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Abstract: Rice is one of the most important crops in the world and is considered a strategic crop
for food security. Furthermore, the excessive use of chemical fertilizers to obtain high yields causes
environmental problems. A sustainable alternative includes taking advantage of beneficial bacteria
that promote plant growth. Here, we investigate the effect of five bacterial biofertilizers from
halophytes on growth, and we investigate photosynthetic efficiency in rice plants grown under saline
conditions (0 and 85 mmol L−1 NaCl) and future climate change scenarios, including increased
CO2 concentrations and temperature (400/700 ppm and 25/+4 ◦C, respectively). Biofertilizers
1–4 increased growth by 9–64% in plants grown with and without salt in both CO2- temperature
combinations, although there was no significant positive effect on the net photosynthetic rate of rice
plants. In general, biofertilizer 1 was the most effective at 400 ppm CO2 and at 700 ppm CO2 +4 ◦C
in the absence of salt. Inocula 1–5 also stimulated plant length at high CO2 levels without salt. Finally,
the positive effect of biofertilization was attenuated in the plants grown under the interaction between
salt and high CO2. This highlights the significance of studying biofertilization under stress interaction
to establish the real potential of biofertilizers in the context of climate change conditions.

Keywords: bacterial consortium; efficiency of PSII photochemistry; elevated atmospheric CO2; gas
exchange; inoculation; PGPR; temperature

1. Introduction

Microorganisms are essential for the formation of soil structures in both natural
and agricultural systems, and they are involved in fundamental processes such as the
decomposition of organic matter and, in general, the cycle of C, N, P and S [1,2]. Some
bacterial populations of the soil are capable of colonizing the rhizosphere or the interior
of plants and stimulating growth, for which they are named plant growth-promoting
rhizobacteria (PGPR) [2].

PGPR inoculants can carry out beneficial biological processes in agricultural systems
with little or no negative impacts, as a natural solution [3]. This has led to a growing
interest in developing PGPR-based biofertilizers for their application to different types of
crops. PGPR promote plant growth through different mechanisms, such as [4–7] auxin
production for root development (particularly indole-3-acetic acid, IAA), facilitation of
nutrient uptake, atmospheric nitrogen fixation, siderophore production for iron uptake,
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phosphorus solubilization, synthesis of the enzyme ACC deaminase (cleaves ethylene,
which is essential in response to stress), and biofilm production (which improves bacterial
adhesion to root tissue and facilitation of nutrient uptake). Biofertilizers usually consist of
PGPR consortia since a single strain often does not show all the mechanisms to promote
host growth [5,8].

Rice (Oryza sativa L.) is an essential food product for the human population; it is
estimated that world rice production for 2023 will be 517 million t [9]. Furthermore, rice is
considered a strategic crop due to its wide distribution in soils and climates worldwide,
as well as in a scenario of climate change [1,10]. However, studies that evaluate the effect
of PGPR on rice growth are still limited [11–14]. Some of these studies have evaluated
PGPR consortia or isolates not only as an alternative to chemical fertilization [1], but also to
alleviate salinity [11,14] or drought stresses [12] in rice plants. This is relevant due to the
fact that salt stress is limiting cultivation on lands around the world [15]. Anyway, none of
these studies have considered the effect of PGPR on growth under the interaction of several
abiotic factors.

Studies assessing the effect of PGPR consortia on crops in combination with different
abiotic stresses, such as salinity, temperature, and CO2 concentration, are very scarce. How-
ever, these studies are important for establishing the effectiveness of the use of biofertilizers
in the context of the world’s changing climate [4,16]. In this context, halophytes are an
excellent reservoir of halotolerant bacteria with plant growth-promoting traits that could
be used for these studies [17].

Biofertilizers from halophytes have previously demonstrated their effectiveness in
mitigating abiotic stress in different crops, including rice [4]. However, this previous study
evaluated the effect of bacterial inoculants on growth, but not on the physiological response
of crops. Therefore, our objective was to test the effects of five biofertilizers from halophytes
on rice growth and physiological response under salinity stress (85 mM NaCl) since it
has been previously shown that concentrations reduce the growth of rice [4], as do varia-
tions in atmospheric CO2 concentration and air temperature (400 ppm and 25/14 ◦C and
700 ppm +4 ◦C).

2. Materials and Methods
2.1. Plant Materials, Growth Conditions, and Treatments

Rice seeds (Oryza sativa var. Puntal) were surface-disinfested in 0.5% (w/v) calcium
hypochlorite for 20 min. Then, hypochlorite was removed by successive washing with
sterilized tap water and germinated on a wet filter paper for 7 days. Germinated seedlings
were transferred to 4 L closed tanks containing at least 20 plants, in +N BG110 medium [18].
Plants (n = 24) were grown in controlled-environment chambers at 400 ppm CO2 with a
diurnal regime of 16 h of light at 25 ◦C and 8 h of darkness at 14 ◦C, 80% relative humidity
and 300 µmolm−2 s−1 light flux (Aralab/Fitoclima 18.000 EH, Lisbon, Portugal). Treatments
were stablished after 5 days of growth (see below).

Twenty-four different treatments were established (n = 20 per treatment): six
biofertilization treatments (five rhizobacteria consortia + non-inoculated control), two
salinity concentrations (0 and 85 mmol L−1 NaCl), and two CO2- temperature
combinations—400 ppm CO2 at 25/14 ◦C (16/8 h) and 700 ppm CO2 at 29/18 ◦C (16/8 h).

The salinity treatment was imposed by adding the appropriate concentration of salt
(0 or 85 mmol L−1 NaCl) to the culture medium. This salt concentration was determined
as the optimum for salt stress in rice in a previous analysis [4]. The conductivity of the
tanks was monitored weekly with a conductivity meter (Probe GS3, Decagon, Pullman,
WA, USA), and NaCl was added when necessary. The atmospheric CO2 concentrations in
the chambers were continuously recorded by CO2 sensors (Aralab, Lisbon, Portugal) and
maintained by supplying pure CO2 from a compressed gas cylinder (Air Liquide, B50 35 K).
Rhizobacterial inoculation was carried out the day after setting environmental treatments
(salinity, CO2 and temperature).
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2.2. Consortia of Rhizobacteria

Five bacterial biofertilizers were used, which had been tested with eight crops: alfalfa,
flax, maize, millet, wheat, strawberry, sunflower and rice [4]. They were constructed from
rhizobacteria originally isolated from the rhizospheres of five different halophytes, com-
monly inhabiting salt marshes in southwestern Spain [16]. These five microbial consortia,
containing three strains each, showed different PGPR activities likely promoting plant
growth (see Figure 1).
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Figure 1. Plant growth-promoting rhizobacterial (PGPR) traits for the strains of biofertilizers used in
this study. The rhizobacteria that compose biofertilizers were isolated from: 1, Sporobolus montevidensis
(Arechav.) P.M. Peterson & Saarela; 2, Allenrolfea occidentalis; 3, Sporobolus maritimus (Curtis) P.M.
Peterson & Saarela; 4, Atriplex portulacoides; and 5, Salicornia europaea (Information adapted with
permission from Redondo-Gómez et al. [4]).

Bacterial suspension for inoculation was prepared as described previously [4]. In short,
strains grown in TSB (Tryptone Soya Broth) medium were collected and resuspended in
tap water to reach an OD600 of approximately 1.0 in order to produce a uniform bacterial
concentration of all strains. The bacterial suspensions were mixed to produce the five final
inoculant suspensions, as follows: strains SDT3, SDT13 and SDT14 were mixed to obtain
Biofertilizer 1; strains RA1, RA15 and RA18 for Biofertilizer 2; strains SMT38, SMT48 and
SMT51 for Biofertilizer 3; strains HPJ2, HPJ15 and HPJ50 for Biofertilizer 4 and strains
SRT1, SRT8 and SRT15 were mixed in Biofertilizer 5. For plant inoculation, every 1.5 L pot
was watered with 20 ml of the inoculant suspensions to get a final bacteria concentration
of 105 CFU/ml (estimating that a suspension of OD600 1 corresponds to approximately
108 CFU/ml).

2.3. Growth Measurements

After 20 d of growth in the different treatments, plant lengths (n = 20) were determined.
Finally, the plants were harvested, and dry mass was determined after drying the samples
at 80 ◦C for 48 h.

2.4. Gas Exchange

Gas exchange was measured in random tillers (n = 5) using an infrared gas analyser
(LI-6400, LI-COR Inc., Lincoln, NE, USA; equipped with a light leaf chamber LI-6400-02B)
in an open system one day before plant harvest. Net photosynthetic rate (A), stomatal
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conductance (Gs) and instantaneous water use efficiency (iWUE; ration between A and Gs)
and intercellular CO2 concentration (Ci), were determined at a photon flux density (PPFD)
of 1000 mmol photons m−2 s−1 (with 15% blue light to maximize stomatal aperture), a CO2
concentration surrounding the leaf of 400 mmol mol−1 air, an air temperature of 24 ± 1 ◦C,
a relative humidity of 45 ± 5%, and a vapor pressure deficit of 2.0–3.0 kPa [19].

2.5. Chlorophyll Fluorescence

Chlorophyll fluorescence was measured in leaves (n = 12) from plants 20 d after
treatment using a portable modulated fluorimeter (FMS-2; Hansatech Instruments Ltd.,
Kings Lynn, UK). Quantum efficiency of PSII photochemistry (Fv/Fm) was measured in
leaves that were dark-adapted for 30 minutes using leaf clips designed for this purpose,
and the maximum quantum efficiency of PSII photochemistry (Fv/Fm) was measured.
Maximum efficiency of PSII was calculated as Fv/Fm (i.e., the quantum efficiency if all PSII
centres were open) [20].

2.6. Statistical Analysis

Data were analysed using generalized linear models (GLMs). Statistical analysis
was performed using the SPSS 26.0 statistical program (SPSS Inc., Chicago, IL, USA),
using the Duncan test to establish the significance between treatments (p < 0.05). Before
statistical analysis, to verify the assumptions of normality and homogeneity of the variances,
Kolmogorov–Smirnov and Levene tests were used, respectively.

3. Results
3.1. Growth Measurements

Inoculation with the different consortia of rhizobacteria had a significant effect on rice
plants under different salinity conditions (0 and 85 mmol L−1 NaCl) at 400 ppm CO2 and
25 ◦C and 700 ppm CO2 +4 ◦C (GLM, p < 0.0001; Figures 2 and 3). Bacterial inoculation
increased plant growth at 400 ppm CO2 at 25 ◦C, regardless of saline treatment (p < 0.0001
for both with and without salt). Inoculum 1 showed the highest plant dry weight without
salt compared to non-inoculated control plants by 9% (Figure 2A). Inocula 1–4 increased
plant dry weight by 21–46% at 85 mmol L−1 NaCl and ambient CO2.
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Figure 2. Dry weight of rice plants inoculated with rhizobacteria consortia, numbered 1 to 5
(control = non-inoculated plants), after 20 d of treatment at 400 ppm CO2 (A) and at +4 ◦C and
700 ppm CO2 (B) with 0 and 85 mmol L−1 NaCl. Each value represents the mean of twenty replicates
±SE. Different letters for each saline treatment (capital and italics letters for 0 and 85 mmol L−1 NaCl,
respectively) indicate means that are significantly different from each other (GLM; Duncan test, p < 0.05).
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Figure 3. Length of rice plants inoculated with rhizobacteria consortia, numbered 1 to 5
(control = non-inoculated plants), after 20 d of treatment at 400 ppm CO2 (A) and at +4 ◦C and
700 ppm CO2 (B) with 0 and 85 mmol L−1 NaCl. Each value represents the mean of twenty replicates
±SE. Different letters for each saline treatment (capital and italics letters for 0 and 85 mmol L−1 NaCl,
respectively) indicate means that are significantly different from each other (GLM; Duncan test, p < 0.05).

Overall, biofertilization improved the growth of rice plants by 28–64% in the absence of
salt at high CO2 and +4 ◦C (p < 0.0001). Nevertheless, there was not a significant effect from
the dry weight of inoculated plants treated with 85 mmol L−1 NaCl (p < 0.0001; Figure 2B).
In the same way, there was not a significant effect on the length increase in plants grown
without salt at 400 ppm CO2 and 25 ◦C. However, in the presence of salt, plants treated
with inoculum 1 showed an increased length by 4% with respect to the non-inoculated
control (p < 0.0001; Figure 3A).

Finally, when the two treatments were combined (85 mmol L−1 NaCl and high CO2
and +4 ◦C), there was no beneficial effect of biofertilization on the length of the plants.
However, in the absence of salt, the plants treated with inocula 1–5 significantly increased
in length compared to the non-inoculated control by 7–16% (p < 0.001; Figure 3B).

3.2. Gas Exchange

In general, the values of the net photosynthetic rate (A) were higher at elevated
CO2 than those measured at ambient CO2 (GLM, p < 0.0001; Figure 4). There was no
positive effect from biofertilization on A of plants grown in the absence of salt and ambient
CO2; in fact, inoculum 5 had a negative effect on A (GLM, p < 0.0001; Figure 4A). Plants
treated with biofertilizer 2 showed the highest A in the presence of salt, although there
were no significant differences compared to control plants without inoculation (p <0.01).
This A value corresponded to a lower intercellular CO2 concentration (Ci), but stomatal
conductance (Gs) remained at values similar to those of the control (Figure 4B,C). In the
same way, A values and inoculum 2 increased instantaneous water use efficiency (iWUE)
by 23.5% at 85 mmol L−1 NaCl (Figure 4D).

The trend described previously was also observed at 700 ppm CO2 at +4 ◦C. Only
in the presence of salt there was a beneficial effect from inoculation (GLM, p < 0.0001).
Again, inoculum 2 improved A values by 19% compared to non-inoculated control plants
(Figure 4E). This increase also corresponded to lower Ci values, while Gs remained un-
changed with respect to the control (Figure 4F,G). Finally, plants treated with biofertilizer 2
showed the highest iWUE values (Figure 4H).
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Figure 4. (A), Net photosynthetic rate (A,E); Ci, intercellular CO2 concentration (B,F); Gs, stomatal
conductance (C,G); and iWUE, instantaneous water use efficiency (D,H) of rice plants inoculated
with rhizobacteria consortia, numbered 1 to 5 (control = non-inoculated plants), after 20 d of treatment
at 400 ppm CO2 (A–D) and at +4 ◦C and 700 ppm CO2 (E–H) with 0 and 85 mmol L−1 NaCl. Each
value represents the mean of five replicates ±SE. Different letters for each saline treatment (capital
and italics letters for 0 and 85 mmol L−1 NaCl, respectively) indicate means that are significantly
different from each other (GLM; Duncan test, p < 0.05).

3.3. Chlorophyll Fluorescence

Biofertilizer 1 was the only inoculant that produced a beneficial effect on photosystem
II (PSII) activity in the rice plants grown at 400 ppm CO2 and 25 ◦C since the maximum
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quantum efficiency of PSII photochemistry (Fv/Fm) of plants treated with this inoculum
was significantly higher than the non-inoculated control at 0 mmol L−1 NaCl (p < 0.0001).
This effect was not observed in the presence of salt (p > 0.05; Figure 5A) and was reversed
at 700 ppm CO2 +4 ◦C, having only a significant positive effect on Fv/Fm values in the
presence of salt. Notably, inoculum 2 was the one producing an improvement PSII activity,
recording a higher Fv/Fm value than the control (p < 0.05; Figure 5B). Finally, Fv/Fm values
were lower at elevated CO2 +4 ◦C than at ambient CO2, regardless of saline treatment
(p < 0.0001).
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4. Discussion

Both salinity and 700 ppm CO2 +4 ◦C treatments were stressful conditions for rice
plants, as they reduced plant growth and increased photoinhibition, that is, low Fv/Fm
values. Our results are in agreement with previous results found for the Shiroudi rice
variety, which reduced its total dry weight at 700 ppm CO2 compared to plants treated with
360 ppm CO2 [21]. Nonetheless, Cheng et al. [22] found that dry weight was higher for rice
plants grown at high CO2 concentration and high or low night temperatures (32 and 22 ◦C,
respectively). In the same way, Feng et al. [23] observed a greater relative growth rate in
rice seedlings at 700 ppm CO2 and 27 ◦C than those grown at 450 ppm CO2 and 23 ◦C, and
this trend was maintained in the presence of 1.1 g Na L−1. This is in line with our findings
in the presence of salt for non-inoculated plants. We have reported an increase in plant dry
weight at 700 ppm CO2 +4 ◦C and 85 mmol L−1 NaCl with respect to plants at ambient
CO2. This was not the case for the plant length since the lowest size was recorded in plants
grown under the interaction of the two stressors. On the other hand, Kazemi et al. [21]
concluded that the negative effects of salinity on rice plant growth were intensified by
elevated CO2 conditions, which enhanced cell membrane damage. The adverse effects of
salinity are also intensified with increasing temperature [24].

Interestingly, the higher rate of net photosynthesis measured for the non-inoculated
control at elevated CO2 +4 ◦C did not correspond to higher dry weight with respect
to the non-inoculated control at ambient CO2. Carbon dioxide is expected to increase
photosynthesis, dry matter production, and yield; decrease stomatal conductance rate and
transpiration in C3 and C4 species; and improve the water use efficiency of plants [25].
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However, high CO2 suppresses photorespiration, which has been linked to nitrogen uptake
capacity [26]. It has been reported that Arabidopsis mutants with impaired nitrate uptake
capacity showed a greater effect on growth at elevated CO2 concentrations than at lower
concentrations [27], which was due to a reduction in the mutant’s ability to assimilate nitrate
at elevated CO2. In our study, in the absence of salt and at 700 ppm CO2 +4 ◦C, the effect on
growth might be overall counteracted by biofertilization, as all consortia contained strains
with nitrogen fixation capacity. Furthermore, photorespiration plays an important role in
plant carbon metabolism and provides tolerance to stress in plants [28]. Photorespiration
counteracts photoinhibition and reactive oxygen species (ROS) production under high light
conditions [29,30], which cause lipid peroxidation and chlorophyll degradation [31]. In this
way, we found lower Fv/Fm values, at 700 ppm CO2 +4 ◦C with respect to ambient CO2.

In the absence of stress, biofertilizer 1 was the only one stimulating the growth of
the rice plants. In contrast, biofertilizers 1–4 increased rice growth in the presence of
stressors, salinity, or high CO2 +4 ◦C. Finally, no effect from biofertilization was registered
in the plants grown under the stress interaction, high CO2 +4 ◦C and 85 mmol L−1. A
previous study found that inoculation with Bacillus pumulis, Pseudomonas pseudoalcaligenes
alone and in combination increased the plant dry weight of the GJ-17 rice variety in the
presence and in the absence of salt [32]. In this way, biofertilizer 1 was the only one that
contained a strain of the genus Pseudomonas. Redondo-Gómez et al. [4] already described
that consortia obtained from halophytes were really useful for salt stress alleviation under
stress conditions [16].

The present work highlights the use of microbial consortia from halophytes to al-
leviate plant growth under a combination of abiotic stresses, even if a low effect on the
improvement of photosynthetic rate is observed. Nevertheless, there was no determining
property in the inocula, but rather in the combination of them. This makes the use of a
microbial consortium more useful than the use of independent strains [5,8]. Biofertilizers 3
and 4 are composed of two PGPR strains with the ability to produce biofilm, and therefore,
they are capable of chelating different cations. In this way, bacteria can bind with the Na+
ion under salt stress by means of the secretion of exopolysaccharides (EPS), consequently
reducing its toxicity in the soil [33]. However, these biofertilizers were not the most effective
in stimulating plant growth at 400 ppm CO2 and 85 mmol L−1 NaCl; it was consortium
2 that exhibited greater IAA production than consortia 1, 3 or 5. Higher IAA production
could stimulate root growth and improve the uptake of nutrients and water for the plant.
The flow of water and nutrients has previously been reported to stabilize stomatal conduc-
tance and transpiration rate, improving photosynthetic rate, iWUE, and starch production,
and therefore, stimulating plant growth under salinity conditions [13]. Indeed, we also
observed higher iWUE values for plants treated with salt and biofertilizer 2 at ambient
CO2. Interestingly, biofertilizer 1, with a lower IAA production capacity, stimulated the
growth of rice plants to the same extent as biofertilizer 2, although the first contained PGPR
capable of solubilizing P and had greater siderophore production, which would also imply
an improvement in the nutritional status of the plants. Finally, biofertilizer 5, which along
with 4 was the most complete in terms of PGPR traits, only improved plant length at high
CO2 levels without salt.

5. Conclusions

Biofertilizers containing microbial consortia from halophytes proved to be effective
in mitigating the negative effects of salinity and high CO2 concentration and temperature
on rice plants, although they did not show an effect when the interaction between these
abiotic factors was tested. These biofertilizers improved plant growth and physiological
response. Biofertilizers 1–4 stimulated plant growth in the presence of salt stress or high
CO2 +4 ◦C. Furthermore, these consortia kept photosynthetic rate, instantaneous water use
efficiency, and the maximum quantum efficiency of PSII photochemistry of the rice plants
at similar values to those of the control. The combination of strains in a consortium shows
a synergistic effect that provides better PGPR features than the individual strains.
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Studies that identify the effect of different stressors on crop are very scarce, and studies
that consider inoculation with PGPR to mitigate the effects of these stressors are even more
so. This highlights the significance of developing studies that consider stress interaction to
establish the real potential of biofertilizers in the context of climate change conditions.

Finally, it would be necessary to analyse in the future biofertilizer effectiveness in field
experiments and study their effect on crop production.
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