Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests
Abstract
:1. Introduction
2. Results
2.1. SNP Genotyping
2.2. Genetic Characteristics of Populations
2.3. Selection Signatures
2.4. Genome–Environment Associations (GEA)
2.5. Genotype–Phenotype Associations (GPA)
3. Discussion
4. Materials and Methods
4.1. Study Species and Sites
4.2. SNP Genotyping
4.3. Genetic Characteristics of Populations
4.4. Selection Signatures
4.5. Genome–Environment Associations (GEA)
4.6. Genotype–Phenotype Associations (GPA)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; Mcdowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Ramming, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Hughes, L.; McIntyre, S.; Lindenmayer, D.B.; Parmesan, C.; Possingham, H.P.; Thomas, C.D. Ecology. Assisted colonization and rapid climate change. Science 2008, 321, 345–346. [Google Scholar] [CrossRef]
- Mosca, E.; Eckert, A.J.; Di Pierro, E.A.; Rocchini, D.; La Porta, N.; Belletti, P.; Neale, D.B. The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol. Ecol. 2012, 21, 5530–5545. [Google Scholar] [CrossRef]
- Barret, R.D.H.; Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008, 23, 38–44. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef] [Green Version]
- Alberto, F.J.; Aitken, S.N.; Alia, R.; Gonzalez-Martinez, S.C.; Hanninen, H.; Kremer, A.; Lefèvre, F.; Lenormand, T.; Yeaman, S.; Whetten, R.; et al. Potential for evolutionary responses to climate change evidence from tree populations. Glob. Chang. Biol. 2013, 19, 1645–1661. [Google Scholar] [CrossRef] [Green Version]
- Parchman, T.L.; Gompert, Z.; Mudge, J.; Schilkey, F.D.; Benkman, C.W.; Buerkle, C.A. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 2012, 21, 2991–3005. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Olsson, J.; Zhao, W.; Kroon, J.; Wennström, U.; Wang, W.R. Divergent patterns between phenotypic and genetic variation in Scots pine. Plant Commun. 2020, 2, 100139. [Google Scholar] [CrossRef] [PubMed]
- Slavov, G.T.; DiFazio, S.P.; Martin, J.; Schackwitz, W.; Muchero, W.; Rodgers-Melnick, E.; Lipphardt, M.F.; Pennacchio, C.P.; Hellsten, U.; Pennacchio, L.A.; et al. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 2012, 196, 713–725. [Google Scholar] [CrossRef]
- Méndez-Cea, B.; García-García, I.; Gazol, A.; Camarero, J.J.; de Andrés, E.G.; Colangelo, M.; Valeriano, C.; Gallego, F.J.; Weak, J.C.L. genetic differentiation but strong climate-induced selective pressure toward the rear edge of mountain pine in north-eastern Spain. Sci. Total Environ. 2023, 858 Pt 2, 159778. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Cea, B.; García-García, I.; Sánchez-Salguero, R.; Lechuga, V.; Gallego, F.J.; Linares, J.C. Tree-Level Growth Patterns and Genetic Associations Depict Drought Legacies in the Relict Forests of Abies marocana. Plants 2023, 12, 873. [Google Scholar] [CrossRef] [PubMed]
- DeSilva, R.; Dodd, R.S. Association of genetic and climatic variability in giant sequoia, Sequoiadendron giganteum, reveals signatures of local adaptation along moisture-related gradients. Ecol. Evol. 2020, 10, 10619–10632. [Google Scholar] [CrossRef]
- Talbot, B.; Chen, T.W.; Zimmerman, S.; Joost, S.; Eckert, A.J.; Crow, T.M.; Semizer-Cuming, D.; Seshadri, C.; Manel, S. Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes. J. Hered. 2017, 108, 207–216. [Google Scholar] [CrossRef] [Green Version]
- García-García, I.; Méndez-Cea, B.; Martín-Gálvez, D.; Seco, J.I.; Gallego, F.J.; Linares, J.C. Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. Front. Plant Sci. 2022, 12, 797958. [Google Scholar] [CrossRef]
- Fernandez, M.C.; Hu, F.S.; Gavin, D.G.; de Lafontaine, G.; Heath, K.D. A tale of two conifers: Migration across a dispersal barrier outpaced regional expansion from refugia. J. Biogeogr. 2021, 48, 133–2143. [Google Scholar] [CrossRef]
- Novikova, S.V.; Sharov, V.V.; Oreshkova, N.V.; Simonov, E.P.; Krutovsky, K.V. Genetic Adaptation of Siberian Larch (Larix sibirica Ledeb.) to High Altitudes. Int. J. Mol. Sci. 2023, 24, 4530. [Google Scholar] [CrossRef]
- Zhang, M.; Kimatu, J.N.; Xu, K.; Liu, B. DNA cytosine methylation in plant development. J. Genet. Genomics 2010, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pootakham, W.; Sonthirod, C.; Naktang, C.; Jomchai, N.; Sangsrakru, D.; Tangphatsornruang, S. Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: A case study in oil palm (Elaeis guineensis). Mol. Breed. 2016, 36, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krutovsky, K.V. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. Russ. J. Genet. 2022, 58, 1273–1286. [Google Scholar] [CrossRef]
- Lasky, J.R.; Josephs, E.B.; Morris, G.P. Genotype-environment associations to reveal the molecular basis of environmental adaptation. Plant Cell 2023, 35, 125–138. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef] [PubMed]
- MacLachlan, I.R.; McDonald, T.K.; Lind, B.M.; Rieseberg, L.H.; Yeaman, S.; Aitken, S.N. Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer. Proc. Natl. Acad. Sci. USA 2021, 118, e2016900118. [Google Scholar] [CrossRef]
- Heer, K.; Behringer, D.; Piermattei, A.; Bässler, C.; Brandl, R.; Fady, B.; Jehl, H.; Liepelt, S.; Lorch, S.; Piotti, A.; et al. Linking dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 2018, 27, 1428–1438. [Google Scholar] [CrossRef]
- Nardini, A. Hard and tough: The coordination between leaf mechanical resistance and drought tolerance. Flora 2022, 288, 152023. [Google Scholar] [CrossRef]
- Kursar, T.A.; Engelbrecht, B.M.J.; Burke, A.; Tyree, M.T.; Omari, B.M.I.; Giraldo, J.P. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 2009, 23, 93–102. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L.; Bongers, F.; Paz, H.; Sack, L. Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytol. 2011, 191, 480–495. [Google Scholar] [CrossRef] [PubMed]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Oliva, J.; Vicente-Serrano, S.M. To die or not to die: Early warnings of tree dieback in response to a severe drought. J. Ecol. 2015, 103, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Gazol, A.; Camarero, J.J.; Gutiérrez, E.; Popa, I.; Andreu-Hayles, L.; Motta, R.; Nola, P.; Ribas, M.; Sangüesa-Barreda, G.; Urbinati, C.; et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 2015, 42, 1150–1162. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.J.; Bigler, C.; Linares, J.C.; Gil-Pelegrín, E. Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For. Ecol. Manag. 2011, 262, 759–769. [Google Scholar] [CrossRef]
- Bouriaud, O.; Popa, I. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 2009, 23, 95–106. [Google Scholar] [CrossRef]
- Elling, W.; Dittmar, C.; Pfaffelmoser, K.; Rötzer, T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For. Ecol. Manag. 2009, 257, 1175–1187. [Google Scholar] [CrossRef]
- Macias, M.; Andreu, L.; Bosch, O.; Camarero, J.J.; Gutiérrez, E. Increasing Aridity is Enhancing Silver Fir Abies Alba Mill.) Water Stress in its South-Western Distribution Limit. Clim. Chang. 2006, 79, 289–313. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J. Silver Fir Defoliation Likelihood Is Related to Negative Growth Trends and High Warming Sensitivity at Their Southernmost Distribution Limit. Int. Sch. Res. Notices 2012, 2012, 437690. [Google Scholar] [CrossRef] [Green Version]
- González de Andrés, E.; Gazol, A.; Querejeta, J.I.; Igual, J.M.; Colangelo, M.; Sánchez-Salguero, R.; Linares, J.C.; Camarero, J.J. The role of nutritional impairment in carbon-water balance of silver fir drought-induced dieback. Glob. Chang. Biol. 2022, 28, 4439–4458. [Google Scholar] [CrossRef] [PubMed]
- González de Andrés, E.; Camarero, J.J.; Martínez, I.; Coll, L. Uncoupled spatiotemporal patterns of seed dispersal and regeneration in Pyrenean silver fir populations. For. Ecol. Manag. 2014, 319, 18–28. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkes, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Clim. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Zhang, X.L.; Jiang, L.; Xin, Q.; Liu, Y.; Tan, J.X.; Chen, Z.Z. Structural basis and functions of abscisic acid receptors PYLs. Front. Plant Sci. 2015, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, X.; Liu, J.; Niu, Y.; Chen, Y.; Hao, Y.; Zhao, J.; Sun, L.; Wang, H.; Xiao, J.; et al. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein (HIPP) Gene Family from Triticeae Species. Int. J. Mol. Sci. 2020, 21, 6191. [Google Scholar] [CrossRef] [PubMed]
- Barth, O.; Zschiesche, W.; Siersleben, S.; Humbeck, K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiol. Plant 2004, 121, 282–293. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Wu, H.C.; Jinn, T.L. Coordination of ABA and Chaperone Signaling in Plant Stress Responses. Trends Plant Sci. 2019, 24, 636–651. [Google Scholar] [CrossRef] [PubMed]
- Kaldenhoff, R.; Fischer, M. Functional aquaporin diversity in plants. Biochim. Biophys. Acta. 2006, 1758, 1134–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahari, T.; Lazaro, J.; Marcus, J.J.; Schroeder, D.F. RAD7 homologues contribute to Arabidopsis UV tolerance. Plant Sci. 2018, 277, 267–277. [Google Scholar] [CrossRef]
- Faraji, S.; Rasouli, S.H.; Kazemitabar, S.K. Genome-wide exploration of C2H2 zinc finger family in durum wheat (Triticum turgidum ssp. Durum): Insights into the roles in biological processes especially stress response. Biometals 2018, 31, 1019–1042. [Google Scholar] [CrossRef] [PubMed]
- Kiełbowicz-Matuk, A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci. 2012, 185–186, 78–85. [Google Scholar] [CrossRef]
- Muthamilarasan, M.; Bonthala, V.S.; Mishra, A.K.; Khandelwal, R.; Khan, Y.; Roy, R. C2H2-type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct. Integr. Genomics 2014, 14, 531–543. [Google Scholar] [CrossRef]
- Zhao, M.; Han, Y.; Feng, Y.; Wang, W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep. 2012, 31, 671–685. [Google Scholar] [CrossRef]
- Ramesh, S.A.; Kamran, M.; Sullivan, W.; Chirkova, L.; Okamoto, M.; Degryse, F.; McLaughlin, M.; Gilliham, M.; Tyerman, S.D. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport. Plant Cell 2018, 30, 1147–1164. [Google Scholar] [CrossRef] [Green Version]
- Shelp, B.J.; Bozzo, G.G.; Zarei, A.; Simpson, J.P.; Trobacher, C.P.; Allan, W.L. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. II. Integrated analysis. Botany 2012, 90, 781–793. [Google Scholar] [CrossRef]
- Cremer, E.; Liepelt, S.; Sebastiani, F.; Bounamici, A.; Michalczyk, I.; Ziegenhagen, B.; Vendramin, G.G. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Mol. Ecol. Notes 2006, 6, 374–376. [Google Scholar] [CrossRef]
- Postolache, D.; Leonarduzzi, C.; Piotti, A.; Spanu, I.; Roig, A.; Fady, B.; Roschanski, A.; Liepelt, S. Transcriptome versus genomic microsatellite markers: Highly informative multiplexes for genotyping Abies alba Mill and congeneric species. Plant Mol. Biol. Rep. 2013, 32, 750–760. [Google Scholar] [CrossRef]
- Vendramin, G.G.; Degen, B.; Petit, R.J.; Anzidei, M.; Madaghiele, A.; Ziegenhagen, B. High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol. Ecol. 1999, 8, 1117–1126. [Google Scholar] [CrossRef]
- Major, E.I.; Höhn, M.; Avanzi, C.; Fady, B.; Heer, K.; Opgenoorth, L.; Piotti, A.; Popescu, F.; Postolache, D.; Vendramin, G.G.; et al. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol. Ecol. 2021, 30, 5247–5265. [Google Scholar] [CrossRef] [PubMed]
- Roschanski, A.M.; Csilléry, K.; Liepelt, S.; Oddou-Muratorio, S.; Ziegenhagen, B.; Huard, F.; Ullrich, K.K.; Postolache, D.; Vendramin, G.G.; Fady, B. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Mol. Ecol. 2016, 25, 776–794. [Google Scholar] [CrossRef]
- Lee, J.; Izzah, N.K.; Jayakodi, M.; Perumal, S.; Joh, H.J.; Lee, H.J.; Lee, S.-C.; Park, J.Y.; Yang, K.-W.; Nou, I.-S.; et al. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol. 2015, 15, 32. [Google Scholar] [CrossRef] [Green Version]
- Balao, F.; Lorenzo, M.T.; Sánchez-Robles, J.M.; Paun, O.; García-Castaño, J.L.; Terrab, A. Early diversification and permeable species boundaries in the Mediterranean firs. Ann. Bot. 2020, 125, 495–507. [Google Scholar] [CrossRef]
- Latreille, A.C.; Pichot, C. Local-scale diversity and adaptation along elevational gradients assessed by reciprocal transplant experiments: Lack of local adaptation in silver fir populations. Ann. For. Sci. 2017, 74, 77. [Google Scholar] [CrossRef] [Green Version]
- De La Torre, A.R.; Lin, Y.C.; Van de Peer, Y.; Ingvarsson, P.K. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families. Genome Biol. Evol. 2015, 7, 1002–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, D.B.; Martínez-García, P.J.; De La Torre, A.; Montanari, S.; Wei, X.X. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. Annu. Rev. Plant Biol. 2017, 68, 457–483. [Google Scholar] [CrossRef]
- Behringer, D.; Zimmermann, H.; Ziegenhagen, B.; Liepelt, S. Differential gene expression reveals candidate genes for drought stress response in Abies alba (Pinaceae). PLoS ONE 2015, 10, e0124564. [Google Scholar] [CrossRef] [PubMed]
- Csilléry, K.; Ovaskainen, O.; Sperisen, C.; Buchmann, N.; Widmer, A.; Gugerli, F. Adaptation to local climate in multi-trait space: Evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity 2020, 124, 77–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazol, A.; Camarero, J.J.; Colangelo, M.; de Luis, M.; Martínez del Castillo, E.; Serra-Maluquer, X. Summer drought and spring frost, but not their interaction, constrain European beech and silver fir growth in their southern distribution limits. Agric. For. Meteorol. 2019, 278, 107695. [Google Scholar] [CrossRef]
- Zhang, X.; Manzanedo, R.D.; Lv, P.; Xu, C.; Hou, M.; Huang, X.; Rademacher, T. Reduced diurnal temperature range mitigates drought impacts on larch tree growth in North China. Sci. Total Environ. 2022, 848, 157808. [Google Scholar] [CrossRef]
- van der Putten, W.H.; Bradford, M.A.; Brinkman, E.P.; van de Voorde, T.F.J.; Veen, C. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 2016, 30, 1109–1121. [Google Scholar] [CrossRef]
- Schweitzer, J.A.; Bailey, J.K.; Fischer, D.G.; LeRoy, C.J.; Lonsdorf, E.V.; Whitham, T.G.; Hart, S.C. Plant–soil microorganism interactions: Heritable relationship between plant genotype and associated soil microorganisms. Ecology 2008, 89, 773–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K.J. Feedback in the plant-soil system. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef] [Green Version]
- Pugnaire, F.I.; Morillo, J.A.; Peñuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; van der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [Green Version]
- Thébault, A.; Clement, J.C.; Ibanez, S.; Roy, J.; Geremia, R.A.; Pérez, C.A.; Buttler, A.; Estienne, Y.; Lavorel, S. Nitrogen limitation and microbial diversity at the treeline. Oikos 2014, 123, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, F.; Gavazov, K.; Alexander, J.M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 2019, 365, 1119–1123. [Google Scholar] [CrossRef]
- Chang, E.-H.; Tian, G.; Chiu, C.-Y. Soil Microbial Communities in Natural and Managed Cloud Montane Forests. Forests 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Bastida, F.; Torres, I.F.; Andrés-Abellán, M.; Baldrian, P.; López-Mondéjar, R.; Větrovský, T.; Richnow, H.H.; Starke, R.; Ondoño, S.; García, C.; et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob. Chang. Biol. 2017, 23, 4185–4203. [Google Scholar] [CrossRef] [PubMed]
- Felsmann, K.; Baudis, M.; Gimbel, K.; Kayler, Z.E.; Ellerbrock, R.; Bruehlheide, H.; Bruckhoff, J.; Welk, E.; Puhlmann, H.; Weiler, M.; et al. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS ONE 2015, 10, e0122539. [Google Scholar] [CrossRef]
- Babusgkina, E.A.; Vaganovb, E.A.; Gracheva, A.M.; Oreshkovab, N.V.; Belokopytovaa, L.V.; Kostyakova, T.V.; Krutovsky, K.V. The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia 2016, 38, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Pluess, A.R.; Weber, P. Drought-adaptation potential in Fagus sylvatica: Linking moisture availability with genetic diversity and dendrochronology. PLoS ONE 2012, 7, e33636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Cantero, A.; Sánchez-Salguero, R.; Sánchez-Miranda, A.; Granda, E.; Serra-Maluquer, X.; Ibáñez, R. Forest growth responses to drought at short- and long-term scales in Spain: Squeezing the stress memory from tree rings. Front. Ecol. Evol. 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Duncan, E.J.; Gluckman, P.D.; Dearden, P.K. Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? J. Exp. Zool. B Mol. Dev. Evol. 2014, 322, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Mauri, A.; de Rigo, D.; Caudullo, G. Abies alba in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Public Office EU: Luxembourg, 2016; p. e01493b. [Google Scholar]
- Dobrowolska, D.; Bončina, A.; Klumpp, R. Ecology and silviculture of silver fir (Abies alba Mill.): A review. J. For. Res. 2017, 22, 326–335. [Google Scholar] [CrossRef]
- Robakowski, P.; Montpied, P.; Dreyer, E. Responses to temperature and shade in Abies alba seedlings from diverse provenances. Scand. J. For. Res. 2005, 20, 459–470. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 10 June 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Mosca, E.; Cruz, F.; Gómez-Garrido, J.; Bianco, L.; Rellstab, C.; Brodbeck, S.; Csilléry, K.; Fady, B.; Fladung, M.; Fussi, B.; et al. A Reference Genome Sequence for the European Silver Fir (Abies alba Mill.): A Community-Generated Genomic Resource. G3 Genes Genomes Genet. 2019, 9, 2039–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, D.A.R.; Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis I Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Meirmans, P.G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 2020, 20, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, Y.; Excoffier, L. A Generic Estimation of Population Subdivision Using Distances between Alleles with Special Reference for Microsatellite Loci. Genetics 1996, 142, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Foll, M.; Gaggiotti, O.E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günther, T.; Coop, G. Robust Identification of Local Adaptation from Allele Frequencies. Genetics 2013, 195, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Jeffreys, H. Theory of Probability, 3rd ed.; Oxford University Press: Oxford, UK, 1961; p. 432. [Google Scholar]
- Fick, S.; Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Igual, J.M.; González de Andrés, E.; Colangelo, M.; Valeriano, C. Intraspecific trait variation, growth, and altered soil conditions at tree species distribution limits: From the alpine treeline to the rear edge. Agric. For. Meteorol. 2022, 315, 108811. [Google Scholar] [CrossRef]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Endelman, J.B.; Jannink, J.-L. Shrinkage estimation of the realized relationship matrix. G3 Genes Genomes Genet. 2012, 2, 1405–1413. [Google Scholar] [CrossRef]
Populations | CO | GA | PE | PM | SO |
---|---|---|---|---|---|
CO | - | 0.038 | 0.034 | 0.027 | 0.027 |
GA | 0.000 | - | 0.028 | 0.035 | 0.034 |
PE | 0.000 | 0.000 | - | 0.027 | 0.019 |
PM | 0.000 | 0.000 | 0.000 | - | 0.015 |
SO | 0.000 | 0.000 | 0.000 | 0.000 | - |
Number of samples | 47 | 18 | 74 | 77 | 38 |
CO | PE | PM | |
---|---|---|---|
FST | 0.004 | 0.004 | 0.002 |
p-value | 0.142 | 0.055 | 0.192 |
Number of ND samples | 15 | 20 | 19 |
Number of D samples | 13 | 18 | 20 |
SNP | Location | Position | Protein | Protein ID |
---|---|---|---|---|
333 | aalba5_s00002910:109,731 | Within the gene | Abscisic acid receptor (PYL3) | AALBA5B1118705T1 |
799 | aalba5_s00008638:65,727 | Within the gene | La-related protein 1B (LARP1B) | AALBA5B999098T2 |
1034 | aalba5_s00012107:25,977 | Within the gene | Heavy metal-associated protein (HIPP39) | AALBA5B430765T1 |
1241 | aalba5_s00014817:64,736 | Within the gene | Fucosidase (FUCO1) | AALBA5B698786T1 |
2059 | aalba5_s00027378:40,879 | Within the gene | Mediator of RNA polymerase II (MD26C) | AALBA5B1091291T1 |
2477 | aalba5_s00034336:46,604 | 20,152 bp downstream | Kinase (CRK42) | AALBA5B567750T1 |
2591 | aalba5_s00036159:10,277 | 5615 bp upstream | Transcription factor (PHL3) | AALBA5B939227T1 |
2665 | aalba5_s00037486:53,893 | 939 bp downstream | TATA-box-binding-interacting homolog (RIN1) | AALBA5B827346T1 |
2697 | aalba5_s00038192:32,220 | 25,073 bp downstream | Chaperone (BAG5) | AALBA5B1063708T1 |
3215 | aalba5_s00047689:19,730 | 2651 bp upstream | Kinase (BSK2) | AALBA5B446846T1 |
3952 | aalba5_s00062077:3573 | 35,864 bp upstream | Squalene epoxidase (ERG1) | AALBA5B441483T1 |
SNP | Location | Position | Protein | ID |
---|---|---|---|---|
159 | aalba5_s00001283:86,646 | 21,883 bp upstream | UDP-glycosyltranferase (U86A2) | AALBA5B1024847T1 |
179 | aalba5_s00001426:131,290 | Within the gene | BEACH domain-containing protein (BCHC2) | AALBA5B098257T1 |
681 | aalba5_s00007005:35,095 | Within the gene | Aquaporin (SIP2-1) | AALBA5B253951T1 |
983 | aalba5_s00011431:62,999 | 21,010 bp downstream | Tetratricopeptide repeat-like superfamily protein (PPR35) | AALBA5B348236T1 |
1808 | aalba5_s00023261:31,104 | Within the gene | Kinase (NEK4) | AALBA5B973686T1 |
2061 | aalba5_s00027387:15,057 | 30,900 bp upstream | MOTHER of FT and TFL1 (MFT) | AALBA5B1139649T1 |
2119 | aalba5_s00028425:12,399 | 328 bp upstream | Chaperone, chloroplastic (DJA7A) | AALBA5B512522T1 |
2459 | aalba5_s00034077:43,568 | 772 bp upstream | Mitogen-activated kinase (M3K17) | AALBA5B244254T1 |
2591 | aalba5_s00036159:10,277 | 5615 bp upstream | Transcription factor (PHL3) | AALBA5B939227T1 |
2645 | aalba5_s00037229:12,665 | 111 bp upstream | Homeobox (PKNOX1) | AALBA5B627517T1 |
2794 | aalba5_s00040228:24,711 | 20,262 bp upstream | DNA repair protein (RAD7) | AALBA5B261613T1 |
2940 | aalba5_s00042872:51,622 | 18,194 bp downstream | Helicase (MAA3) | AALBA5B767119T1 |
3063 | aalba5_s00045131:27,419 | 17,345 bp downstream | Phosphatase (P2C60) | AALBA5B289418T1 |
3313 | aalba5_s00049423:3040 | 909 bp upstream | Translation initiation factor (SDA1) | AALBA5B666590T1 |
3400 | aalba5_s00051396:12,444 | Within the gene | Uncharacterized transmembrane protein (UGPI7) | AALBA5B360123T1 |
SNP | Location | Position | Protein | ID |
---|---|---|---|---|
238 | aalba5_s00002010:71,026 | 22 bp downstream | Endo-1,3(4)-beta-glucanase (ENG1) | AALBA5B495784T1 |
287 | aalba5_s00002479:90,851 | 1649 bp downstream | Chaperone (DNJ10) | AALBA5B1036913T1 |
764 | aalba5_s00008117:59,024 | 25,055 bp upstream | Coatomer subunit delta-2 (COPD2) | AALBA5B407046T1 |
1808 | aalba5_s00023261:31,104 | Within the gene | Kinase (NEK4) | AALBA5B973686T1 |
2587 | aalba5_s00036112:6656 | 407 bp upstream | Translocase of chloroplast (TC120) | AALBA5B952204T1 |
2665 | aalba5_s00037486:53,893 | 939 bp downstream | TATA-box-binding-interacting homolog (RIN1) | AALBA5B827346T1 |
2794 | aalba5_s00040228:24,711 | 20,262 bp upstream | DNA repair protein (RAD7) | AALBA5B261613T1 |
3000 | aalba5_s00044048:11,938 | Within the gene | 3-oxoacyl synthase, mitochondrial (KASM) | AALBA5B636711T1 |
3120 | aalba5_s00046057:16,198 | 309 bp downstream | Sorbitol dehydrogenase (DHSO) | AALBA5B083042T1 |
3313 | aalba5_s00049423:3040 | 909 bp upstream | Translation initiation factor (SDA1) | AALBA5B666590T1 |
3870 | aalba5_s00060613:17,756 | 21,499 bp upstream | Ribonuclease HI (RNH) | AALBA5B308154T1 |
3874 | aalba5_s00060695:20,797 | 21,154 bp upstream | UDP-glucose 4-epimerase (GALE2) | AALBA5B999424T1 |
3952 | aalba5_s00062077:3573 | 35,864 bp upstream | Squalene epoxidase (ERG1) | AALBA5B441483T1 |
SNP | Location | Position | Protein | ID |
---|---|---|---|---|
159 | aalba5_s00001283:86,646 | 21,883 bp upstream | UDP-glycosyltranferase (U86A2) | AALBA5B1024847T1 |
238 | aalba5_s00002010:71,026 | 22 bp downstream | Endo-1,3(4)-beta-glucanase (ENG1) | AALBA5B495784T1 |
681 | aalba5_s00007005:35,095 | Within the gene | Aquaporin (SIP2-1) | AALBA5B253951T1 |
764 | aalba5_s00008117:59,024 | 25,055 bp upstream | Coatomer subunit delta-2 (COPD2) | AALBA5B407046T1 |
983 | aalba5_s00011431:62,999 | 21,010 bp downstream | Tetratricopeptide repeat-like superfamily protein (PPR35) | AALBA5B348236T1 |
1808 | aalba5_s00023261:31,104 | Within the gene | Kinase (NEK4) | AALBA5B973686T1 |
2587 | aalba5_s00036112:6656 | 407 bp upstream | Translocase of chloroplast (TC120) | AALBA5B952204T1 |
2591 | aalba5_s00036159:10,277 | 5615 bp upstream | Transcription factor (PHL3) | AALBA5B939227T1 |
2665 | aalba5_s00037486:53,893 | 939 bp downstream | TATA-box-binding-interacting homolog (RIN1) | AALBA5B827346T1 |
3120 | aalba5_s00046057:16,198 | 309 bp downstream | Sorbitol dehydrogenase (DHSO) | AALBA5B083042T1 |
3313 | aalba5_s00049423:3040 | 909 bp upstream | Translation initiation factor (SDA1) | AALBA5B666590T1 |
3870 | aalba5_s00060613:17,756 | 21,499 bp upstream | Ribonuclease HI (RNH) | AALBA5B308154T1 |
3874 | aalba5_s00060695:20,797 | 21,154 bp upstream | UDP-glucose 4-epimerase (GALE2) | AALBA5B999424T1 |
SNP | Location | Position | Protein | ID |
---|---|---|---|---|
1 | aalba5_s00000025:18,4813 | Within the gene | Probable kinase (Y1960) | AALBA5B157798T1 |
259 | aalba5_s00002236:37,636 | 6142 bp upstream | Farnesyl pyrophosphate synthase (FPPS) | AALBA5B673769T1 |
887 | aalba5_s00009946:20,716 | 22 bp upstream | Zinc finger 10 (ZFP10) | AALBA5B909389T1 |
1769 | aalba5_s00022666:63,643 | 55,996 bp downstream | Expansin (EXPA8) | AALBA5B425104T1 |
2319 | aalba5_s00031591:9355 | Within the gene | RecQ-mediated genome instability protein (RMI-1) | AALBA5B1147052T1 |
3101 | aalba5_s00045724:48,524 | 4919 bp downstream | Ribonuclease H (RNHX1) | AALBA5B088054T1 |
3238 | aalba5_s00048104:19,924 | 284 bp upstream | SUN domain-containing protein (SUN1) | AALBA5B001978T1 |
3878 | aalba5_s00060735:27,446 | 16,784 bp downstream | Aluminum-activated malate transporter (ALMTE) | AALBA5B787661T1 |
Populations | Cotatuero (CO) | Gamueta (GA) | Paco Ezpela (PE) | Paco Mayor (PM) | Selva de Oza (SO) |
---|---|---|---|---|---|
Latitude | 42.65 | 42.88 | 42.74 | 42.71 | 42.84 |
Longitude | −0.04 | −0.79 | −0.83 | −0.64 | −0.70 |
Altitude | 1456 | 1450 | 1116 | 1322 | 1220 |
Mean T | 5.22 | 6.23 | 9.74 | 8.55 | 7.47 |
Annual P | 1167 | 1120 | 867 | 944 | 1028 |
Variable | CO | GA | PE | PM | SO |
---|---|---|---|---|---|
BIO1 | 5.22 | 6.23 | 9.74 | 8.56 | 7.47 |
BIO2 | 10.1 | 9.48 | 9.41 | 9.78 | 9.53 |
BIO3 | 36.62 | 35.75 | 37.33 | 37.48 | 36.35 |
BIO12 | 1167 | 1120 | 867 | 944 | 1028 |
BIO15 | 19.30 | 21.11 | 21.87 | 21.06 | 20.79 |
Variable | CO | GA | PE | PM | SO |
---|---|---|---|---|---|
% N | 0.87 ± 0.10 | 0.34 ± 0.02 | 0.37 ± 0.01 | 0.32 ± 0.02 | 0.32 ± 0.01 |
C/N | 18.93 ± 0.36 | 17.46 ± 0.39 | 18.32 ± 0.38 | 15.93 ± 0.41 | 14.04 ± 0.44 |
% org C | 16.44 ± 1.79 | 5.97 ± 0.45 | 6.87 ± 0.33 | 5.11 ± 0.30 | 4.53 ± 0.30 |
P (ppm) | 66.98 ± 7.02 | 18.36 ± 1.62 | 13.50 ± 1.28 | 12.05 ± 1.83 | 8.16 ± 0.87 |
% clay | 6.89 ± 0.45 | 15.69 ± 0.56 | 21.74 ± 0.61 | 25.36 ± 0.86 | 24.88 ± 0.55 |
% silt | 29.91 ± 0.72 | 42.36 ± 0.84 | 40.70 ± 0.67 | 43.90 ± 0.85 | 50.65 ± 0.72 |
% sand | 63.20 ± 1.07 | 41.95 ± 1.24 | 37.56 ± 1.21 | 30.74 ± 1.49 | 24.47 ± 1.08 |
Saxton | 2.11 ± 0.05 | 1.63 ± 0.04 | 1.02 ± 0.04 | 0.85 ± 0.07 | 1.23 ± 0.05 |
Variable | CO | GA | PE | PM | SO |
---|---|---|---|---|---|
General FAME | 63.57 ± 4.12 | 41.91 ± 3.00 | 29.96 ± 1.16 | 24.86 ± 1.72 | 30.63 ± 1.96 |
Eukaryote | 7.99 ± 0.91 | 4.45 ± 0.47 | 6.31 ± 0.32 | 5.13 ± 0.68 | 4.91 ± 0.89 |
Gram-negative | 181.97 ± 10.71 | 116.56 ± 9.22 | 113.75 ± 3.43 | 90.33 ± 5.63 | 123.61 ± 8.62 |
Gram-positive | 98.25 ± 5.30 | 70.02 ± 4.39 | 74.67 ± 2.04 | 64.81 ± 3.88 | 78.15 ± 4.75 |
Actinomycetes | 36.34 ± 2.67 | 20.82 ± 1.36 | 24.93 ± 1.09 | 20.21 ± 1.27 | 23.85 ± 1.42 |
Fungi | 15.51 ± 1.30 | 11.36 ± 1.47 | 16.10 ± 1.39 | 15.58 ± 1.82 | 11.87 ± 1.84 |
AM Fungi | 13.95 ± 0.90 | 7.49 ± 0.68 | 9.80 ± 0.39 | 8.62 ± 0.59 | 10.63 ± 0.89 |
Anaerobe | 3.22 ± 0.27 | 1.76 ± 0.11 | 1.81 ± 0.07 | 1.64 ± 0.11 | 1.88 ± 0.14 |
Trait | Description |
---|---|
BAI5, BAI10, BAI20 | Mean BAI in the last 5, 10, and 20 years, respectively (cm2) |
BAI mean 1979–1999, BAI mean 1999–2019 | Mean BAI for the indicated time span (cm2) |
BAI trend 1979–1999, BAI trend 1999–2019 | Slope of the BAI for the indicated time span (cm2 year−1) |
Within tree BAI autocorr. 1979–1999, Within tree BAI autocorr. 1999–2019 | Tree-level first-order Pearson’s autocorrelation of the BAI over time for the indicated time span |
Among trees BAI intercorr. 1979–1999, Among trees BAI intercorr. 1999–2019 | Pearson’s correlation between the tree-level BAI and population mean BAI for the indicated time span |
CV 1979–1999, CV 1999–2019 | Tree-level coefficient of variation of the BAI (standard deviation/mean 100) for the indicated time span (%) |
Trait | Description |
---|---|
PsuP, PauP | Previous summer and autumn precipitation, respectively |
Pwi, Psp, Psu, Pau, Pye | Winter, spring, summer, autumn, and year precipitation, respectively |
TsuP, TauP | Previous summer and autumn temperature, respectively |
Twi, Tsp, Tsu, Tau, Tye | Winter, spring, summer, autumn, and year temperature, respectively |
spei_sup, spei_aup | Previous summer SPEI, previous autumn SPEI |
spei_wi, spei_sp, spei_su, spei_au, spei_ye | Winter, spring, summer, autumn, and year SPEI, respectively |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-García, I.; Méndez-Cea, B.; González de Andrés, E.; Gazol, A.; Sánchez-Salguero, R.; Manso-Martínez, D.; Horreo, J.L.; Camarero, J.J.; Linares, J.C.; Gallego, F.J. Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. Plants 2023, 12, 2607. https://doi.org/10.3390/plants12142607
García-García I, Méndez-Cea B, González de Andrés E, Gazol A, Sánchez-Salguero R, Manso-Martínez D, Horreo JL, Camarero JJ, Linares JC, Gallego FJ. Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. Plants. 2023; 12(14):2607. https://doi.org/10.3390/plants12142607
Chicago/Turabian StyleGarcía-García, Isabel, Belén Méndez-Cea, Ester González de Andrés, Antonio Gazol, Raúl Sánchez-Salguero, David Manso-Martínez, Jose Luis Horreo, J. Julio Camarero, Juan Carlos Linares, and Francisco Javier Gallego. 2023. "Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests" Plants 12, no. 14: 2607. https://doi.org/10.3390/plants12142607
APA StyleGarcía-García, I., Méndez-Cea, B., González de Andrés, E., Gazol, A., Sánchez-Salguero, R., Manso-Martínez, D., Horreo, J. L., Camarero, J. J., Linares, J. C., & Gallego, F. J. (2023). Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. Plants, 12(14), 2607. https://doi.org/10.3390/plants12142607