Low-Cost Sensor for Lycopene Content Measurement in Tomato Based on Raspberry Pi 4
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. HPLC Analysis
4.3. Sensor Developed
4.3.1. Sensor Device Configuration
4.3.2. Image Acquisition
4.3.3. Fruit Segmentation
4.4. Lycopene Estimator
4.4.1. Artificial Neural Networks (ANNs)
4.4.2. Fuzzy Logic (FL)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- If (L is Low_L) and (a is Low_a) and (b is Low_b) then (Lycopene is Lycopenemf1)
- If (L is Low_L) and (a is Low_a) and (b is High_b) then (Lycopene is Lycopenemf2)
- If (L is Low_L) and (a is Medium_a) and (b is Low_b) then (Lycopene is Lycopenemf3)
- If (L is Low_L) and (a is Medium_a) and (b is High_b) then (Lycopene is Lycopenemf4)
- If (L is Low_L) and (a is High_a) and (b is Low_b) then (Lycopene is Lycopenemf5)
- If (L is Low_L) and (a is High_a) and (b is High_b) then (Lycopene is Lycopenemf6)
- If (L is Medium_L) and (a is Low_a) and (b is Low_b) then (Lycopene is Lycopenemf7)
- If (L is Medium_L) and (a is Low_a) and (b is High_b) then (Lycopene is Lycopenemf8)
- If (L is Medium_L) and (a is Medium_a) and (b is Low_b) then (Lycopene is Lycopenemf9)
- If (L is Medium_L) and (a is Medium_a) and (b is High_b) then (Lycopene is Lycopenemf10)
- If (L is Medium_L) and (a is High_a) and (b is Low_b) then (Lycopene is Lycopenemf11)
- If (L is Medium_L) and (a is High_a) and (b is High_b) then (Lycopene is Lycopenemf12)
- If (L is High_L) and (a is Low_a) and (b is Low_b) then (Lycopene is Lycopenemf13)
- If (L is High_L) and (a is Low_a) and (b is High_b) then (Lycopene is Lycopenemf14)
- If (L is High_L) and (a is Medium_a) and (b is Low_b) then (Lycopene is Lycopenemf15)
- If (L is High_L) and (a is Medium_a) and (b is High_b) then (Lycopene is Lycopenemf16)
- If (L is High_L) and (a is High_a) and (b is Low_b) then (Lycopene is Lycopenemf17)
- If (L is High_L) and (a is High_a) and (b is High_b) then (Lycopene is Lycopenemf18)
References
- Tilesi, F.; Lombardi, A.; Mazzucato, A. Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021, 10, 1905. [Google Scholar] [CrossRef]
- FAOSTAT 2023. Available online: http://www.fao.org/faostat/ (accessed on 28 March 2023).
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef]
- Ye, X.; Izawa, T.; Zhang, S. Rapid determination of lycopene content and fruit grading in tomatoes using a smart device camera. Cogent. Eng. 2018, 5, 1504499. [Google Scholar] [CrossRef]
- Gryech, I.; Ben-Aboud, Y.; Guermah, B.; Sbihi, N.; Ghogho, M.; Kobbane, A. MoreAir: A Low-Cost Urban Air Pollution Monitoring System. Sensors 2020, 20, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, C.; Yang, D.; Ma, X.; Zhao, W.; Liang, X.; Ma, N.; Meng, Q. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. J. Plant Physiol. 2016, 193, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Rosati, C.; Aquilani, R.; Dharmapuri, S.; Pallara, P.; Marusic, C.; Tavazza, R.; Giuliano, G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000, 24, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Mignani, A.G.; Ciaccheri, L.; Mencaglia, A.A.; Tuccio, L.; Agati, G. Application of a LED-based reflectance sensor for the assessing in situ the lycopene content of tomatoes (Lycopersicon esculentum Mill.). In Proceedings of the Sensing for Agriculture and Food Quality and Safety VII, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar] [CrossRef]
- Hussain, A.; Pu, H.; Sun, D. Measurements of lycopene contents in fruit: A review of recent developments in conventional and novel techniques. Crit. Rev. Food Sci. Nutr. 2018, 59, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor-Aguilar, M.-J.; Padilla-Medina, J.-A.; Botello-Álvarez, J.-E.; Bravo-Sánchez, M.-G.; Prado-Olivares, J.; Espinosa-Calderon, A.; Barranco-Gutiérrez, A.-I. Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review. Appl. Sci. 2021, 11, 9332. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Ghugre, P.S.; Udipi, S.A. Applications of nanotechnology in nutrition: Potential and safety issues. In Novel Approaches of Nanotechnology in Food, 1st ed.; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 1, pp. 509–554. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Separation Methods. In Principles of Instrumental Analysis, 7th ed.; Cengage Learning: Boston, MA, USA, 2018; pp. 746–781. [Google Scholar]
- Van den Berg, H.; Faulks, R.; Granado, H.F.; Hirschberg, J.; Olmedilla, B.; Sandmann, G.; Stahl, W. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agric. 2000, 80, 880–912. [Google Scholar] [CrossRef]
- Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Near infrared spectroscopy technology for prediction of chemical composition of natural fresh pastures. J. Appl. Anim. Res. 2019, 47, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Arias, R.; Lee, T.-C.; Logendra, L.; Janes, H. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Hazarika, M.K. Maturity detection of tomatoes using transfer learning. Meas. Food 2022, 7, 100038. [Google Scholar] [CrossRef]
- Vazquez-Cruz, M.A.; Jimenez-Garcia, S.N.; Luna-Rubio, R.; Contreras-Medina, L.M.; Vazquez-Barrios, E.; Mercado-Silva, E.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G. Application of neural networks to estimate carotenoid content during ripening in tomato fruits (Solanum lycopersicum). Sci. Hortic. 2013, 162, 165–171. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and β-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. Postharvest Biol. Technol. 2018, 136, 50–56. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. Relationship of Textures from Tomato Fruit Images Acquired Using a Digital Camera and Lycopene Content Determined by High-Performance Liquid Chromatography. Agriculture 2022, 12, 1495. [Google Scholar] [CrossRef]
- Kondaveeti, H.K.; Bandi, D.; Mathe, S.E.; Vappangi, S.; Subramanian, M. A review of image processing applications based on Raspberry-Pi. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; Volume 1, pp. 22–28. [Google Scholar]
- Li, J.; Huang, W.; Zhao, C. Machine vision technology for detecting the external defects of fruits|A review. Imaging Sci. 2015, 63, 241–251. [Google Scholar] [CrossRef]
- Timmermans, A.J.M. Computer vision system for on-line sorting of pot plants based on learning techniques. In Proceedings of the II International Symposium on Sensors in Horticulture 421, Greve, Denmark, 21 August 1995; pp. 91–98. [Google Scholar] [CrossRef]
- Rajkumar, P.; Wang, N.; EImasry, G.; Raghavan, G.; Gariepy, Y. Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food Eng. 2012, 188, 194–200. [Google Scholar] [CrossRef]
- Santoyo-Mora, M.; Sancen-Plaza, A.; Espinosa-Calderon, A.; Barranco-Gutierrez, A.I.; Prado-Olivarez, J. Nondestructive quantication of the ripening process in banana (musa aab simmonds) using multispectral imaging. J. Sens. 2019, 2019, 6742896. [Google Scholar] [CrossRef] [Green Version]
- Shetty, D.K.; Acharya, U.D.; Malarout, N.; Gopakumar, R.; Prajual, P.J. A review of application of computer-vision for quality grading of food products. In Proceedings of the 2019 International Conference on Automation, Computational and Technology Management (ICACTM) IEEE, London, UK, 24–26 April 2019. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.-J.; Botello-Álvarez, J.E.; Pérez-Pinal, F.J.; Cano-Lara, M.; León-Galván, M.F.; Bravo-Sánchez, M.-G. Fuzzy-Classification of the maturity of the tomato using a vision system. J. Sens. 2019, 2019, 3175848. [Google Scholar] [CrossRef]
- Barba, A.I.O.; Hurtado, M.C.; Mata, M.C.S.; Ruiz, V.F.; Tejada, M.L.S. De Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food. Chem. 2006, 95, 328–336. [Google Scholar] [CrossRef]
- Goisser, S.; Wittmann, S.; Fernandes, M.; Mempel, H.; Ulrichs, C. Comparison of colorimeter and different portable food-scanners for non-destructive prediction of lycopene content in tomato fruit. Postharvest Biol. Technol. 2020, 167, 111232. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Colour measurements by computer vision for food quality control—A review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Lorente, D.; Blasco, J.; Serrano, A.J.; Soria-Olivas, E.; Aleixos, N.; Gómez-Sanchís, J. Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food Bioprocess Technol. 2013, 6, 3613–3619. [Google Scholar] [CrossRef] [Green Version]
- Pagnutti, M.; Ryan, R.E.; Cazenavette, G.; Gold, M.; Harlan, R.; Leggett, E.; Pagnutti, J. Laying the foundation to use Raspberry Pi 3 V2 camera module imagery for scientific and engineering purposes. J. Electron. Imaging 2017, 26, 013014. [Google Scholar] [CrossRef] [Green Version]
- Azarmdel, H.; Jahanbakhshi, A.; Mohtasebi, S.S.; Muñoz, A.R. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM). Postharvest Biol. Technol. 2020, 166, 111201. [Google Scholar] [CrossRef]
- Wan, P.; Toudeshki, A.; Tan, H.; Ehsani, R. A methodology for fresh tomato maturity detection using computer vision. Comput. Electron. Agric. 2018, 146, 43–50. [Google Scholar] [CrossRef]
- Kokka, A.; Poikonen, T.; Blattner, P.; Jost, S.; Ferrero, A.; Pulli, T.; Ngo, M.; Thorseth, A.; Gerloff, T.; Dekker, P.; et al. Development of white LED illuminants for colorimetry and recommendation of white LED reference spectrum for photometry. Metrologia 2018, 55, 526–534. [Google Scholar] [CrossRef]
- Fashi, M.; Naderloo, L.; Javadikia, H. The relationship between the appearance of pomegranate fruit and color and size of arils based on image processing. Postharvest Biol. Technol. 2019, 154, 52–57. [Google Scholar] [CrossRef]
Models | Technique | Input | R2 | Error Mean |
---|---|---|---|---|
Model 1 | MNNR | R, G, B | 0.98 | 0.1684 |
Model 2 | MNNR | L*, *a, *b | 0.90 | 0.5084 |
Model 3 | MNFR | R, G, B | 0.99 | −9.53 × 10−7 |
Model 4 | MNFR | L*, *a, *b | 0.99 | 0.9006 |
Model 5 | MNFR | *a/*b. | 0.99 | 0.0286 |
Model 6 | MNFR | R, G | 0.99 | 0.9006 |
(Arias et al., 2000) [15] | LR | L*, *a, *b | 0.90 | 6.2911 |
(Vazquez-Cruz et al., 2013) [17] | MNNR | L*, *a, *b, LAI | 0.95 | 3.75 × 10−5 |
(Tilahun et al., 2018) [18] | LR | *a, *a/*b | 0.92, 0.94 | |
(Goisser et al., 2020) [28] | Exponential regression | L*, a*, b*, TCI | 0.94, 0.90, 0.90, 0.91 |
Models | Technique | Entry | Neurons in the Hidden Layer Sigmoid | R2 | Error Mean | Epochs |
---|---|---|---|---|---|---|
Model 1 | ANNs | R, G, B | 10 | 0.9865 | 0.1684 | 10 |
Model 2 | ANNs | L*, a*, b* | 10 | 0.9997 | 0.5084 | 10 |
Models | Technique | Entry | Neurons in the Hidden Layer Sigmoid | Triangular Membership Features | R2 | Error Mean | Epochs |
---|---|---|---|---|---|---|---|
Model 3 | FL | R, G, B | - | 8 | 0.9900 | 1.9 × 10−5 | 10 |
Model 4 | FL | L, *a, *b | - | 8 | 0.9900 | −0.9006 | 10 |
Model 5 | FL | *a/*b | - | 8 | 0.2896 | −7.8 × 104 | 10 |
Model 6 | FL | R, G | - | 8 | 0.9900 | −1.336 × 10−6 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villaseñor-Aguilar, M.-J.; Padilla-Medina, J.-A.; Prado-Olivarez, J.; Botello-Álvarez, J.-E.; Bravo-Sánchez, M.-G.; Barranco-Gutiérrez, A.-I. Low-Cost Sensor for Lycopene Content Measurement in Tomato Based on Raspberry Pi 4. Plants 2023, 12, 2683. https://doi.org/10.3390/plants12142683
Villaseñor-Aguilar M-J, Padilla-Medina J-A, Prado-Olivarez J, Botello-Álvarez J-E, Bravo-Sánchez M-G, Barranco-Gutiérrez A-I. Low-Cost Sensor for Lycopene Content Measurement in Tomato Based on Raspberry Pi 4. Plants. 2023; 12(14):2683. https://doi.org/10.3390/plants12142683
Chicago/Turabian StyleVillaseñor-Aguilar, Marcos-Jesús, José-Alfredo Padilla-Medina, Juan Prado-Olivarez, José-Erinque Botello-Álvarez, Micael-Gerardo Bravo-Sánchez, and Alejandro-Israel Barranco-Gutiérrez. 2023. "Low-Cost Sensor for Lycopene Content Measurement in Tomato Based on Raspberry Pi 4" Plants 12, no. 14: 2683. https://doi.org/10.3390/plants12142683
APA StyleVillaseñor-Aguilar, M. -J., Padilla-Medina, J. -A., Prado-Olivarez, J., Botello-Álvarez, J. -E., Bravo-Sánchez, M. -G., & Barranco-Gutiérrez, A. -I. (2023). Low-Cost Sensor for Lycopene Content Measurement in Tomato Based on Raspberry Pi 4. Plants, 12(14), 2683. https://doi.org/10.3390/plants12142683