Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus
Abstract
:1. Introduction
2. Results
2.1. Resistance Assessment of Oilseed Rape Genotypes to TuYV Infection Based on Virus Titre by qPCR in Greenhouse and Field Trials
2.1.1. The Greenhouse Trials
2.1.2. The Field Trial
2.1.3. The Field Trial (Autumn and Spring Samples 2021/2023)
2.1.4. The Greenhouse Trial vs. the Field Trial
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Plan for Screening Oilseed Rape Genotypes for Resistance to TuYV
4.2.1. Greenhouse Experiments
4.2.2. Field Experiments
4.3. RNA Isolation and cDNA Preparation
4.4. Analysis of Virus Titre by RT-qPCR
4.5. Extraction of Genomic DNA and Detection of Markers by PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolte, S.J. Diseases of Annual Edible Oilseed Crops. In Rapeseed-Mustard and Sesame Diseases; CRC Press: Boca Raton, FL, USA, 1985; Volume II, 135p. [Google Scholar]
- Rimmer, S.R.; Buchwaldi, H. Brassica oilseed rape virus diseases. In Brassica Oilseeds. Production and Utilization; Kimber, D.S., McgGregor, D.I., Eds.; CAB International: Wallingford, UK, 1995; p. 394. [Google Scholar]
- Carré, P.; Pouzet, A. Rapeseed market, worldwide and in Europe. OCL 2014, 21, D102. [Google Scholar] [CrossRef]
- Walsh, J.A.; Tomlinson, J.A. Viruses infecting winter oilseed rape (Brassica-napus ssp. oleifera). Ann. Appl. Biol. 1985, 107, 485–495. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Sharman, M.; Trebicki, P.; Maina, S.; Congdon, B.S. Virus diseases of cereal and oilseed crops in Australia: Current position and future challenges. Viruses 2021, 13, 2051. [Google Scholar] [CrossRef] [PubMed]
- Sõmera, M.; Fargette, D.; Hébrard, E.; Sarmiento, C. ICTV Report Consortium: ICTV Virus Taxonomy Profile: Solemoviridae. J. Gen. Virol. 2021, 102, 001707. [Google Scholar]
- Duffus, J.E. Host relationship of beet western yellows virus strains. Phytopathology 1964, 54, 736–738. [Google Scholar]
- Stevens, M.; Smith, H.G.; Hallsworth, P.B. The host-range of Beet yellowing viruses among common arable weed species. Plant Pathol. 1994, 43, 579–588. [Google Scholar] [CrossRef]
- Graichen, K.; Rabenstein, F. European isolates of Beet western yellows virus (BWYV) from oilseed rape (Brassica napus L. ssp. napus) are non-pathogenic on sugar beet (Beta vulgaris L. var. altissima) but represent isolates of Turnip yellows virus (TuYV). J. Plant Dis. Prot. 1996, 103, 233–245. [Google Scholar]
- Coutts, B.A.; Hawkes, J.R.; Jones, R.A.C. Occurrence of Beet western yellows virus and its aphid vectors in over-summering broad-leafed weeds and volunteer crop plants in the grainbelt region of south-western Australia. Aust. J. Agric. Res. 2006, 57, 975–982. [Google Scholar] [CrossRef]
- Slavíková, L.; Ibrahim, E.; Alquicer, G.; Tomašechová, J.; Šoltys, K.; Glasa, M.; Kundu, J.K. Weed hosts represent an important reservoir of turnip yellows virus and a possible source of virus introduction into oilseed rape crop. Viruses 2022, 14, 2511. [Google Scholar] [CrossRef]
- Graichen, K.; Schliephake, E. Infestation of winter oilseed rape by turnip yellows luteovirus and its effect on yield in Germany. In Proceedings of the 10th International Rapeseed Congress–New Horizons for An Old Crop, Canberra, Australia, 26–29 September 1999; Wratten, N., Salisbury, P.A., Eds.; International Consultative Group for Rapeseed Research: Canberra, Australia, 1999; pp. 131–136. [Google Scholar]
- Jay, C.N.; Rossall, S.; Smith, H.G. Effects of beet western yellows virus on growth and yield of oilseed rape (Brassica napus). J. Agric. Sci. 1999, 133, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.A.C.; Coutts, B.A.; Hawkes, J. Yield-limiting potential of beet western yellows virus in Brassica napus. Aust. J. Agric. Res. 2007, 58, 788–801. [Google Scholar] [CrossRef]
- Congdon, B.S.; Baulch, J.R.; Coutts, B.A. Impact of turnip yellows virus infection on seed yield of an open-pollinated and hybrid canola cultivar when inoculated at different growth stages. Virus Res. 2020, 277, 197847. [Google Scholar] [CrossRef]
- Smith, H.G.; Hinckes, J.A. Studies on beet western yellows virus in oilseed rape (Brassica napus ssp. oleifera) and sugar beet (Beta vulgaris). Ann. Appl. Biol. 1985, 107, 473–484. [Google Scholar] [CrossRef]
- Schroeder, M. Investigations on the susceptibility of oilseed rape (Brassica napus L., ssp. napus) to different virus diseases. J. Plant Dis. Prot. 1994, 101, 567–589. [Google Scholar]
- Johnstone, G.R.; Duffus, J.E. Some luteovirus diseases in Tasmania caused by beet western yellows and subterranean clover red leaf viruses. Aust. J. Agric. Res. 1984, 35, 821–830. [Google Scholar] [CrossRef]
- Randles, J.W.; Rathjen, J.P. Genus Luteovirus. In Virus Taxonomy; Sixth Report of the International Committee on Taxonomy of Viruses; Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P., Mayo, M.A., Summers, M.D., Eds.; Springer: New York, NY, USA, 2000; pp. 379–383. [Google Scholar]
- Schliephake, E.; Graichen, K.; Rabenstein, F. Investigations on the vector transmission of the Beet mild yellowing virus (BMYV) and the Turnip yellows virus (TuYV). J. Plant Dis. Prot. 2000, 107, 81–87. [Google Scholar]
- Stevens, M.; McGrann, G.; Clark, B. Turnip yellows virus (syn Beet western yellos virus): An emerging threat to European oilseed rape production? HGCA Res. Rev. 2008, 69, 1–37. [Google Scholar]
- Walsh, J.A.; Perrin, R.M.; Miller, A.; Laycock, D.S. Studies on beet western yellows virus in winter oilseed rape (Brassica napus ssp. oleifera) and the efect of insecticidal treatment on its spread. Crop. Prot. 1989, 8, 137–143. [Google Scholar] [CrossRef]
- Heimbach, U.; Kral, G.; Niemann, P. EU regulatory aspects of resistance risk assessment. Pest Manag. Sci. 2002, 58, 935–938. [Google Scholar] [CrossRef]
- Read, M.A.; Hewson, R.T. Prevention of Beet western yellows virus (BWYV) in winter oilseed rape by control of aphid vectors with deltamethrin. In Brighton Crop Protection Conference—Pest and Diseases; BCPC Reg. Office: Bath, UK, 1988; pp. 989–997. [Google Scholar]
- Graichen, K. Nachweis von resistenzgegenüberdem turnip yellows luteovirus (TuYV) in winterraps und verwandtenarten. Vortr. Pflanz. 1994, 30, 132–143. [Google Scholar]
- Hackenberg, D.; Asare-Bediako, E.; Baker, A.; Walley, P.; Jenner, C.; Greer, S.; Bramham, L.; Batley, J.; Edwards, D.; Delourme, R.; et al. Identification and QTL mapping of resistance to turnip yellows virus (TuYV) in oilseed rape, Brassica napus. Theor. Appl. Genet. 2020, 113, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Kae, B.M.; Lee, J.I.; Kwon, B.S. A New Rape Cultivar Yudal. Research Reports of the Office of Rural Development, S Korea, Crop 14: 67–70. 1971. Available online: https://eurekamag.com/research/000/006/000006111.php (accessed on 22 May 2023).
- Choy, Y.H.; Jeong, Y.J.; Kim, M.J.; Park, H.M.; Lee, J.S.; Jang, Y.S.; Han, I.S.; Yoon, M.S.; Yoon, Y.H. Improvement of erucic acid level in Brassica napus L. Yudal. In Proceedings of the 12th International Rapeseed Conference, Sustainable Development in Cruciferous Oilseed Crops Production, Wuhan, China, 26–30 March 2007; pp. 58–61. [Google Scholar]
- Juergens, M.; Paetsch, C.; Krämer, I.; Zahn, M.; Rabenstein, F.; Schondelmaier, J.; Schliephake, E.; Snowdon, R.; Friedt, W.; Frank Ordon, F. Genetic analyses of the host-pathogen system Turnip yellows virus (TuYV)—Rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance. Theor. Appl. Genet. 2010, 120, 735–744. [Google Scholar] [CrossRef]
- Weyen, J. Applications of Doubled Haploids in Plant Breeding and Applied Research. Methods Mol. Biol. 2021, 2287, 23–39. [Google Scholar]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Bioethanol. 2021, 19, 128. [Google Scholar] [CrossRef]
- Dreyer, F.; Graichen, K.; Jung, C. A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breed. 2001, 120, 457–462. [Google Scholar] [CrossRef]
- Cooper, J.I.; Jones, A.T. Responses of plants to viruses: Proposals for the use of terms. Phytopathology 1983, 73, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Congdon, B.S.; Baulch, J.R.; Coutts, B.A. Novel sources of turnip yellows virus resistance in Brassica and impacts of temperature on their durability. Plant Dis. 2021, 105, 2484–2493. [Google Scholar] [CrossRef] [PubMed]
- Greer, S.F.; Hackenberg, D.; Gegas, V.; Mitrousia, G.; Edwards, D.; Batley, J.; Teakle, G.R.; Barker, G.C.; Walsh, J.A. Quantitative trait locus mapping of resistance to turnip yellows virus in Brassica rapa and Brassica oleracea and introgression of these resistances by resynthesis into allotetraploid plants for deployment in Brassica napus. Front Plant Sci. 2021, 12, 781385. [Google Scholar] [CrossRef]
- Jarošová, J.; Kundu, J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Ranabhat, N.B.; Bruce, M.A.; Fellers, J.P.; Shoup Rupp, J.L. A reproducible methodology for absolute viral quantification and viability determination in mechanical inoculations of wheat streak mosaic virus. Trop. Plant Pathol. 2022, 47, 553–561. [Google Scholar] [CrossRef]
- Lecoq, H.; Moury, B.; Desbiez, C.; Palloix, A.; Pitrat, M. Durable virus resistance in plants through conventional approaches: A challenge. Virus Res. 2004, 100, 31–39. [Google Scholar] [CrossRef]
- Jarošová, J.; Chrpová, J.; Šíp, V.; Kundu, J.K. A comparative study of the Barley yellow dwarf virus species PAV and PAS: Distribution, accumulation and host resistance. Plant Pathol. 2013, 62, 436–443. [Google Scholar] [CrossRef]
- Beoni, E.; Chrpová, J.; Jarošová, J.; Kundu, J.K. Survey of barley yellow dwarf virus incidence in winter cereals crops, and assessment of wheat and barley resistance to the virus. Crop. Pasture Sci. 2016, 67, 1054–1063. [Google Scholar] [CrossRef]
- Hajano, J.U.D.; Zhang, H.B.; Ren, Y.D.; Lu, C.T.; Wang, X.F. Screening of rice (Oryza sativa) cultivars for resistance to rice black streaked dwarf virus using quantitative PCR and visual disease assessment. Plant Pathol. 2016, 65, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Ripl, J.; Dráb, T.; Gadiou, S.; Kundu, J.K. Differences in responses to Wheat dwarf virus infection in contrasting wheat cultivars Ludwig and Svitava. Plant Protect. Sci. 2020, 56, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sharaf, A.; Nuc, P.; Ripl, J.; Alquicer, G.; Ibrahim, E.; Wang, X.; Maruthi, M.N.; Kundu, J.K. Transcriptome dynamics in Triticum aestivum genotypes associated with resistance against the wheat dwarf virus. Viruses 2023, 15, 689. [Google Scholar] [CrossRef]
- Marshall, B.; Barker, H.; Verrall, S.R. Effects of potato leaf roll virus on crop processes leading to tuber yield in potato cultivars, which differ in tolerance of infection. Ann. Appl. Biol. 1988, 113, 297–305. [Google Scholar] [CrossRef]
- Coutts, B.A.; Webster, C.G.; Jones, R.A.C. Control of beet western yellows virus in Brassica napus crops: Infection resistance in Australian genotypes and effectiveness of imidacloprid seed dressing. Crop. Pasture Sci. 2010, 61, 321–330. [Google Scholar] [CrossRef]
- Walkey, D.G.A.; Pink, D.A.C. Studies on resistance to Beet western yellows virus in lettuce (Lactuca sativa) and the occurrence of field sources of the virus. Plant Pathol. 1990, 39, 141–155. [Google Scholar] [CrossRef]
- Duffus, J.E.; Milbrath, G.M. Susceptibility and immunity in soybean to Beet western yellows virus. Phytopathology 1977, 67, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Honjo, M.N.; Emura, N.; Kawagoe, T.; Sugisaka, J.; Kamitani, M.; Nagano, A.J.; Kudoh, H. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME J. 2020, 14, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Pagán, I.; Montes, N.; Milgroom, M.G.; García-Arenal, F. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLoS Pathog. 2014, 10, e1004293. [Google Scholar] [CrossRef] [Green Version]
- Pfrieme, A.K.; Ruckwied, B.; Habekuß, A.; Will, T.; Stahl, A.; Pillen, K.; Ordon, F. Identification and validation of quantitative trait loci for wheat dwarf virus resistance in wheat (Triticum Spp.). Front. Plant Sci. 2022, 13, 828639. [Google Scholar] [CrossRef]
- Trębicki, P.; Vandegeer, R.K.; Bosque-Pérez, N.A.; Powell, K.S.; Dader, B.; Freeman, A.J.; Yen, A.L.; Fitzgerald, G.J.; Luck, J.E. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci. Rep. 2016, 6, 22785. [Google Scholar] [CrossRef] [Green Version]
- Carreras Navarro, E.; Lam, S.K.; Trębicki, P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. 2020, 11, 1909. [Google Scholar] [CrossRef]
- Moreno-Delafuente, A.; Viñuela, E.; Fereres, A.; Medina, P.; Trębicki, P. Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects 2020, 11, 459. [Google Scholar] [CrossRef]
- Nagamani, S.; Ankita, T.; Mandal, B.; Jain, R.K. Effect of temperature on systemic infection and symptom expression induced by soybean yellow mottle mosaic virus in leguminous hosts. Australas. Plant Pathol. 2020, 49, 579–589. [Google Scholar]
- Schafer, J.F. Tolerance to plant disease. Annu. Rev. Phytopathol. 1971, 9, 235–252. [Google Scholar] [CrossRef]
- Pagán, I.; García-Arenal, F. Tolerance to plant pathogens: Theory and experimental evidence. Int. J. Mol. Sci. 2018, 19, 810. [Google Scholar] [CrossRef] [Green Version]
- Paudel, D.B.; Sanfacon, H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018, 9, 1575. [Google Scholar] [CrossRef]
- Filardo, F.; Nancarrow, N.; Kehoe, M.; McTaggart, A.R.; Congdon, B.; Kumari, S.; Aftab, M.; Trebicki, P.; Rodoni, B.; Thomas, J.; et al. Genetic diversity and recombination between turnip yellows virus strains in Australia. Arch. Virol. 2021, 166, 813–829. [Google Scholar] [CrossRef]
- Peng, Q.; Li, W.; Zhou, X.; Sun, C.; Hou, Y.; Hu, M.; Fu, S.; Zhang, J.; Kundu, J.K.; Lei, L. Genetic diversity analysis of Brassica yellows virus causing aberrant color symptoms in oilseed rape. Plants 2023, 12, 1008. [Google Scholar] [CrossRef]
- Klíma, M.; Vyvadilová, M.; Kučera, V. Production and utilization of doubled haploids in Brassica oleracea vegetables. Hortic. Sci. 2004, 31, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Klíma, M.; Vyvadilová, M.; Kucera, V. Chromosome doubling effects of selected antimitotic agents in Brassica napus microspore culture. Czech J. Genet. Plant Breed. 2008, 44, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Dráb, T.; Svobodová, E.; Ripl, J.; Jarošová, J.; Rabenstein, F.; Melcher, U.; Kundu, J.K. SYBR Green I based RT-qPCR assays for the detection of RNA viruses of cereals and grasses. Crop. Pasture Sci. 2014, 65, 1323–1328. [Google Scholar] [CrossRef]
- Singh, K.; Kundu, J.K. Variation in coat protein sequence of Wheat streak mosaic virus among crop and no crop hosts. Crop. Pasture Sci. 2017, 68, 328–336. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Shin, G.S.; Hwang, S. Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006, 123, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Edwards, K.; Johnstone, C.; Thompson, C.A. Simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991, 19, 1349. [Google Scholar] [CrossRef]
No. | Name | Original Maintainer (Commercial Varieties) or Origin (Breeding Lines) |
---|---|---|
1 | Arabella * | Semundo Saatzucht GmbH (Germany) |
2 | Chagall * | Lantmännen ek för (Sweden) |
3 | Corida * | Selgen, a.s. (Czech Republic) |
4 | Da Vinci * | SW Seed Hadmersleben GmbH (Germany) |
5 | DK Temptation * | Deutsche Saatveredelung AG (Germany) |
6 | Harry * | Saatzucht Donau GmbH & CoKG (Austria) |
7 | Navajo * | CPB Twyford Ltd., (Great Britain) |
8 | Ocelot * | Oseva Pro, s.r.o (Czech Republic) |
9 | Onca * | Oseva Pro, s.r.o (Czech Republic) |
10 | Rescator * | Selgen, a.s. (Czech Republic) |
11 | Sidney * | Saatzucht Donau GmbH & CoKG (Austria) |
12 | OP-8112 DH ** | Ornament × MK |
13 | OP-8135 DH ** | Orex × Cortes |
14 | OP-8137 DH ** | Ornament × Lohana |
15 | OP-8143 DH ** | MK × Ladoga |
16 | OP-8145 DH ** | Orex × Cadeli |
17 | OP-8148 DH * | Orex × Cortes |
18 | OP-8480 DH ** | Hopson × Ladoga |
19 | OP-8482 DH ** | MK × Lohana |
20 | OP-BN-71 ** | (Orion × Sidney) × Cortes |
21 | OP-BN-72 ** | MK × Sidney |
22 | SG-C 21215 ** | Cortes × Vittek |
23 | SG-C 48916 ** | CH111 × Wisent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, E.; Rychlá, A.; Alquicer, G.; Slavíková, L.; Peng, Q.; Klíma, M.; Vrbovský, V.; Trebicki, P.; Kundu, J.K. Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus. Plants 2023, 12, 2501. https://doi.org/10.3390/plants12132501
Ibrahim E, Rychlá A, Alquicer G, Slavíková L, Peng Q, Klíma M, Vrbovský V, Trebicki P, Kundu JK. Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus. Plants. 2023; 12(13):2501. https://doi.org/10.3390/plants12132501
Chicago/Turabian StyleIbrahim, Emad, Andrea Rychlá, Glenda Alquicer, Lucie Slavíková, Qi Peng, Miroslav Klíma, Viktor Vrbovský, Piotr Trebicki, and Jiban Kumar Kundu. 2023. "Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus" Plants 12, no. 13: 2501. https://doi.org/10.3390/plants12132501
APA StyleIbrahim, E., Rychlá, A., Alquicer, G., Slavíková, L., Peng, Q., Klíma, M., Vrbovský, V., Trebicki, P., & Kundu, J. K. (2023). Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus. Plants, 12(13), 2501. https://doi.org/10.3390/plants12132501