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Abstract: Gene duplication is a universal biological phenomenon that drives genomic variation and
diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering
and crop development. Duplicated genes participate in the emergence of novel functionality, such as
adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from
advanced, mechanistic understanding of the effects of gene duplication, especially in the development
and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize
the current knowledge of gene duplication in wheat, including the principle of gene duplication
and its effects on gene function, the diversity of duplicated genes, and how they have functionally
diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the
mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of
future efforts in the short term regarding the elucidation of replication and retention mechanisms
of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and
practical applications.
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1. Introduction

Diversity and phenotypic variation in plants do not arise exclusively from the emer-
gence of completely novel and diverse genes; in many plants, diversity may instead arise
primarily through gene duplication and adaptive specialization of preexisting genes. Gene
duplication is an evolutionary process in which genetic diversity and new functions are
generated via whole-genome duplication (WGD) events or smaller-scale, single-gene or
single-base duplications [1,2], the occurrence of which in a gene results in two genes
that cannot be functionally distinguished from each other. In the evolutionary history of
plants, animals, and fungi, gene duplication events have occurred ubiquitously across
kingdoms [3–6]. In comparison with other eukaryotic genomes, plants typically have a
higher rate of evolution, which entails continuous increases in their genomic diversity [7,8].
Recently, previous whole-genome duplication events that led to novel functions, such as
biotic or abiotic stress tolerance, higher grain weight and quality, or phenotypic changes
in flowering time or plant height, were detected in several domesticated crops, including
wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max).

If a gene duplication results in two copies with a sufficiently similar nucleotide se-
quence, then these two genes should also share functional overlap, and considerable
research efforts have focused on examining the evolutionary mechanisms through which
both genes are retained. Currently, there are several models that could explain the reten-
tion of duplicated genes. In eukaryotes, most duplicated genes that are retained become
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non-functional due to disruption or loss-of-function mutations in regulatory elements;
alternatively, ancestral functions are sometimes partitioned among the duplicated genes.
However, neither case leads to the evolution of new functions, and this process is thus
termed “nonfunctionalization” [9]. In addition, duplicated gene retention is controlled by
other evolutionary mechanisms, such as neofunctionalization, functional specialization by
sub-functionalization, or dosage amplification [9]. Interestingly, despite the different effects
of these various evolutionary mechanisms, duplicated genes can still retain some level of
functional redundancy [10], which can increase the plasticity of a genome or enhance the
adaptability of a species to changing environments [11].

Plants cannot escape from stress-inducing environmental conditions through move-
ment and, thus, the strong selection pressure imposed by these conditions increases the
likelihood and frequency of gaining or losing stress-responsive genes. In varying stress con-
ditions, stress-sensing and stress-response mechanisms should be able to evolve rapidly as
needed to adjust to new stimuli and therefore require continual innovation in their genetic
basis. Duplicate genes have been proposed to serve as the main source of evolutionary
novelty and a possible source of functional innovation. Harsh weather events or climatic
conditions are becoming increasingly frequent due to global climate change and the world
now faces the prospect of food insecurity.

Bread wheat (AABBDD) is one of the three major staple crops, globally, and future
wheat yields will be critical to human survival. Allohexaploid wheat contains three related
subgenomes, presumably with triplicate copies of the large majority of genes, resulting
in highly complicated gene interaction networks due to the presence of these multiple
genomes in each cell [12–14]. Gene and genome duplications have likely provided signifi-
cant contributions to the morphological complexity of plants [15], and these duplication
events may also influence the physiological complexity of stress responses. For example,
the presence or absence of HPT2 (a low-temperature-responsive gene in wild barley) in
the pangenome of barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid)
lines appears to be related to gene dosage constraint and environmental adaptation [16].
Evidence in previous studies at least partially supports that environmental stresses, such
as drought, cold, heat, and salt, contribute to the retention of duplicated genes [17–19].
Herein, we review recent advances in our understanding of the role of duplicate genes in
plant resistance to abiotic stress.

2. Diversity and Divergence of Duplicate Genes Involved in Abiotic Stress Resistance

Distinct from most other eukaryotes, plants cannot move to avoid unfavorable condi-
tions, and thus their genomes tend to evolve at faster rates under these selective conditions,
resulting in higher genomic diversity that may enable survival in stressful environments [7].
Plant genomes typically contain a high number of duplicate genes, with 65% of annotated
genes, on average, having a duplicate copy in the genome [17]. Several genomic sequencing
analyses in plants suggest that whole-genome duplication has occurred several times dur-
ing the past 200 million years of angiosperm evolution [20–22]. In other eukaryotes, such
as humans and budding yeast, the most recent whole-genome duplication events occurred
roughly 450 million years ago (Mya) and 200 Mya, respectively [6,23,24]. On the other
hand, some plant species include both diploid and polyploid individuals [25]. In those
species, duplicated genes can increase genetic variability, contributing to increased com-
plexity. spatio-temporal transcriptomic plasticity, and the higher adaptability of polyploids
to environmental stress [26,27].

Wheat genomes are relatively large compared with other major cereal crops; diploid
einkorn wheat is ~5.0 gigabases (Gb) [28,29], tetraploid emmer is >10 Gb [30], and exaploidy
bread wheat is ~17 Gb [31]. Despite the complex composition of the wheat genome, more
than 80% of each genome is made up of repetitive DNA sequences [31]. In addition, these
large, heterozygous exaploidy wheat genomes contain a remarkable diversity of genetic
variations, providing a background conducive to gene duplication, functional/phenotypic
variation, and evolutionary conservation. Diversity in duplicated genes is inextricably
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linked to differences in the wheat genome and differences in genetic diversity among
subgenomes [32,33]. Although a majority of wheat genes have three copies distributed
across the A, B, and D subgenomes, studies have shown that the degree to which vegetative
traits are inherited differs among wheat subgenomes, with trans-acting variants, for exam-
ple, being more genetically diverse in genomes A and B than in D [34–37]. This variability
in the inheritance of different gene copies suggests that genomic interactions could play
an important role in regulating genes selected for domestication and improvement of
agricultural traits and stress resistance in wheat.

Receptor-like protein kinases (RLKs), the largest gene family in plants, play critical
roles in the regulation of plant developmental processes, signaling transmission, and stress
resistance [38–40]. In recent years, the RLK family of wheat has been identified, and
collinearity events and tandem gene clusters results suggested that polyploidization and
tandem duplication events contributed to the RLK member expansions of T. aestivum [38].
Among them are lectin receptor kinases (LEC-RLK) [41], leucine-rich repeat receptor-like
kinases (LRR-RLKs) [42,43], Cysteine-rich receptor-like kinases (CRKs) [44], thaumatin-like
proteins and thaumatin-like kinases (TLPs) [45], and proline-rich extensin-like receptor
protein kinases (PERKs) [46,47]. Gene replication events were identified in these families,
and some of these replication gene pairs had differential expression data under abiotic
stress, such as TaTLP14-A1/B1/B5 being up-regulated in expression under osmotic stress,
while TaTLP14-B4 exhibited the opposite [45]. Enzymatic antioxidants are an important
stress-responsive class of proteins that scavenge excess reactive oxygen species (ROS) in
the presence of cofactors such as copper and zinc ions [48]. Several studies identified
and reported duplication in antioxidant genes, including catalase (CAT) [49,50], super-
oxide dismutase (SOD) [51–53], ascorbate peroxidase (APX) [54], glutathione peroxidase
(GPX) [55,56], peroxidase (POD) [57], and glutathione reductase (GR) genes in bread
wheat [58]. For example, TaCAT3-A1 and TaCAT3-A2 were found to be clustered into
tandem duplication event regions, while the number of cis-elements in the promoter of
TaCAT3-A2 was more than TaCAT3-A1; moreover, TaCAT3-A1/A2 contained cis-elements
associated with cold response, but not exist in other subgenome copies TaCAT3-B and
TaCAT3-D [50], which suggests that there may be differences in the cold response of TaCAT3
homologous gene groups.

In plants, various transporters were reported related to the transport of Ca, Na, and
other important molecules during stress response to maintain ion homeostasis in the plant
cell [59–61]. Hyperosmolality-gated calcium-permeable channels (OSCAs) [62,63], boron
transporters (BOR) [64,65], mechanosensitive channels of small conductance-like (MSL)
genes [66], Ca2+/cation antiporters (CaCAs) [67], cation proton antiporters (CPAs) [68],
P-type II Ca2+ ATPases [69], and thaumatin-like protein kinases (TLPKs) in the bread
wheat gene family were identified and analyzed for their expression pattern under abiotic
stress [70]. For example, the gene pairs TaMSL4-A1 and TaMSL7-A in MSL were both
drought-induced, but the expression of TaMSL4-A1 was inhibited under heat stress and
in the early stage of salt stress, while the expression of TaMSL7-A was up-regulated un-
der heat stress and the under early salt stress, which indicates the response of paraline
homologous genes was different under different abiotic stresses; the expression was also
diverse and began to express and function under different levels of stress [63]. The cation
proton antiporter (CPA) superfamily, including K+ efflux antiporter (KEA) and cation/H+

exchanger (CHX) family proteins as well as the Na+/H+ exchanger (NHX), TaNHX4-B.1,
and TaNHX4-B.4, facilitated differential drought, salt, and heat stress tolerance to Escherichia
coli [64]. A similar phenomenon occurs with transcription factors, in which orthologous
or paralogue genes that are produced via gene duplication exhibit identical or opposite
expression patterns when subjected to abiotic stress, including NAC [71–74], DREB [75],
Hsf [76–79], MYB [80,81], bZIP [82,83], WRKY [84,85], AP2/ERF [86], GRF [87], and the
homeobox genes HD-Zip [88], TALE [89,90], ZF-HD [91], and WOX [92,93]. Taking TaTAIL
as an example, Rathour et al. systemically identified and analyzed TAIL family members
in wheat, including gene and protein structural properties, phylogeny, and expression
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patterns. Gene duplication events were identified, including gene pairs TaTALE8-4A3 and
TaTALE8-4A1 produced via fragment replication and five tandem duplicate gene pairs
such as TaTALE1-1A2 and TaTALE1-1A1. The cis-acting elements of these repeating gene
promoters and their expression data were different under heat and salt stress, indicating
that the response of repeating genes to abiotic stress was diverse [89].

The Introduction of diversity in duplicate genes can be grouped into two main cat-
egories based on the type of alterations in DNA, that is, changes in gene structure or
epigenetic modifications. Changes in DNA sequence mainly impact diversity and vari-
ability at the transcriptional and post-transcriptional levels, as well as in the translated
protein or post-translational modifications [94–99]. At the transcriptional level, differences
in cis-acting elements can result in differences in response to the same stimulus between
homologous genes, while changes in promoter region binding sites for trans-acting factors
can trigger differences in expression between gene copies [34]. Previous research has
shown that stress-responsive plant genes are retained at higher rates than nonfunctional-
ized duplicate genes, especially transcription factors and signal transduction proteins. For
instance, the expression levels of 7 out of 25 TaADF genes (TaADF13/16/17/18/20/21/22)
were significantly affected by cold or freezing treatment, while overexpression of TaADF16
enhanced tolerance to freezing in wheat plants [100]. Additionally, a number of other
transcription factor genes have been reported to respond to and regulate drought stress tol-
erance, including TaOPF29a, TaDrAp1/2, TaFDL2-1A, TaSNAC4-3D, TaMpc1-D4, TaGT2L1D,
TaSNAC4-3A, TaWRKY1-2D, TaNFYC-A7, and TaERF-6-3A [73,74,85,86,101–105]. Besides,
genome-wide association studies (GWAS) have identified sequence variations in homolo-
gous genes that could increase drought tolerance in wheat, such as TaNAC071-A, TaDTG6-B,
and TaSNAC8-A [71,72,75].

Increased diversity and divergence of duplicated genes is also linked to neofunctional-
ization or sub-functionalization in abiotic stress response, such as heat stress transcription
factors (HSFs). HSFs are among the most important TFs in plant response to heat stress, but
some HSFs also respond to drought or salt stress. For example, overexpressing TaHsaA2d
or TaHsaA6f in wheat not only increases heat tolerance but also drought and salt stress, re-
spectively [76,106], while overexpression of TaMYB344, TaAIDFa, or TaAREB3 enhances tol-
erance to drought, heat, or salt stress in transgenic lines [80,107,108]. In post-transcriptional
regulation, changes in the DNA sequence can introduce variable shear events, such as splice
site disruption, which can lead to changes in target gene transcripts that consequently affect
the structure and function of the translated protein [98,109,110]. These results illustrate
how the accumulation of homoeologs with biased expression patterns can affect stress
tolerance. In particular, changes in the DNA sequence between homologous TFs may
impact their DNA binding and transcriptional regulatory activities, such as a TaDTG6-B
gain-of-function allele that improves drought tolerance in wheat [75].

Changes in the epigenetic modification of duplicated DNA sequences induced by
environmental stimuli can also affect heritable variation in gene expression [111–113];
such modifications include DNA methylation, histone methylation and acetylation, or
modifications to mRNAs or non-coding RNAs [114–119]. It should also be noted that the
epigenetic modification landscape across the three subgenomes of hexaploid wheat may
contribute the predominant regulation to gene dosage for some genes. For example, DNA
methylation and acetylation modifications modulate the expression of TaCYP81D5, which
contributes to both seedling- and reproductive-stage salt tolerance in bread wheat [120].

The combination of these factors, along with the complexity of the wheat genome,
provides rich potential for variation among duplicated genes, from the DNA to protein
levels, especially in TFs that function as the major regulators of abiotic and biotic stress
response [121]. These altered TF homoeologs can thus participate in sophisticated and
versatile regulatory networks that facilitate adaptability and maintenance of homeostasis
for essential biological processes in wheat in the face of highly variable and extreme climatic
conditions. Genetic diversity causes structural and functional phenotypic differences, and
diversity among duplicated genes considerably enriches the genetic diversity of the wheat
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genome. The resulting complex regulatory networks can further improve the plasticity of
signal transduction processes to some extent, and also provide resources for environmental
adaptation in both natural evolution and artificial selection processes.

3. Contribution of Duplicate Genes to Abiotic Stress Resistance

Transcriptional regulation underlies all biological activities in plants, and especially
provides a sophisticated set of mechanisms for reacting to changes in the external en-
vironment. Duplicated genes typically exhibit distinct patterns of expression, and this
regulatory divergence has been proposed to serve as the prelude to functional differen-
tiation among duplicate genes. Thus, duplicate genes are a major source of potential
functional innovations in plant response mechanisms to abiotic stress stimuli [120,122–124].
Differentiation in expression patterns among duplicated genes is considered a precursor
to functional differentiation of genes, because functional divergence may occur long after
duplication, whereas changes in expression patterns might begin relatively soon (or imme-
diately) after the duplication event [125]. Although duplicated genes (i.e., homologs and
paralogs) may share a high degree of structural or functional similarity, differences in their
response to environmental stress can be related to variations in cis-acting regions [126],
transcription factor binding sites, and/or methylation status [127]. In particular, the gain
of additional or different cis-regulatory elements in the promoter regions of MIKC-type
MADS-box [128]; CHY zinc-finger and RING finger [129]; basic leucine zipper [130]; abscisic
acid-, stress- and ripening-induced (ASR) [131]; APETALA2/Ethylene-Responsive Fac-
tor (AP2/ERF) [132,133]; E3 ubiquitin ligase [134]; or LATERAL ORGAN BOUNDARIES
DOMAIN (LBD) [135] genes results in enhanced abiotic stress tolerance in different crops.

The evolution of TATA boxes in duplicated genes may also provide some clues re-
garding the interrelationship of environmental stress, divergent expression patterns, and
the conservation of duplicated genes [136]. Moreover, de novo functionalization is closely
correlated with the retention of duplicated genes that inherit little or none of the original
function [137]. For instance, CPK7 and CPK12, which are duplicated wheat genes that
together comprise the CDPK family, are located on chromosomes 2B and 5A, respectively.
The promoters of CPK7 and CPK12 have different cis-acting elements and their expression
levels vary. Notably, TaCPK7 is expressed in response to drought, salt, cold, and hydrogen
peroxide, whereas TaCPK12 is only expressed in response to ABA treatment. This func-
tional divergence has complementary or amplifying effects on the TaCPK7-dependent stress
signaling network in wheat [138,139].

Previous studies have demonstrated that cis-acting elements or trans-acting factors
can also cause differences in the expression level of duplicated genes [34]. For instance, heat
shock transcription factors (HSFs) upregulate the transcription of target-gene-encoding
heat shock proteins (HSPs) via recognition and binding to promoter region heat shock
elements (HSEs) in response to heat stress [77,140]. Atypical HSEs, containing mismatched
nucleotides at specific positions, are more sensitive/responsive to heat stress and are
expressed at higher levels than typical HSEs [96]. Thus, the distribution of diverse HSE
motifs in the promoter regions of duplicate HSP genes (homologous or tandem repeats),
combined with the effects of the HSE sequence variation, make the TaHSF-TaHSP module
essential for heat stress regulation and adaptation in wheat [141]. In addition, similar
studies have reported finding homolog expression bias between different copies of the
same gene and functional differences due to specific variants, such as CLPB (Caseinolytic
Protease B), SKP (S-phase kinase-associated protein 1), ALDH (Aldehyde dehydrogenase),
NAC (NAM/ATAF1/2/CUC2), and SOS1 (Salt Overly Sensitive 1) in wheat [142–147].
These above results imply that differential regulation of duplicated genes can augment a
plant’s ability to respond to environmental abiotic stress challenges.

Phenotypic and functional divergence is facilitated by changes in protein coding se-
quence between duplicated gene pairs. During gene duplication, structural alterations
in regulatory areas, such as protein coding regions and small RNA binding sites, may
also occur. Furthermore, gain or loss mutations in exons, introns, pseudo-exons, or indels
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have been shown to occur more frequently in duplicated genes than in single-copy ho-
mologs [148]. Numerous studies have reported finding single-nucleotide alterations or base
insertions and deletions that alter the stress response of homologous genes [149–152]. For
example, GWAS identified a favorable allele of TaDTG6, TaDTG6-B Del574, that harbored a
frameshift mutation due to deletion of a 26-bp DNA fragment in the coding region. Strong
protein and DNA sequence interaction properties of the encoded DREB protein allowed
it to bind to the DRE/CRT cis-acting element, upregulate downstream gene expression,
and ultimately enhance wheat drought tolerance [75]. Similarly, a variation in the region
of subgenome A, but not subgenome B, near TaSnRK2.8 and a single-nucleotide polymor-
phism (SNP) in the TaSnRK2.8-A-C region conferred a stronger drought-tolerant response
in wheat, accompanied by significantly greater seedling biomass and water-soluble carbo-
hydrate contents [150]. Another recent study revealed that TaWD40-4B.1, located in the
main drought tolerance QTL, qDT4B, along with an early termination codon generated
through a nonsense mutation in TaWD40-4B, was highly correlated with drought resistance
in a natural wheat population. These findings showed that wheat carrying TaWD40-4B.1C

had significantly higher drought resistance than wheat carrying TaWD40-4B.1T [151]. In ad-
dition, microRNAs (miRNAs) also facilitate the control of gene expression in plant species
primarily through detecting and cleaving particular regions on target genes to modify their
function. Changes in miRNA binding sites and miRNA precursors of duplicated genes
may also have different expression patterns and functions [153–156].

Gene duplication can play an essential role in preserving the integrity of a genetic
system while also mitigating the effects of the surrounding environment on that system.
That is, if one copy is inactivated through a mutation, other copies can still perform the
original function to compensate for potential damage due to the inactivation [157,158]. This
functional redundancy is commonly found in polyploid plants, and research has shown
that most partially homologous gene copies in wheat are co-expressed. Multiple studies
indicate that partially homologous gene copies can be directed by the same regulatory
network [32,158,159], and that this functional redundancy between homologous genes
is greatly expanded in heteropolyploid wheat. In one typical example, all five of the
TaCYP81D tandem repeat genes, generated via lateral doubling within the same subgenome,
were experimentally linked to salt tolerance in wheat. Among them, TaCYP81D5 was
shown to potentially influence the ZAT12-mediated ROS signaling pathway in wheat [120].
By contrast, tetraploid wheat expressing the cyp81d5-aabb mutant showed no obvious
difference from the wild type in salt tolerance, although CYP81D2 and CYP81D4 expression
was significantly higher in the mutant than in the wild type. These results implied that the
presence of other copies in this gene cluster could make up for the absence of one copy.
This functional redundancy enables wheat plants to better withstand unfavorable natural
genetic variations and, thus, maintain salt tolerance [112].

The above data show that duplicated genes serve as a crucial source for the devel-
opment of new defenses against abiotic challenges in wheat, and that these defenses let
plants continue to evolve in response to environmental stresses that might have been
too severe for their ancestors. In addition to the above cases, a list of duplicate genes is
provided in Table 1, including homologous and paralogous genes with structural and func-
tional differences that contribute to wheat response to abiotic stress. A few such examples
include drought-responsive TaHVA1, TaRAV, and TaNAC [72,73,160,161]; salt-responsive
TaCHYR, TaWRKY75, and TaKNOX11 [84,90,129]; cold-responsive TaEXPA, TaICE, and
TaAREB [108,162,163]; and heat-responsive TaMYB, TabZIP, and TaHAG [80,82,83,164,165].

Table 1. Recent examples of duplicate genes in wheat.

Gene Name Gene Product Environmental Condition Reference

Transcription factor TaSNAC8-6A NAC transcription factors drought stress [71]
TaNAC071-A NAC transcription factors drought stress [72]
TaSNAC4-3D NAC transcription factors drought stress [73]
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Table 1. Cont.

Gene Name Gene Product Environmental Condition Reference

TaSNAC4-3A NAC transcription factors drought stress [74]

TaDTG6-B Dehydration-responsive
element-binding protein drought stress [75]

TaHsfA6f Heat shock factor heat stress [76]
TaHsfA2e-5D Heat shock transcription factor drought and heat stress [77]
TaHsfA6b-4D Heat shock transcription factor heat stress [78]
TaHsfC2a Heat shock factor heat stress [79]
TaMYB344 MYB transcription factors drought, heat, and salt stress [80]
TaMYB56-B MYB transcription factors freezing and salt stress [81]
TabZIP60 Basic leucine zipper proteins heat stress [82]
TabZIP14-B bZIP transcription factors salt and freezing stress [83]
TaWRKY75-A WRKY domain protein salt stress [84]
TaWRKY1-2D WRKY transcription factors drought stress [85]
TaERF-6-3A AP2/ERF transcription factors drought and salt stress [86]
TaGRF6-A General regulatory factors salt stress [87]
TaDrAp1,
TaDrAp2 Down-regulator associated protein drought stress [101]

TaFDL2-1A bZIP transcription factor drought stress [102]
TaMpc1-D4 MYB transcription factors drought stress [103]
TaGT2L1D trihelix transcription factors drought stress [104]

TaNFYC-A7 Recombinant Nuclear
Transcription Factor drought stress [105]

TaAIDFα CRT/DRE-binding factor cold stress [107]

TaAREB3 ABA-responsive
element-binding proteins cold stress [108]

TaWD40-4B.1 WD40 transcription factors drought stress [151]
TaRAV4 and
TaRAV5

RAV (related to ABI3/VP1)
transcription factor drought stress [161]

TaZHD1 and
TaZHD10

Zinc finger homeodomain class
transcription factors drought stress [166]

TaCBF14 and
TaCBF15 C-repeat/DREB binding factors cold stress [167]

TaBTF3 Basic transcription factor 3 cold stress [168]

TaRN2

ASYMMETRIC LEAVES2
(AS2)/LATERAL ORGAN
BOUNDARIES (LOB) domain
transcription factor

heat stress [169]

TaOPF29a OVATE family proteins drought stress [170]
TtNTL3A NAC transcription factors drought and salt stress [171]

Cytoprotective
protein/enzyme TaCAT3 Catalase cold stress [49,50]

TaSOD2 Superoxide dismutases salt stress [51–53]
TaAPX-R Ascorbate peroxidase drought and salt stress [54]
TaGPX Glutathione peroxidase genes salt stress [55,56]
TaPRX-2A Peroxidase gene family salt stress [57]
TaGR2-B1 Glutathione reductase salt stress [58]
TaADF16 Actin depolymerizing factor cold stress [100]

TaHVA1 Group 3 Late Embryogenesis
Abundant protein drought and heat stress [160]

TaEXPA8 Expansin protein cold stress [163]

Transporters TaOSCAs Hyperosmolality-gated
calcium-permeable channels drought, salt, heat stress [62,63]

TaBORs BOR transporter family drought, salt, heat stress [64]

TaMSL Mechanosensitive channel of small
conductance-like drought, salt, heat stress [66]

TaCaCA Ca2+/cation antiporters drought, salt, heat stress [67]
TaNHX4-B.1 and
TaNHX4-B.4 Cation proton antiporter drought, salt, heat stress [68]
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Table 1. Cont.

Gene Name Gene Product Environmental Condition Reference

TaACAs and
TaECAs P-type II Ca2+ATPases drought, salt, heat stress [69]

TaSOS1 Na+/H+ antiporter salt stress [146,147]
TaHKT1;5-D,
TmHKT1;5- A Na+ transporter salt stress [172,173]

HKT1;4 Na+ transporter salt stress [174]

TaCLC; TaCCC Chloride channel; cation chloride
co-transporter salt stress [175]

TdHKT1;4 Na+ transporter salt stress [176]
Homeobox genes TaHD-Zip HD-Zip gene family salt and drought stress [88]

TaKNOX11-A TALE superfamily protein drought, salt stress [89,90]

TaZF-HD Zinc Finger-Homeodomain
Transcriptional Factors drought, salt, and cold stress [91]

TaWUS and
TaWOX14 WUSCHEL-Related Homeobox drought, salt, heat stress [92,93]

TaPHD Plant homeodomain (PHD)
transcription factors cold, drought, and heat stress [177]

Metabolism-related
enzyme

TaLTPIb.1,
TaLTPIb.5, and
TaLTPId

Non-specific lipid transfer proteins cold stress [97]

TaCYP81D5 Cytochrome P450 protein salt stress [120]
TaHSP70s Heat shock protein heat stress [141]
TraeALDH7B1-
5A Aldehyde dehydrogenase drought stress [144]

TaHXK3-2A Hexokinase drought stress [178]
TaTPS11 Trehalose 6-phosphate synthase cold stress [179]
TaG6PDH Glucose-6-phosphate dehydrogenase cold stress [180]
TaHSP90s Heat shock protein heat stress [181]
TaFER-5B Ferritin heat stress [182]
TaDEAD-box57-
3B DEAD-box RNA Helicase drought and salt stress [183]

TaCER1-
6A,TaCER1-1A Alkane biosynthesis gene drought stress [184,185]

Cell signaling
protein/enzymes

TaCPK7 and
TaCPK12 Calcium-dependent protein kinases drought stress [139]

TaRN1 Serine/threonine protein kinase salt stress [169]
TaPYL1 ABA receptor drought stress [186]

CYCB2, CDKA1 B2-type cyclin in mitotic;
cyclin-dependent kinases drought stress [187]

TaSCPL184-6D Serine carboxypeptidase-like protein salt stress [188]
Receptor like
protein kinase TaLRRKs Leucine-rich repeat kinase heat and drought, and salt [42,43]

TaCRK68-A Cysteine-rich receptor-like kinases heat, drought, cold and salt
stress [44]

TaTLPs Thaumatin-like protein kinases heat and drought, and salt [45]

TaPERKs Proline-Rich Extensin-like
Receptor Kinases heat stress [46,47]

Epigenetic
regulation genes TaMBD2 Methyl CpG-binding domain proteins cold stress [94]

TaHAG1 Histone acetyltransferase heat and salt stress [164,165]
TaCMT Cytosine-5 DNA methyltransferases drought, heat stress [189]
Tr-7A-JMJ1,Tr-
1B-JMJ3 Histone demethylase drought stress [190]

TaSIRFP-
3A,TaSIRFP-3B RING-HC-type E3 ligases cold stress [191]
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Table 1. Cont.

Gene Name Gene Product Environmental Condition Reference

TaPUB2/TaPUB3 U-box E3 ubiquitin ligase drought stress [192]

Other stress
response genes

TaCHYR2.1,
TaCHYR9.2,
TaCHYR11.1

CHY zinc-finger and RING
finger protein salt stress [129]

TaICE41 and
TaICE87 Inducer of CBF expression cold stress [162]

Vrn-B1, Vrn-D3 Vernalization genes drought and heat stress [193,194]
TaBI-1.1 Bax Inhibitor heat stress [195]

4. Molecular Mechanisms of Abiotic Stress Resistance by Duplicated Genes

Duplicate genes are produced through a variety of mechanisms (Figure 1), and the
rapid doubling of a genome during polyploidization can trigger large-scale genomic alter-
ations, such as chromosomal rearrangements, gene inversions, and gene loss, in addition to
generating a large number of duplicate genes. Other work suggests that polyploidy may be
correlated with enhanced stress tolerance and higher reproductive fitness under stress con-
ditions based on evidence that polyploids typically have a broader geographic distribution
than diploid relatives [196–200]. Furthermore, crops that have undergone polyploidization
are more prevalently cultivated. For instance, the tetraploid wild emmer wheat that is
grown today, Triticum turgidum ssp. dicoccoides (2n = 4x = 28, BBAA), originated from the
diploid wheat, Triticum urartu (2n = 2x = 14, AA), and its close relative, Aegilops speltoides
(2n = 2x = 14, BB). Triticum aestivum L (2n = 6x = 42, BBAADD) was created through
crossing wild emmer wheat with the diploid, Aegilops tauschii (2n = 2x = 14, DD) [201]. In
the complete published genome of wheat cultivar, Chinese Spring, three copies can be
found for more than half of the genes, and the copies are evenly distributed among the
three homologous A, B, and D subgenomes [31]. These duplicated genes are referred to
as homoeologs, and they share a high degree of sequence similarity as well as functional
conservation and redundancy [31].

Although most of these homologous genes show synergistic expression patterns in the
wheat population, a few homologous genes show negatively correlated patterns of expres-
sion. This inverse relationship is potentially due to regulatory effects of genetic variations,
indicated by a gradual shift in the expression profiles of the same homologs from a positive
to a negative correlation concomitant with an increasing number of SNPs in the region
adjacent to one of the homologs [34]. Other research has shown that typical allohexaploid
species have higher salt tolerance than their tetraploid wheat progenitors [164]. Thus,
WGDs appear to improve the organismal capacity for adaptation to environmental chal-
lenges through introducing new genetic features and increasingly complex intragenomic
network interactions [202,203]. Some recent work has uncovered another duplication
phenomenon, distinct from WGD, related to significant genomic enrichment with TEs
(transposable elements) [204–208], and there are important distinctions in functional enrich-
ment and retention between genes produced via recent duplication and those produced
via WGD [205,207]. In addition to WGD events, the pool of duplicate genes has also been
considerably increased by numerous, small-scale subgenomic duplication events, including
tandem duplications [1], segmental duplications [209], DNA-based transposition [208],
and retrotransposon-mediated duplications [209]. Importantly, in each whole-genome or
partial-chromosome-segment duplication event, a portion of genes are eliminated while
another genomic fragment carrying duplicated genes is preserved to participate in fur-
ther evolution.

The ability of crops to adapt to severe climatic conditions can depend heavily on copy
number variations (CNVs). The FR-2 locus (Frost Resistance-2) has been linked to cold
tolerance, which is consistent with a set of CBFs (C-repeat binding factors) that were found
to regulate pathways involved in cold-climate domestication and cold tolerance [210,211].
Variability in CBF gene expression due to CNVs in the corresponding locus have been
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correlated with a cold-tolerant phenotype [210–215]. In particular, differences in gene
coding sequence have been identified that directly impact phenotype, such as sequence
variations in the CBF12 binding domains between winter and spring wheat accessions that
modulate CBF12 binding activity at target loci [216] and enhanced cold tolerance in winter
cereals with a high CBF copy number compared to that in single-copy spring cereals. In
addition, CBF13 appears to have undergone pseudogenization in spring barley, based on
the prevalence of sporadic nonsense codons, whereas its coding sequence remains intact in
winter barley [212]. Other cold tolerance loci have been identified in wheat that are also
functionally linked to CNVs in CBF genes [213,217].
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Figure 1. Mechanisms of gene duplication. (A) Whole-genome duplication (WGD) or polyploidy to
produce duplicate genes. (B) Tandem duplication: duplication of a gene via unequal crossing-over
between similar alleles. A chromosomal region within 200-kb containing two or more genes is defined
as a tandem duplication event. (C) Segmental duplication: multiple genes through polyploidy fol-
lowed by chromosome rearrangements. (D) Transposon-mediated duplication. (E) Retroduplication.
mRNA, which has been transcribed and cleaved, goes through a reverse transcription process to form
cDNA, which is then randomly inserted into a chromosome to form a new duplication gene.

Transposable elements (TEs) are small sequences, typically of viral origin, that mobilize
to random locations throughout the genome in a “cut-and-paste” fashion (i.e., excised and
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reinserted), in the case of DNA transposons, or in a “copy-and-paste” fashion (i.e., RNAs
encoding these elements are reverse transcribed and integrated into new sites, leaving the
original), in the case of retrotransposons. Duplication can occur if a gene is co-replicated
or co-transcribed/reverse transcribed with a TE, then integrated back into the genome
at a new site, sometimes disrupting genes at the integration site [218]. Transposons thus
mediate two main genomic effects: (1) they mobilize randomly throughout the genome,
disrupting genes; and (2) they generate copies of the sequence in proximity to their integra-
tion site, resulting in new genes, pseudogenes, and cis-regulatory elements. Alterations
in environmental conditions such as temperature, light, and water availability can impact
transposon activation, in addition to internal factors that contribute to genomic instability.
In a recent study examining the genomes of eleven crops, transposons accounted for 22%
to 85% of the total genome content [219]. The wheat genome contains a multitude of TEs,
which comprise ~85% of the sequence. For example, TE insertions in the promoter regions
of Vrn1 homologs resulted in several loss-of-function mutations related to cold domes-
tication [220]. Thus, the discovery, characterization, and use of TEs in crops, especially
wheat, which necessarily entails an in-depth understanding of their role in gene duplication
and the functions of the duplicated genes, could serve as a promising direction for future
crop breeding.

5. Prospects

Gene duplications are mainly produced via polyploidization and WGD events [160,163].
In cereal crops, polyploidization increases the phenotypic diversity of polyploid species, im-
proves the fitness of fixed hybrids, and enriches genetic diversity through altering genome
structure [221,222]. Crops that can adapt to new habitats are needed to ensure stable,
long-term food production as soil and climate conditions deteriorate globally. Hence, a key
strategy for removing genetic barriers to crop improvement is to engineer the polyploid
evolutionary process through utilizing distant crosses between related species [223,224]. In
addition, it is necessary to identify potential stress-responsive allelic variations through
dissecting the mechanisms underpinning transcriptional regulation and functional differ-
entiation of duplicated genes in crops. Transgenic methods have been used to introduce
superior genes into crops which confer high-yield potential but are accompanied by poor
stress resistance. However, stress-tolerant phenotypes may be engineered through iden-
tifying differences in copy number, gene structure, expression level, and protein coding
sequences of stress-responsive genes between tolerant and sensitive accessions. Despite
the potential benefits of having several copies of stress response genes in the genome,
genetic redundancy can also confound screening for distinct phenotypes. Gene-centric
approaches, such as those utilizing CRISPR-Cas systems, could be used to achieve targeted
improvements, reducing time and potentially increasing success rates. These approaches
have been successful in model plants as well as in polyploid wheat, enabling functional
genetic analysis in complex polyploid genomic backgrounds [225,226].

In summary, with natural selection continuing to serve as the cornerstone of evo-
lutionary theory, we must expedite a deeper understanding of the origins, evolutionary
mechanisms, and genetic basis of domestication that have culminated in modern wheat
(Figure 2). Utilizing the genetic diversity and exploiting differences in wheat and its wild
relatives is the foundation of germplasm innovation for the foreseeable future. At the same
time, the threats posed by the increasing frequency and severity of global climate change
warrant ongoing, extensive study of the genetic basis of traits that enable crop adaptation
to environmental change. This advanced understanding will provide sound theoretical
support for developing high-performance, stress-resilient germplasm and genetic resources
for molecular breeding. Finally, the phenotypic characterization of alleles that enable con-
tinued high crop performance under variable or extreme field conditions is also essential
for the effective deployment of stress-responsive genes identified in the laboratory.



Plants 2023, 12, 2465 12 of 21

Plants 2023, 12, x FOR PEER REVIEW 12 of 21 
 

 

stress-tolerant phenotypes may be engineered through identifying differences in copy 
number, gene structure, expression level, and protein coding sequences of 
stress-responsive genes between tolerant and sensitive accessions. Despite the potential 
benefits of having several copies of stress response genes in the genome, genetic redun-
dancy can also confound screening for distinct phenotypes. Gene-centric approaches, 
such as those utilizing CRISPR-Cas systems, could be used to achieve targeted im-
provements, reducing time and potentially increasing success rates. These approaches 
have been successful in model plants as well as in polyploid wheat, enabling functional 
genetic analysis in complex polyploid genomic backgrounds [225,226]. 

In summary, with natural selection continuing to serve as the cornerstone of evolu-
tionary theory, we must expedite a deeper understanding of the origins, evolutionary 
mechanisms, and genetic basis of domestication that have culminated in modern wheat 
(Figure 2). Utilizing the genetic diversity and exploiting differences in wheat and its wild 
relatives is the foundation of germplasm innovation for the foreseeable future. At the 
same time, the threats posed by the increasing frequency and severity of global climate 
change warrant ongoing, extensive study of the genetic basis of traits that enable crop 
adaptation to environmental change. This advanced understanding will provide sound 
theoretical support for developing high-performance, stress-resilient germplasm and 
genetic resources for molecular breeding. Finally, the phenotypic characterization of al-
leles that enable continued high crop performance under variable or extreme field con-
ditions is also essential for the effective deployment of stress-responsive genes identified 
in the laboratory. 

 
Figure 2. Prospects of abiotic stress-related duplicates in wheat. Making full use of the rich 
germplasm resources of the Triticeae, identification of abiotic stress-resistant varieties of bread 
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Figure 2. Prospects of abiotic stress-related duplicates in wheat. Making full use of the rich germplasm
resources of the Triticeae, identification of abiotic stress-resistant varieties of bread wheat and the
mining of superior genes in ancestral wild-type and closely related species. Explore the replication,
retention, and evolutionary mechanisms of repetitive genes in wheat, as well as the diversity and
differentiation of the functions and mechanisms of action of these genes in the abiotic response
process, and rationalize the use of repetitive genes to balance their effects in stress resistance and
wheat yield to achieve the desired results of stress resistance and yield. Make full use of multi-omics
analysis platforms such as bioinformatics analysis and phenome in pursuit of application of excellent
genes from greenhouse to field production. This proposal provides a potential precision-breeding
method for improved abiotic resistance of wheat.
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