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Abstract: Desert shrubs are keystone species for plant diversity and ecosystem function. Atriplex clivicola
and Atriplex deserticola (Amaranthaceae) are native shrubs from the Atacama Desert that show
contrasting altitudinal distribution (A. clivicola: 0–700 m.a.s.l.; A. deserticola: 1500–3000 m.a.s.l.).
Both species possess a C4 photosynthetic pathway and Kranz anatomy, traits adaptive to high
temperatures. Historical records and projections for the near future show trends in increasing air
temperature and frequency of heat wave events in these species’ habitats. Besides sharing a C4
pathway, it is not clear how their leaf-level physiological traits associated with photosynthesis and
water relations respond to heat stress. We studied their physiological traits (gas exchange, chlorophyll
fluorescence, water status) before and after a simulated heat wave (HW). Both species enhanced
their intrinsic water use efficiency after HW but via different mechanisms. A. clivicola, which has a
higher LMA than A. deserticola, enhances water saving by closing stomata and maintaining RWC
(%) and leaf Ψmd potential at similar values to those measured before HW. After HW, A. deserticola
showed an increase of Amax without concurrent changes in gs and a significant reduction of RWC
and Ψmd. A. deserticola showed higher values of Chla fluorescence after HW. Thus, under heat stress,
A. clivicola maximizes water saving, whilst A. deserticola enhances its photosynthetic performance.
These contrasting (eco)physiological strategies are consistent with the adaptation of each species to
their local environmental conditions at different altitudes.

Keywords: Atriplex; Atacama Desert; C4 pathway; desert shrubs; heat wave; gas exchange;
chlorophyll fluorescence

1. Introduction

Desert shrubs constitute a distinct physiognomic and ecological group with charac-
teristic morphological and physiological adaptations [1,2]. Further, they often play a key
role in the maintenance of plant diversity by acting as nurse plants [3] and may even
impact ecosystem processes [4]. In the context of climate change and its profound effects on
the physiology, phenology, abundance and distribution of species [5–10], it is essential to
understand the mechanisms by which desert shrubs deal with climate change components.
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Climate change involves not only increased temperature averages but also increased
occurrence of climatic anomalies, such as heat waves [11]. In fact, heat waves are becoming
increasingly frequent, more intense and broader in spatial extent [12–14]. Temperature
controls the distribution, productivity, and physiological activity of plants, both at spatial
and temporal scales [15,16]. Although they consist of relatively short events, heat waves
may have significant ecological impacts and cause long-term ecological shifts [17,18]. Heat
waves have been shown to affect plant physiological processes, such as the efficiency
of photosystem II, stomatal conductance and leaf water potential [13,19,20]. Despite an
increasing number of studies, the understanding of the effects of heat waves on plants is
still fragmentary [13].

In eudicots, those with a C4 photosynthetic pathway are considered more tolerant to
heat and water stress than C3 species because they have higher water-use efficiencies and
negligible effects of heat on photorespiration [21,22]. Among predominantly C4 clades, the
Atriplex genus (Amaranthaceae) is the largest one, including over 300 C4 species [23]. The
Atriplex genus has spread worldwide, being mainly distributed across arid subtropical and
temperate regions, particularly in harsh inland and coastal habitats [24]. Consequently,
Atriplex species are usually labeled as highly tolerant plants against abiotic stresses, es-
pecially drought and salinity [25,26]. Adaptations to desert conditions in Atriplex shrubs
leading to improved water economy have long been studied, including low mesophyll resis-
tance and high stomatal resistance in A. spongiosa [27], steeply angled leaves during midday
in A. hymenelytra [28], increased Na+ uptake in A. halimus [29], and increased osmotic
adjustment in A. nummularia [30]. Furthermore, header books of plant (eco)physiology
include Atriplex species when describing tolerance to high temperatures [31,32]. Neverthe-
less, little is known about their response to heat stress [33], much less about their response
to heat waves.

Forty-six Atriplex species have been reported in Chile, most of them distributed in arid
and semi-arid regions, which have experienced changes in the trends of heat waves and
maximum temperatures [34,35]. During the 1961–2016 period, it was observed an increase
in the number and duration of heat wave events [34]. Additionally, during the 1979–2015
period, there was an increase in maximum temperatures for summer and autumn, and
high-altitude areas experienced a greater increase in maximum temperatures compared
to lower and coastal areas [35]. Among the native Atriplex species inhabiting (semi)arid
Chile, Atriplex clivicola and A. deserticola are two phylogenetically-close perennial endemic
shrubs from the Atacama Desert [36,37]. These species share most of their latitudinal
distribution but differ greatly in their altitudinal distribution [37]. Atriplex clivicola mainly
inhabits coastal to lowland areas, from sea level up to 700 m a.s.l, whereas A. deserticola
inhabits highlands from 1500 up to 3000 m a.s.l. Both species have a C4 photosynthetic
pathway and Kranz anatomy, traits adaptive to high temperatures. However, besides
sharing a C4 pathway, it is not clear how their leaf-level physiological traits associated with
photosynthesis and water relations respond to heat stress. Here, we addressed whether
A. clivicola and A. deserticola would enhance or maintain their leaf water status while
maintaining carbon assimilation under a heat wave event. We evaluated gas exchange,
chlorophyll a fluorescence, and leaf water status before and after a simulated heat wave.
The overarching goal of this study was to study the strategies leading to water use efficiency
in two representative desert shrubs under conditions of a heat wave, which is one of the
components of current climate change.

2. Results
2.1. Chlorophyll a Fluorescence

The Atriplex species did not differ in the Fv/Fm parameter before or after HW. How-
ever, within species, Fv/Fm showed a significant reduction after HW yet maintained values
above 0.7 (Figure 1A). The actual quantum yield (ΦPSII) only showed differences between
species after HW, being lower in A. clivicola (Figure 1B). On the other hand, the quantum
yield of energy dissipation (Fo/Fm) was higher in A. deserticola than in A. clivicola only
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before HW. The former reduced Fo/Fm significantly after HW, whereas similar values to
those before HW were observed in A. clivicola (Figure 1C).
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Figure 1. Box plots for the chlorophyll a fluorescence parameters of Atriplex clivicola (red; n = 12
individuals) and Atriplex deserticola (blue; n = 12 individuals) species before and after the simulated
heat wave (HW). The dashed line of each plot separates the values obtained before and after HW. The
black dot and horizontal line inside each box indicates the mean and median values. Vertical lines
outside the box indicate the extreme lower and upper values of the dataset. Upper case letters indicate
significant differences between species before and after HW. Lowercase letters indicate significant
differences within species when values before and after HW are compared. Fv/Fm Maximum
quantum efficiency of photosystem II (A); ΦPSII Actual quantum yield of photosystem II (B); Fo/Fm
Quantum yield of energy dissipation at time = 0 (C); qE Quenching component associated to energy
dissipation (D); qP Quenching component associated to photochemistry (E); qL Fraction of open PSII
centers (with QA oxidized) on the basis of a lake model for the PSII photosynthetic apparatus (F);
ETR Electron transport rate (G).
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The components of NPQ, qE, qP and qL (at p < 0.05) (Figure 1D–F) showed differences
between species after HW. After the HW simulation, the qE values were higher in A. clivicola,
whilst qP and qL values were higher in A. deserticola.

No significant changes in ETR were observed within species before or after HW
(Figure 1G). We did find differences in ETR between species, but only after HW, being
lower for A. clivicola.

2.2. Gas Exchange Variables

The photosynthetic rate (Amax) values showed differences between species only before
HW (Figure 2A), being ~47% higher in A. clivicola (14.32 µmol CO2 m−2 s−1) than in
A. deserticola (9.77 µmol CO2 m−2 s−1). After HW, the photosynthetic rate of A. clivicola
remained similar to values observed before HW. However, the photosynthetic rate of
A. deserticola increased by 39% after HW.
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Figure 2. Gas exchange parameters of A. clivicola (red; n = 12 individuals) and A. deserticola (blue;
n = 12 individuals) before and after the simulated heat wave (HW). The dashed line inside each plot
separates the values obtained before and after HW. Bars and vertical lines above the bars indicate the
mean and the standard error values, respectively. Upper case letters indicate significant differences
between species either before HW or after HW. Lowercase letters indicate significant differences
within species when values before and after HW are compared. A Photosynthetic rate at light
saturation (A); gs Stomatal conductance (B); E Transpiration rate (C); iWUE Intrinsic water use
efficiency (D).

Stomatal conductance (gs) was higher in A. clivicola than in A. deserticola before HW,
whilst no difference between species was observed after HW (Figure 2B). A. deserticola
showed similar values of gs before and after HW (0.21 and 0.22 mol H2O m−2 s−1, respec-
tively). On the other hand, a significant decrease in gs (~43%) was observed in A. clivicola
after HW, reaching similar values to those of A. deserticola.
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Leaf transpiration ra©(E) showed no differences between species either before or
after HW (Figure 2C). Within species, A. clivicola showed a ~32% decrease in E after HW
(p = 0.0506), whereas the E of A. deserticola was not affected by HW.

The intrinsic water use efficiency (iWUE) was remarkably similar in A. clivicola and
A. deserticola both before and after HW (Figure 3D). Within species, after HW, a signifi-
cant increase of ca. 39 and 81% in iWUE was observed in A. clivicola and A. deserticola,
respectively (Figure 2D).
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2.3. Photosynthetic Temperature–Response Curves

The optimum photosynthetic temperature (Topt) values differed between species
(p < 0.05) (Table 1). A. deserticola averaged an optimum temperature of 29.63 ◦C, while
A. clivicola had an optimum temperature of 27.07 ◦C. Similarly, the photosynthetic rate at
thermal optimum (Aopt) was higher (p < 0.05) in A. deserticola (19.64 µmol CO2 m−2 s−1)
than in A. clivicola (9.30 µmol CO2 m−2 s−1).

Table 1. Parameters from the photosynthetic temperature–response curves of A. clivicola
(n = 4 individuals) and A. deserticola (n = 4 individuals). The table depicts the thermal sensitiv-
ity of photosynthesis to high temperatures. The values correspond to the average and standard error
for the maximum temperature at the carbon compensation point (Tmax), the optimum temperature
for photosynthesis (Topt), the photosynthetic rate at optimum temperature (Aopt), and the thermal
breadth (Tbr).

Species Tmax (◦C) Topt (◦C) Aopt (µmol CO2 m−2 s−1) Tbr (◦C)

A. clivicola 39.67 ±1.65 27.05 ±0.85 * 9.30 ±0.81 * 11.28 ±0.90
A. deserticola 46.01 ±2.07 29.63 ±0.62 * 19.64 ±2.54 * 14.65 ±1.50

Asterisk denotes significant difference between species at p < 0.05.

The thermal maximum value where carbon gain reach zero (Tmax) was higher (p = 0.0538)
in A. deserticola (46.01 ◦C) compared to A. clivicola (36.67 ◦C). Interestingly, the thermal
breadth (Tbr), which reflects the potential increase in Tmax with no changes in Topt was
similar in both species (Table 1).

2.4. Leaf Mass Per Area and Water Relation Variables

Statistically significant differences (p < 0.05) in leaf mass per area (LMA) between
species were found, where A. clivicola showed higher LMA values (131.95 g m−2) than
A. deserticola (105.01 g m−2) (Figure 3A). Specifically, both species showed similar values of
leaf area, the differences in LMA lying on the greater leaf mass of A. clivicola.

Leaf relative water content (RWC) differed between species after HW (p < 0.05), being
lower in A. deserticola (64.4%) than in A. clivicola (70.58%) (Figure 3B). RWC was affected
in A. deserticola after HW, with a decrease of ca. 7%, whereas no change was observed in
A. clivicola.

Both species showed similar values of leaf water potential at midday (Ψmd) before HW
(Figure 3C). However, after HW leaf Ψmd values were lower in A. deserticola (−2.49 MPa).
Specifically, A. deserticola showed a significant decrease of leaf Ψmd of ca. 14% after HW,
while leaf Ψmd of A. clivicola was not affected by HW.

3. Discussion

In this study, we examined photosynthetic and water relation traits of two Atriplex
species exposed to a three-day simulated heat wave (HW). In general, photochemistry,
carbon metabolism and hydraulics are the processes mostly affected by heat stress during
the vegetative phase of plants [12]. Overall, both Atriplex species were resistant to high
temperatures, an expected feature for C4 plants, which have evolved in warmer and dry
environments [17,23]. Nevertheless, the HW had distinctive effects on the photosynthetic
and water relation traits of A. clivicola and A. deserticola, suggesting species-specific mecha-
nisms underlying its remarkable improvement in iWUE. Specifically, the response to the
HW of A. clivicola was to enhance water saving, whereas the response of A. deserticola was
to enhance its photosynthetic performance.

Heat stress, alone or combined with other abiotic stress, such as drought, can severely
affect the integrity of thylakoid membranes and the function of PSII [38–40]. Our results
showed that after HW, there was a reduction in the maximum quantum efficiency of
PSII (Fv/Fm) in both Atriplex species, although with average values no lower than 0.74
(Figure 1A). These results reflect that the maximum quantum yield capacity of photosystem
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II was not severely affected by the heat stress in either species. By contrast, the actual
quantum yield (ΦPSII) was more sensitive to heat stress, particularly in A. deserticola.
It has been reported that negative effects on photochemistry and light-energy partition,
particularly on Fv/Fm and ΦPSII, are apparently temporal, and recovery may occur rapidly
in sensitive plants, such as soybean, whereas even positive effects have been observed in
heat-tolerant plants [38,41]. Notably, we observed for both Atriplex species an increase in
F0 after the heat wave, but contrary to what is expected; it was accompanied by an increase
in Fm [42]. Indeed, a higher increase of Fm in A. deserticola would explain the reduction
of its quantum yield of energy dissipation (F0/Fm) and sustain its actual quantum yield
after HW. Together, these results suggest that, after three days of heat stress, the integrity
of thylakoid membranes would be barely impaired, and the photosynthetic machinery
remains functional.

Here, the values obtained for NPQ components qE, qP and qL reveal different mecha-
nisms in the Atriplex species to deal with light energy after HW (Figure 1D−F). Specifically,
the higher values of qE in A. clivicola suggest that HW would affect the capability of the
photochemical apparatus to use light energy in photochemistry and must activate the
components that rapidly relax high-energy state quenching in order to drain the excess of
light energy and avoid potential photoinhibition and photo-oxidative stress [43–45]. On
the other hand, HW did not alter the photosystem functioning of A. deserticola, which main-
tained qP and qL values without significant variations compared to those observed before
HW and were comparatively higher than those of A. clivicola after HW. Since these two
components reflect the partition of light energy into photochemistry (qP) and the fraction
of open PSII centers with oxidized QA (qL), we can infer that the thylakoid membranes and
proteins of A. deserticola remain stable and functional after three days of high temperature.
The latter would support the observation that ETR did not change in A. deserticola with
HW and was higher than A. clivicola after heat stress. Similar results have been reported
in high-temperature resistant cultivars of wheat and quinoa [38,46], which suggests that
the ability to increase chlorophyll content under heat stress is pivotal to diminishing heat
damage of thylakoid membranes and enhances the efficiency of electron transport at high
temperatures. Although here, we did not measure chlorophyll content; there was no visual
evidence of chlorosis during and after HW. In sum, a hypothesis derived from our results
is that, under heat stress, A. deserticola would either increase chlorophyll content or show a
rapid turnover of chlorophyll, whereas A. clivicola would use photoprotective mechanisms
mainly associated with the xanthophyll cycle to deal with excess light energy.

It is considered that extreme supra-optimal temperatures usually restrict photosynthe-
sis by affecting chloroplasts membrane fluidity and protein stability, enzyme properties,
and decreasing CO2 solubility and stomatal aperture, with a further decrease of CO2
flux [22,41,47]. Again, the results of temperature–response curves and gas exchange sup-
port the notion that A. clivicola and A. deserticola are high-temperature resistant plants.
Despite differences between both Atriplex species, they have high photosynthetic optimum
temperatures compared to other woody plant species [48]. The maximum photosynthetic
capacity (Amax) of A. clivicola was not affected by HW despite a significant reduction in
stomatal conductance (gs), whereas an increase of Amax was observed in A. deserticola
without evident changes in gs. Both species reduced the apparent transpiration rate (E)
while significantly enhancing their intrinsic water use efficiency (iWUE). Similar results
have been reported in drought-tolerant crop varieties [39]. Additionally, Eustis et al. [38]
found that heat stress alone increased carbon assimilation in several quinoa genotypes but,
contrary to our findings, at the expense of higher stomatal conductance and plant water
demand. Heat-induced limiting carbon assimilation is mainly due to the impairment of
electron transport and Rubisco activase capacity [15]. Hence, in the case of A. deserticola,
the increase in Amax can be partly explained by the ability to maintain the efficiency of
the photochemical process and ETR after HW, as mentioned above. The fact that both
species had high LMA values can be related to our observed Amax values since leaf size
and thickness are key traits in the response of leaf photosynthesis to heat and thermal
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sensitivity [13,32,49]. Indeed, in a Mediterranean sclerophyllous ecosystem, plants with
thicker leaves were less affected by a two-days heat wave (>45 ◦C) than plants with larger
and thinner leaves [50].

The evaporative demand of water increases with temperature; therefore, leaf hydraulic
responses are important to cope with the increase of leaf-to-air vapor pressure deficit [51].
Coordination between leaf hydraulics and leaf gas exchange is key for the balance of
carbon gain and water loss [52,53]. Here, the relative water content (% RWC) and leaf
water potential (Ψmd) of A. clivicola were insensitive to heat waves, whereas A. deserticola
displayed a significant decrease in both parameters (Figure 3B,C). Given that the former
showed a reduction of gs after HW, this helps the plant decrease leaf evaporative water
loss and would partly explain the RWC values observed after the heat stress, which in turn
would contribute to keeping leaf water potential. On the other hand, the fact that gs of
A. deserticola was insensitive to HW, a higher evaporative water loss would be a plausible
explanation for the reduction in RWC and Ψmd. However, given that Amax increased while
E decreased compared to the values before HW, leaf water loss would be within a tolerable
margin that would not jeopardize carbon assimilation and water use efficiency.

Environmental gradients shape the expression of ecophysiological traits [54,55]. Our
results can be associated with the local environmental conditions within the species’ altitu-
dinal distribution. A. clivicola is a coastal lowland species, whereas A. deserticola inhabits
high-altitude ecosystems of the Andean range. This distribution imposes marked differ-
ences regarding microclimatic conditions, such as thermal amplitude, solar radiation and
air humidity. The zone in which A. clivicola is distributed has a strong ocean influence, low
thermal oscillation, and there is an important contribution of fog as a source of water for
plants [56–58]. Therefore, avoidance of water loss under a heat wave is to be expected. On
the other hand, A. deserticola must face high thermal amplitude within a single day, along
with high irradiation [59]. Additionally, in high-mountain habitats, low partial pressure of
gases and windy days may affect CO2 availability [60]. Thus, it is reasonable to expect that
A. deserticola would show better photosynthetic performance under heat stress. Therefore,
the contrasting ecophysiological strategies exhibited by A. clivicola and A. deserticola are
consistent with the adaptation of each species to their local environmental conditions at
different altitudes. Notably, despite the above-mentioned differences, both species coordi-
nate their photosynthetic and water relation traits to enhance water use efficiency under
heat stress.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

One-year-old plants of A. clivicola and A. deserticola were obtained from the nurs-
ery garden of the Chilean Forestry Institute (INFOR-Sede Diaguita, La Serena, Chile).
Plants were propagated vegetatively and, once rooted, placed on individual plastic bags
of 20 cm × 20 cm filled with organic potting mix. The plants were watered thrice a week
during spring and summer and twice a week during autumn–winter. Once well established,
during spring, a total of 60 plants (n = 30 per species) were transferred to a greenhouse at
Universidad de La Serena, Campus Andres Bello (29◦54′53.04′′ S 71◦14′31.22′′ W). Plants
were watered at field capacity thrice a week, based on the values obtained by a Time
Domain Reflectometer soil moisture meter TDR350 (FieldScout Spectrum Technologies,
Inc., Aurora, IL, USA). The greenhouse roof was covered by a white polyethylene sheet
providing ca. 800–1200 µmol photons m−2 s−1 at solar midday. All ecophysiological traits
described below were evaluated before and after the simulated heat wave.

4.2. Heat Wave Simulation

We selected twelve healthy plants per species in order to submit them to a three-day
simulated heat wave. Plants were transferred to a growth chamber of 12 m2 with controlled
temperature and light conditions. The temperature control consists of a cooling system
of a 2 hp condensing unit coupled with heat convection plates controlled by the software
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Sitrad Pro (www.sitrad.com.br, accessed on 24 November 2022, Full Gauge Controls,
Canoas, RS, Brazil). The light was provided by 1000 W RGB LED panels. Plants were
preconditioned to the chamber conditions under 25 ◦C and 16/8 h day/night during a
week. Plants were placed on metal racks, each with three LED panels 50 cm above the top of
the plants, to ensure a homogeneous light distribution. The PAR (photosynthetically active
radiation) provided by the led panels was of ca. 400 µmol photons m−2 s−1. Watering
was at field capacity, as described above. After the preconditioning period, the chamber
temperature was set to 28 ◦C night, 33 ◦C from 6 to 11 am, and 38 ◦C during the rest of the
day (Supplemental Dataset S1), according to the 16/8 h day/night photoperiod indicated
above. To define the heat wave conditions, we analyzed 20 years of data on the absolute
maximum temperature during spring–summer (CEAZA meteorological stations network;
www.ceazamet.cl, accessed on 24 November 2022). The 3 d duration of the simulated heat
wave followed the IPCC definition [61].

4.3. Chlorophyll Fluorescence and Gas Exchange

Chlorophyll fluorescence measurements were conducted with an FMS2 pulse-modulated
fluorometer (Hansatech Instruments Ltd., Norfolk, UK) to determine the dark-adapted
parameters and NPQ components. The actinic light used was 400 µmol quanta m−2 s−1.
Forty-eight leaves (two leaves per individual, a total of 24 individuals) were dark-adapted
overnight prior to measurements. The maximum and actual quantum yield of PSII (Fv/Fm
and ΦPSII), the quantum yield of energy dissipation (Fo/Fm), non-photochemical quench-
ing (NPQ) and the electron transport rate (ETR) were calculated as described in Maxwell
and Johnson [62,63]. NPQ components (qE, qI and qL) were calculated from Fm’ dark
relaxation kinetics after high light exposure for 1 h, as described by Bravo et al. [64] and
Bascuñán-Godoy et al. [65] with slight modifications.

Leaf gas exchange measurements were conducted using a gas exchange system (LI-
6400, Li-Cor Inc., Lincoln, NE, USA) with a leaf chamber of 2 cm2 with a LED light source
(LI-6400-40). We conducted light response curves on three individuals per species to
determine the light saturation point for both Atriplex species. CO2 concentration was set
at 400 ppm, and nine consecutive light steps of 10 min each to ensure CO2 assimilation
was stable were set as follows: 0, 50, 100, 300, 500, 900, 1200, 1500 and 2000 µmol photons
m−2 s−1 [66]. Leaves were carefully placed in the sensor head, ensuring contact with
the leaf thermocouple. A picture of each leaf inside the chamber’s gasket was taken to
determine the leaf area and subsequently use it to calculate gas exchange parameters. Light-
saturated CO2 assimilation (Amax), stomatal conductance (gs), and apparent transpiration
rate (E) were measured in twelve individuals per species from 9:00 to 13:00. Gas exchange
parameters were recorded 10 min after clamping the leaf. Leaf chamber conditions were set
at 400 ppm of CO2, 1200 µmol photons m−2 s−1 (90:10% red: blue light), 60–65% relative
humidity and 25 ◦C block temperature. For each gas exchange measurement, the intrinsic
water use efficiency (iWUE) was calculated as the ratio of photosynthesis (Amax) over
stomatal conductance (gs).

We conducted leaf temperature response curves to determine the optimum photo-
synthetic temperature (Topt), the temperature compensation point (Tmax), and the pho-
tosynthetic thermal breadth (Tbr). We used five individuals of each Atriplex species for
measurements of net photosynthesis temperature (A-T) response curves (Supplemental
Figure S1). A-T curves were performed between 09:00 to 14:00 h on healthy, fully expanded
leaves using an open gas exchange system (Li-6400XT, Li-Cor Inc., Lincoln, NE, USA),
equipped with a water bath and a temperature expansion kit to reach both lowest (<15 ◦C)
and highest temperatures (>36 ◦C), set at 1500 µmol photons m−2 s−1 (10% blue), an ambi-
ent CO2 concentration of 400 mmol CO2 mol−1, and with 12 different block temperatures
(12 ◦C, 15 ◦C, 18 ◦C, 21 ◦C, 24 ◦C, 27 ◦C, 30 ◦C, 33 ◦C, 36 ◦C, 40 ◦C, 45 ◦C and, 50 ◦C). The rel-
ative humidity (RH) of the sample was regulated to 50± 0.5% during measurements except
at block temperatures >36 ◦C, where it was allowed to drop to avoid condensation damage
within the IRGA [67]. Once parameters were at steady-state for at least 6 min for each block
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temperature, we recorded leaf temperature (Tleaf) and photosynthetic rate (Anet). Then, to
determine the temperature at the carbon compensation point (Tmax), the temperature at
optimum photosynthesis (Topt), the photosynthetic rate at optimum temperature (Aopt),
and the breadth of temperature optimum (Tspan), we fit the data using a standard quadratic
equation [67] as Anet = aTleaf

2 + bTleaf + c, where Anet is net photosynthesis (µmol m−2 s−1)
at Tleaf (◦C), and a, b and c are coefficients that describe the A-T response. Curves were
fitted using linear models with quadratic components (Yi = β0 + β1Xi + β2Xi

2 + εi), using
Tleaf as the independent variable (Xi) and Anet as the dependent variable using the “lm”
function in the ‘stats’ package in R version 4.0.0 [68].

4.4. Leaf Mass Per Area, Relative Water Content and Leaf Water Potential

Leaf samples employed for gas exchange and chlorophyll fluorescence measurements
(24 samples per species) were used to determine the dry leaf mass per unit area (LMA)
and relative water content (RWC %). LMA was calculated as the ratio between the dry leaf
weight and leaf area obtained through the ImageJ software version 1.54e (ImageJ; nih.gov,
accessed on 23 November 2022), according to Perez-Harguindeguy et al. ([69]). RWC of
each leaf was determined as in Ostria-Gallardo et al. [70]: % RWC = ((Fw − Dw)/(Tw −
Dw)) × 100; were Fw = fresh weight, Dw = dry weight, and Tw = turgid weight. The turgid
weight was obtained by dipping the leaf into a 2 mL Eppendorf tube full of distilled water
and storing it at 4 ◦C for 24 h prior to weighing.

For leaf water potential (Ψmd, MPa) at midday (11:00–14:00), a healthy apical branch
of each individual (n = 24) was detached using a fresh razor blade, immediately wrapping
the cut end with a wet paper and storing it in a sealed dark plastic bag with a moist
paper towel. We measured Ψmd (MPa) using a Scholander-type pressure chamber (PMS
Instrument Company, Corvallis, OR, USA) 10–45 min after sample collection.

4.5. Data Analysis

Data were checked for normality assumptions and variance homoscedasticity with the
InfoStat software [71]. Accordingly, the parametric one-way ANOVA or non-parametric
Kruskal–Wallis analyses were used to compare means within species and between species
separately. When significant differences were found, we used post hoc tests with Tukey or
pairwise comparisons (p ≤ 0.05), depending on the parametric or non-parametric nature of
the data.

5. Conclusions

Based on their photosynthetic and water relation traits, both Atriplex species enhanced
their water-use efficiencies after a three-days heat wave treatment (HW). This enhancement
was governed by different mechanisms depending on the species. A. clivicola achieved
it by enhancing water saving by closing stomata and maintaining the leaf RWC (%) and
Ψmd at similar values to those registered before HW. By contrast, A. deserticola enhanced
its photosynthetic performance at the expense of water loss at the foliar level. Specifically,
after HW, A. deserticola showed an increase of Amax without evident changes in stomatal
conductance and with higher values of chlorophyll fluorescence parameters associated
with photochemistry and electron transport.

It is expected that heat waves and other extreme climatic events associated with climate
change will become more frequent and intense. Here we provide evidence of different
ecophysiological strategies to cope with heat waves in desert shrubs, which are keystone
species for plant diversity and ecosystem function, and hence it is essential to understand
the mechanisms by which they deal with climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12132464/s1, Figure S1: Leaf temperature response curves;
Supplemental Dataset S1: Growth chamber settings.
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