
increase with the increase in the nanoparticles’ concentration [73,80,81,96,97,100]. Inter-
estingly, low concentrations (100–1000 ppm) of CuO-NPs have shown good results in the
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control of phytopathogenic fungi. Moreover, the effects of CuO-NPs on different species of
phytopathogenic fungi have been evaluated [52,73,81,96,98,100]. The morphological and
physiological characteristics of fungal species have also been found to have an important
effect on the inhibition properties of CuO-NPs [52,73,81,96,98,100].
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2.3. Iron oxide Nanoparticles

Iron oxide nanoparticles are also widely used in different fields [106–108]. Some
studies have evaluated the effects of these metal oxides on phytopathogenic
fungi [70,81,97,101,109–112]. Interestingly, biological synthesis is widely used to produce
these nanoparticles [97,109,111,112]. For instance, iron oxide (Fe2O3) nanoparticles ob-
tained using leaf extracts of Euphorbia helioscopia had a spherical shape and were in the
range of 7–10 nm in size. These oxides showed promising and better results than CuO
against Cladosporium herbarum [97]. In another study, iron oxide (Fe2O3 and Fe3O4 mixed
phase) nanoparticles with size of 10–30 nm were synthesized using tannic acid, and their
effects in inhibiting the growth of Trichothecium roseum, Cladosporium herbarum, Penicillium
chrysogenum, Alternaria alternata, and Aspergillus niger were evaluated [109]. These nanopar-
ticles exhibited significant activities against all of the tested fungal agents. Moreover, the
inhibition activity of the fungal agents increased with the increase in the concentration
of these nanoparticles [109]. Recently, iron oxide (Fe2O3) nanoparticles with a size of
207 ± 2 nm were synthesized using Trichoderma harzianum and evaluated against Sclerotinia
sclerotiorum. These nanoparticles showed their potential for controlling Sclerotinia sclero-
tiorum [111]. Finally, iron oxide (Fe2O3) nanoparticles synthesized using Aegle marmelos
extract showed promising results when evaluated against Fusarium solani [112].

2.4. Magnesium Oxide Nanoparticles

Magnesium oxide nanoparticles (MgO-NPs) are another type of metal oxide investi-
gated in the control of phytopathogenic fungi [63,70,110,113–115]. Commercial MgO-NPs
and those synthesized by chemical and biological routes are widely used. MgO-NPs have
been prepared using Carica papaya leaf extract and evaluated against Phytophthora nico-
tianae and Thielaviopsis basicola under laboratory and greenhouse conditions [113]. These
nanoparticles showed promising results for controlling phytopathogenic fungi. Recently,
MgO-NPs with a size of 15 ± 4 nm showed promising results when they were evaluated
against various phytopathogenic fungi [115].
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2.5. Titanium Oxide Nanoparticles

The role of titanium oxide nanoparticles for controlling different species of phy-
topathogenic fungi has also been evaluated [80,84,101,102,116–118]. As in the previous
cases, commercial nanoparticles [80,84,101,102] and those obtained by chemical [116,117]
and biological [116,118] routes have been evaluated to inhibit the growth of different
pathogens. In one study, titanium oxide (TiO2-NPs) nanoparticles obtained by biological
and chemical routes were evaluated against Ustilago tritici [116]. With respect to chemical
synthesis, TiO2-NPs were synthesized by the sol–gel method (T1), while for the biological
route, TiO2-NPs were synthesized using plant extracts of Trianthema portulacastrum (T2)
and Chenopodium quinoa (T3). The type of synthesis method and the type of extract used
determined the size of the nanoparticles. Three concentrations (25 µL, 50 µL, and 75 µL of
0.10 mg mL−1) of all synthesized TiO2-NPs were evaluated against Ustilago tritici, as shown
in Figure 5. TiO2-NPs T2 and T3 presented better results than those synthesized by the
chemical route, and T3 (Chenopodium quinoa) exhibited the best results of the synthesized
nanoparticles, as shown in Figure 5.
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Figure 5. Antifungal activities of different concentrations of TiO2-NPs prepared by different methods
(T1: synthesized by the sol–gel method, T2: synthesized using Trianthema portulacastrum, and T3; syn-
thesized using Chenopodium quinoa). Reproduced from reference [116] with permission from Elsevier.

2.6. Other Types of Mono-Metal Oxide Nanoparticles

There are other types of oxide nanoparticles whose roles in inhibiting the growth
of different species of phytopathogenic fungi have been studied; these include zirco-
nium, [119–121], silicon [80,84], and manganese [80,86] oxide nanoparticles. Interestingly,
zirconium nanoparticles (ZrO-NPs) have been produced using biological methods, and
their effects against various phytopathogenic fungi were subsequently evaluated [120,121].
ZrO-NPs were produced using biological synthesis and evaluated against Pestalotiopsis ver-
sicolor [120]. The obtained ZrO-NPs had spherical shapes, in the range of 33–75 nm in size,
and revealed a higher inhibition of the mycelium growth of Pitiriasis versicolor compared
with the controls, as shown in Figure 6. As the concentration of ZrO-NPs increased, the
inhibition of Pitiriasis versicolor also tended to increase. Moreover, the effect of ZrO-NPs
on the fungal morphology was also analyzed. When Pitiriasis versicolor was exposed to
ZrO-NPs at 20 µg mL−1 concentration, its hyphal structure exhibited substantial changes,
as shown in Figure 7.
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Figure 7. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images of
Pitiriasis versicolor: (a,d) Pitiriasis versicolor cells treated with sterile water; (b,c) Pitiriasis versicolor cells
treated with 20 µg mL−1 ZrO-NPs demonstrated a highly damaged hyphal structure; (e,f) Pitiriasis
versicolor cells treated with 20 µg mL−1 ZrO-NPs showed integrated cell wall and plasma membrane,
disorganized cytoplasm, and damaged cell organelles. Note: CW = cell wall; PM = plasma membrane;
N = nucleus; V = vacuoles; M = mitochondrion; C = cytoplasm; ER = endoplasmic reticulum.
Reproduced from reference [120] with permission from Elsevier.

3. Antifungal Properties of Bi-Metal and Tri-Metal Oxide Nanoparticles
3.1. Bi-Metal Oxide Nanoparticles

Bi-Metal oxide nanoparticles have different properties compared to mono-metal oxide
nanoparticles. Therefore, they have gained great importance in different fields [122–125].
Several studies have examined the effects of bimetal oxide nanoparticles (e.g., ZnO-
CuO, ZnO-MgO, ZnO-TiO2, ZnO-Mn2O3, ZnO-Mg(OH)2, CuO-Mn2O3) on the growth
of phytopathogenic fungi and have reported their outstanding antifungal
properties [66,86,117,126,127]. Some studies compared the antifungal activities of ZnO-
MgO and ZnO-Mg(OH)2 nanoparticles synthesized by coprecipitation and hydrothermal
methods with those of ZnO and MgO nanoparticles [66]. ZnO nanoparticles showed higher
inhibition than MgO, ZnO-MgO, and ZnO-Mg(OH)2 nanoparticles. Therefore, the presence
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of MgO in bimetal oxide nanoparticles had a negative effect on antifungal activity against
Colletotrichum gloeosporioides [66]. In another study, the antifungal activities of ZnO, TiO2,
and ZnO-TiO2 nanoparticles were evaluated against Aspergillus flavus under in vitro condi-
tions. ZnO-TiO2 nanoparticles exhibited higher antifungal activity against Aspergillus flavus
than pure TiO2 and ZnO nanoparticles, as shown in Figure 8 [117]. These findings indicate
that the formation of bi-metal oxide nanoparticles improved their antifungal activity against
Aspergillus flavus.
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3.2. Tri-Metal Oxide Nanoparticles

Recently, tri-metal systems were investigated for different applications because of their
different properties compared to mono-metal and bi-metal systems [128–130]. This opened
a great area of opportunity for the application of these ternary systems. Studies reported in
the literature have examined the effects of tri-metal oxide nanoparticles (e.g., CuO-Mn2O3-
ZnO) for controlling phytopathogenic fungi [86]. However, it is necessary to conduct more
research on the use of these nanoparticles for the control of phytopathogenic fungi.

4. Challenges

Over the last few decades, engineered metal oxide nanoparticles have been studied and
used for plant disease control. Based on this review, the following challenges are proposed:

1. Potential ecological effects: Engineered metal oxide nanoparticles, like any other chem-
ical product, may pose environmental dangers through the leakage of nanoparticles
into soil or water, impacting non-target organisms. Before these particles are widely
used in agriculture or other industries, their possible environmental implications
must be studied.

2. Inadequate efficacy: While designed metal oxide nanoparticles may have powerful
antifungal characteristics, their effectiveness may vary depending on the type of
fungus and environmental factors such as humidity, temperature, and pH. More
research is needed to enhance their effectiveness against a variety of fungal infections.

3. Inadequate standardization: There are no defined techniques for the synthesis, char-
acterization, and testing of tailored metal oxide nanoparticles as fungicides. The
absence of uniformity makes comparing the results of different studies and drawing
conclusions about their efficacy and safety difficult.
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4. Resistance risk: As with most antifungal drugs, repeated use of tailored metal oxide
nanoparticles as fungicides may result in the formation of resistant fungal strains.
Strategies must be devised to reduce the possibility of resistance development while
also extending the usefulness of these nanoparticles.

5. Concerns about toxicity: If engineered metal oxide nanoparticles penetrate the food
chain or are swallowed directly, they may be harmful to humans and animals. Before
these particles are widely used, their toxicity must be thoroughly investigated.

Finally, the use of metal oxide nanoparticles as fungicides has tremendous potential
for reducing fungal diseases in crops and other environments. However, before widespread
implementation, the potential problems and consequences must be carefully considered.
To optimize their efficacy and safety, extensive research and standardization of techniques
for their synthesis, characterization, and testing, as well as risk assessment, are required.

5. Future Directions

Metal oxide nanoparticles have various advantages as fungicides, including greater
efficacy, less environmental impact, and lower application frequencies. Furthermore, the
possible development of hybrid nanoparticles that mix two or more distinct metal oxides,
such as copper oxide and zinc oxide, has the potential to provide synergistic benefits for
increased antifungal activity.

The creation of innovative nanoparticles with increased stability, biocompatibility, and
targeted distribution is among the future directions in the use of synthetic metal oxide
nanoparticles as fungicides. Efforts are also being made to produce nanoparticles capable
of activating plant defense mechanisms and promoting disease resistance. Combining
metal oxide nanoparticles with biological control agents may also contribute to the creation
of more effective and long-lasting control techniques for plant fungal infections.

6. Conclusions

To date, there have been notable advances in the use of metal oxide nanoparticles
for controlling phytopathogenic fungi. These nanoparticles have shown promising re-
sults for the control of phytopathogenic fungi. However, most of these evaluations have
been carried out under in vitro conditions. Among the studied metal oxide nanoparticles,
mono-metal oxide nanoparticles are the most investigated nanoparticles for controlling
phytopathogenic fungi, with promising results; in particular, ZnO-NPs are the most inves-
tigated for controlling phytopathogenic fungi, followed by CuO-NPs. There have been
limited studies on the use of and tri-metal and bi-metal oxide nanoparticles for the control
of phytopathogenic fungi. The results obtained in these studies are contradictory, because
some studies suggest that these nanoparticles improve antifungal activity, while other
studies conclude the opposite. Many biological and chemical synthesis methods have been
used to produce metal oxide nanoparticles for controlling phytopathogenic fungi. However,
these are mainly polydisperse in size and spherical in shape. Therefore, several challenges
need to be addressed to obtain high-quality and efficient commercial products.
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95. Kovačec, E.; Regvar, M.; van Elteren, J.T.; Arčon, I.; Papp, T.; Makovec, D.; Vogel-Mikuš, K. Biotransformation of copper oxide
nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere 2017, 180, 178–185. [CrossRef] [PubMed]

96. Devipriya, D.; Roopan, S.M. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal
studies against Aspergillus niger, Aspergillus flavus. Mat. Sci. Eng. C 2017, 80, 38–44. [CrossRef]

97. Henam, S.D.; Ahmad, F.; Shah, M.A.; Parveen, S.; Wani, A.H. Microwave synthesis of nanoparticles and their antifungal activities.
Spectrochim. Acta-A Mol. Biomol. Spectrosc. 2019, 213, 337–341. [CrossRef]

98. El-Batal, A.I.; El-Sayyad, G.S.; Mosallam, F.M.; Fathy, R.M. Penicillium chrysogenum-mediated mycogenic synthesis of copper
oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J. Clust. Sci. 2020, 3,
79–90. [CrossRef]

99. Nagore, P.; Ghotekar, S.; Mane, K.; Ghoti, A.; Bilal, M.; Roy, A. Structural Properties and Antimicrobial Activities of Polyalthia
longifolia Leaf Extract-Mediated CuO Nanoparticles. BioNanoSci 2021, 11, 579–589. [CrossRef]

100. Shammout, M.W.; Awwad, A.M. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers
extract and antifungal activity evaluation. Chem. Int. 2021, 7, 71–78.

101. Hao, Y.; Cao, X.; Ma, C.; Zhang, Z.; Zhao, N.; Ali, A.; Hou, T.; Xiang, Z.; Zhuang, J.; Wu, S.; et al. Potential applications and
antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front. Plant Sci.
2017, 8, 1332. [CrossRef]

https://doi.org/10.1016/j.jphotobiol.2013.07.017
https://doi.org/10.1094/PDIS-10-17-1621-RE
https://doi.org/10.1111/jph.12818
https://doi.org/10.1016/j.jphotobiol.2021.112206
https://www.ncbi.nlm.nih.gov/pubmed/33975271
https://doi.org/10.1007/s13580-020-00312-z
https://doi.org/10.1016/j.exppara.2021.108176
https://www.ncbi.nlm.nih.gov/pubmed/34740586
https://doi.org/10.1080/03235408.2021.1917952
https://doi.org/10.1094/PDIS-07-20-1636-RE
https://doi.org/10.3390/jof7121033
https://doi.org/10.1016/j.jclepro.2020.122880
https://doi.org/10.1007/s10876-019-01651-3
https://doi.org/10.1016/j.msec.2019.01.031
https://doi.org/10.1080/03235408.2021.1936868
https://doi.org/10.1016/j.envres.2021.111858
https://www.ncbi.nlm.nih.gov/pubmed/34389352
https://doi.org/10.1016/j.chemosphere.2017.04.022
https://www.ncbi.nlm.nih.gov/pubmed/28407547
https://doi.org/10.1016/j.msec.2017.05.130
https://doi.org/10.1016/j.saa.2019.01.071
https://doi.org/10.1007/s10876-019-01619-3
https://doi.org/10.1007/s12668-021-00851-4
https://doi.org/10.3389/fpls.2017.01332


Plants 2023, 12, 2461 15 of 16

102. Hao, Y.; Fang, P.; Ma, C.; White, J.C.; Xiang, Z.; Wang, H.; Zhang, Z.; Rui, Y.; Xing, B. Engineered nanomaterials inhibit
Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ. Res. 2019, 170, 1–6. [CrossRef] [PubMed]

103. Shen, Y.; Borgatta, J.; Ma, C.; Elmer, W.; Hamers, R.J.; White, J.C. Copper nanomaterial morphology and composition control
foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). J. Agric. Food
Chem. 2020, 68, 11327–11338. [CrossRef]

104. Elmer, W.H.; Zuverza-Mena, N.; Triplett, L.R.; Roberts, E.L.; Silady, R.A.; White, J.C. Foliar application of copper oxide
nanoparticles suppresses fusarium wilt development on chrysanthemum. Environ. Sci. Technol. 2021, 55, 10805–10810. [CrossRef]
[PubMed]

105. Kamel, S.M.; Elgobashy, S.F.; Omara, R.I.; Derbalah, A.S.; Abdelfatah, M.; El-Shaer, A.; Al-Askar, A.A.; Abdelkhalek, A.; Abd-
Elsalam, K.A.; Essa, T.; et al. Antifungal activity of copper oxide nanoparticles against root rot disease in cucumber. J. Fungi 2022,
8, 911. [CrossRef]

106. Shah, R.R.; Davis, T.P.; Glover, A.L.; Nikles, D.E.; Brazel, C.S. Impact of magnetic field parameters and iron oxide nanoparticle
properties on heat generation for use in magnetic hyperthermia. J. Mag. Mag. Mater. 2015, 387, 96–106. [CrossRef] [PubMed]

107. Sangaiya, P.; Jayaprakash, R. A review on iron oxide nanoparticles and their biomedical applications. J. Supercon. Nov. Magn.
2018, 31, 3397–3413. [CrossRef]

108. Cross, K.M.; Lu, Y.; Zheng, T.; Zhan, J.; McPherson, G.; John, V. Water decontamination using iron and iron oxide nanoparticles.
In Nanotechnology Applications for Clean Water; Savage, N., Duncan, J., Sustich, R., Diallo, M., Street, A., Eds.; William Andrew Inc.:
New York, NY, USA, 2009; pp. 347–364.

109. Parveen, S.; Wani, A.H.; Shah, M.A.; Devi, H.S.; Bhat, M.Y.; Koka, J.A. Preparation, characterization and antifungal activity of iron
oxide nanoparticles. Microb. Pathog. 2018, 115, 287. [CrossRef]

110. Koka, J.A.; Wani, A.H.; Bhat, M.Y. Evaluation of antifungal activity of Magnesium oxide (MgO) and Iron oxide (FeO) nanoparticles
on rot causing fungi. J. Drug Deliv. Ther. 2019, 9, 173–292.

111. Bilesky-Jose, N.; Maruyama, C.; Germano-Costa, T.; Campos, E.; Carvalho, L.; Grillo, R.; Fernandes Fraceto, L.; De Lima, R.
Biogenic α-Fe2O3 nanoparticles enhance the biological activity of trichoderma against the plant pathogen Sclerotinia sclerotiorum.
ACS Sustain. Chem. Eng. 2021, 9, 1669–1683. [CrossRef]

112. Sriramulu, M.; Sumathi, S. Photo catalytic, antimicrobial and antifungal activity of biogenic iron oxide nanoparticles synthesised
using Aegle marmelos extracts. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1738–1744. [CrossRef]

113. Chen, J.; Wu, L.; Lu, M.; Lu, S.; Li, Z.; Ding, W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and
macroscale MgO against soilborne fungal phytopathogens. Front. Microbiol. 2020, 11, 365. [CrossRef] [PubMed]

114. Fujikawa, I.; Takehara, Y.; Ota, M.; Imada, K.; Sasaki, K.; Kajihara, H.; Sakai, S.; Jogaiah, S.; Ito, S.I. Magnesium oxide induces
immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. J. Biotechnol. 2021, 325, 100–108.
[CrossRef] [PubMed]

115. Sidhu, A.; Bala, A.; Singh, H.; Ahuja, R.; Kumar, A. Development of MgO-sepoilite nanocomposites against phytopathogenic
fungi of rice (Oryzae sativa): A green approach. ACS Omega 2020, 5, 13557–13565. [CrossRef] [PubMed]

116. Irshad, M.A.; Nawaz, R.; ur Rehman, M.Z.; Imran, M.; Ahmad, J.; Ahmad, S.; Inam, A.; Razzaq, A.; Rizwan, M.; Ali, S. Synthesis
and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against
wheat rust. Chemosphere 2020, 258, 127352. [CrossRef]

117. Ilkhechi, N.N.; Mozammel, M.; Khosroushahi, A.Y. Antifungal effects of ZnO, TiO2 and ZnO-TiO2 nanostructures on Aspergillus
flavus. Pestic. Biochem. Phy. 2021, 176, 104869. [CrossRef]

118. Satti, S.H.; Raja, N.I.; Javed, B.; Akram, A.; Mashwani, Z.U.R.; Ahmad, M.S.; Ikram, M. Titanium dioxide nanoparticles
elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 2021,
16, e0246880. [CrossRef]

119. Derbalah, A.; Elsharkawy, M.M.; Hamza, A.; El-Shaer, A. Resistance induction in cucumber and direct antifungal activity of
zirconium oxide nanoparticles against Rhizoctonia solani. Pestic. Biochem. Phys. 2019, 157, 230–236. [CrossRef]

120. Ahmed, T.; Ren, H.; Noman, M.; Shahid, M.; Liu, M.; Ali, M.A.; Zhang, J.; Tian, Y.; Qi, X.; Li, B. Green synthesis and characterization
of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease
pathogen Pestalotiopsis versicolor. NanoImpact 2021, 21, 100281. [CrossRef]

121. Joshi, N.C.; Chaudhary, N.; Rai, N. Medicinal plant leaves extract based synthesis, characterisations and antimicrobial activities
of ZrO2 nanoparticles (ZrO2 NPs). Bio. Nano Sci. 2021, 11, 497–505. [CrossRef]

122. Cruz-Martínez, H.; Rojas-Chávez, H.; Matadamas-Ortiz, P.T.; Ortiz-Herrera, J.C.; López-Chávez, E.; Solorza-Feria, O.; Medina,
D.I. Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment. Mater.
Today Phys. 2021, 19, 100406. [CrossRef]

123. Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic nanoparticles for antimicrobial applications. Front. Chem. 2020, 8, 412.
[CrossRef]

124. Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv.
Funct. Mater. 2020, 30, 1909260. [CrossRef]

125. Srinoi, P.; Chen, Y.T.; Vittur, V.; Marquez, M.D.; Lee, T.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for
emerging biological applications. Appl. Sci. 2018, 8, 1106. [CrossRef]

https://doi.org/10.1016/j.envres.2018.12.008
https://www.ncbi.nlm.nih.gov/pubmed/30554052
https://doi.org/10.1021/acs.jafc.0c04546
https://doi.org/10.1021/acs.est.1c02323
https://www.ncbi.nlm.nih.gov/pubmed/34265207
https://doi.org/10.3390/jof8090911
https://doi.org/10.1016/j.jmmm.2015.03.085
https://www.ncbi.nlm.nih.gov/pubmed/25960599
https://doi.org/10.1007/s10948-018-4841-2
https://doi.org/10.1016/j.micpath.2017.12.068
https://doi.org/10.1021/acssuschemeng.0c07349
https://doi.org/10.1007/s10904-020-01812-2
https://doi.org/10.3389/fmicb.2020.00365
https://www.ncbi.nlm.nih.gov/pubmed/32226420
https://doi.org/10.1016/j.jbiotec.2020.11.012
https://www.ncbi.nlm.nih.gov/pubmed/33186662
https://doi.org/10.1021/acsomega.0c00008
https://www.ncbi.nlm.nih.gov/pubmed/32566820
https://doi.org/10.1016/j.chemosphere.2020.127352
https://doi.org/10.1016/j.pestbp.2021.104869
https://doi.org/10.1371/journal.pone.0246880
https://doi.org/10.1016/j.pestbp.2019.03.018
https://doi.org/10.1016/j.impact.2020.100281
https://doi.org/10.1007/s12668-021-00829-2
https://doi.org/10.1016/j.mtphys.2021.100406
https://doi.org/10.3389/fchem.2020.00412
https://doi.org/10.1002/adfm.201909260
https://doi.org/10.3390/app8071106


Plants 2023, 12, 2461 16 of 16

126. Uyen, V.N.; Anh, N.P.; Van, N.T.; Tri, N.; Minh, N.V.; Huy, N.N.; Ha, H.K. Characteristics and antifungal activity of CuO-ZnO
nanocomposites synthesised by the sol-gel technique. Vietnam J. Sci. Technol. 2020, 62, 17–22. [CrossRef]

127. Najibi Ilkhechi, N.; Mozammel, M.; Khosroushahi, A.Y. Antifungal effects of ZnO-TiO2/Au nanostructures on Aspergillus flavus.
J. Aust. Ceram. Soc. 2021, 57, 793–802. [CrossRef]

128. Sharma, G.; Kumar, D.; Kumar, A.; Ala’a, H.; Pathania, D.; Naushad, M.; Mola, G.T. Revolution from monometallic to trimetallic
nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216. [CrossRef]

129. Cruz-Martínez, H.; Tellez-Cruz, M.M.; Solorza-Feria, O.; Calaminici, P.; Medina, D.I. Catalytic activity trends from pure Pd
nanoclusters to M@PdPt (M=Co, Ni, and Cu) core-shell nanoclusters for the oxygen reduction reaction: A first-principles analysis.
Int. J. Hydrogen Energy 2021, 45, 13738. [CrossRef]

130. Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic nanoparticles: Greener synthesis and their applications.
Nanomaterials 2020, 10, 1784. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.31276/VJSTE.62(1).17-22
https://doi.org/10.1007/s41779-021-00577-2
https://doi.org/10.1016/j.msec.2016.11.002
https://doi.org/10.1016/j.ijhydene.2019.08.245
https://doi.org/10.3390/nano10091784

	Introduction 
	Antifungal Properties of Mono-Metal Oxide Nanoparticles 
	Zinc Oxide Nanoparticles 
	Copper Oxide Nanoparticles 
	Iron oxide Nanoparticles 
	Magnesium Oxide Nanoparticles 
	Titanium Oxide Nanoparticles 
	Other Types of Mono-Metal Oxide Nanoparticles 

	Antifungal Properties of Bi-Metal and Tri-Metal Oxide Nanoparticles 
	Bi-Metal Oxide Nanoparticles 
	Tri-Metal Oxide Nanoparticles 

	Challenges 
	Future Directions 
	Conclusions 
	References

