Technological Quality of Sugarcane Inoculated with Plant-Growth-Promoting Bacteria and Residual Effect of Phosphorus Rates
Abstract
:1. Introduction
2. Results
2.1. Leaf Concentrations of N and P as a Function of Inoculations and P2O5 Doses
2.2. Technological Attributes of Sugarcane as a Function of Inoculations and P2O5 Doses
2.3. Total Recoverable Sugar, Stalks and Sugar Yield as a Function of Inoculations and P Doses
3. Discussion
4. Materials and Methods
4.1. The Location of the Experimental Area
4.2. Experimental Design and Treatments
4.3. Installation and Conduct of the Experiment
4.4. Assessments
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CONAB. National Supply Company. Monitoring the Brazilian Crop: Sugarcane, First Survey 2020/21 Crop. Available online: https://www.conab.gov.br/ (accessed on 3 February 2022).
- Bordonal, R.D.O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of sugarcane production in Brazil: A Review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Yen, G.C.; Tsai, N.T.; Lin, J.A. Risk and benefit of natural and commercial dark brown sugars as evidenced by phenolic and Maillard reaction product contents. J. Agric. Food Chem. 2021, 69, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Bento, C.B.; Filoso, S.; Pitombo, L.M.; Cantarella, H.; Rossetto, R.; Martinelli, L.A.; do Carmo, J.B. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases. J. Environ. Manag. 2018, 206, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Soltangheisi, A.; Withers, P.J.; Pavinato, P.S.; Cherubin, M.R.; Rossetto, R.; Do Carmo, J.B.; da Rocha, G.C.; Martinelli, L.A. Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy 2019, 11, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Caione, G.; Prado, R.D.M.; Campos, C.N.S.; Rosatto Moda, L.; de Lima Vasconcelos, R.; Pizauro Júnior, J.M. Response of sugarcane in a red ultisol to phosphorus rates, phosphorus sources, and filter cake. Sci. World J. 2015, 2015, 405970. [Google Scholar] [CrossRef] [Green Version]
- Caione, G.; Fernandes, F.M.; Lange, A. Efeito residual de fontes de fósforo nos atributos químicos do solo, nutrição e produtividade de biomassa da cana-de-açúcar. Rev. Bras. Ciências Agrar. 2013, 8, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Simões Neto, D.E.; Oliveira, A.C.; Freire, F.J.; Freire, M.B.G.S.; Birth, C.W.A.; Rocha, A.T. Phosphorus extraction in soils cultivated with sugarcane and its relationship with the buffer capacity. Braz. J. Agric. Environ. Eng. 2009, 13, 840–848. [Google Scholar]
- Moura, M.V.P.D.S.; Farias, C.H.D.A.; Azevedo, C.A.V.D.; Dantas Neto, J.; Azevedo, H.M.D.; Pordeus, R.V. Levels of manuring in the sugar-cane crop, first leaf, with and without irrigation. Ciência Agrotecnologia 2005, 29, 753–760. [Google Scholar] [CrossRef]
- Renan, O.P.; Nivaldo, S.; Rafael, C.M.; Willian, P.; Adelson, P.D.A.; Segundo, U.; Veronica, M.R. Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr. J. Agric. Res. 2016, 11, 2786–2795. [Google Scholar] [CrossRef]
- Hungria, M.; Ribeiro, R.A.; Nogueira, M.A. Draft genome sequences of Azospirillum brasilense strains Ab-V5 and Ab-V6, commercially used in inoculants for grasses and legumes in Brazil. Genome Announc. 2018, 6, e00393-18. [Google Scholar] [CrossRef] [Green Version]
- Steiner, F.; da Silva Oliveira, C.E.; Zoz, T.; Zuffo, A.M.; de Freitas, R.S. Co-Inoculation of common bean with Rhizobium and Azospirillum enhance the drought tolerance. Russ. J. Plant Physiol. 2020, 67, 923–932. [Google Scholar] [CrossRef]
- Jalal, A.; Galindo, F.S.; Boleta, E.H.M.; Oliveira, C.E.D.S.; Reis, A.R.D.; Nogueira, T.A.R.; Teixeira Filho, M.C.M. Common bean yield and zinc use efficiency in association with diazotrophic bacteria co-inoculations. Agronomy 2021, 11, 959. [Google Scholar] [CrossRef]
- Jalal, A.; da Silva Oliveira, C.E.; Freitas, L.A.; Galindo, F.S.; Lima, B.H.; Boleta, E.H.M.; Da Silva, E.C.; do Nascimento, V.; Nogueira, T.A.R.; Buzetti, S.; et al. Agronomic biofortification and productivity of wheat with soil zinc and diazotrophic bacteria in tropical savannah. Crop Pasture Sci. 2022, 73, 749–759. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; LI, Y.; Wang, S.; Umbreen, S.; Zhow, C. Soil phosphorus fractionation and its association whith soil pohosphate-solubilizing bacteria in a chronosequence of vegetation restotaion. Ecol. Eng. 2021, 164, 106–208. [Google Scholar] [CrossRef]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef] [Green Version]
- Tayade, A.S.; Geetha, P.; Anusha, S.; Dhanapal, R.; Hari, K. Bio-intensive modulation of sugarcane ratoon rhizosphere for enhanced soil health and sugarcane productivity under tropical Indian condition. SugarTech 2019, 21, 278–288. [Google Scholar] [CrossRef]
- Souchie, E.L.; Azcón, R.; Barea, J.M.; Saggin-Júnior, O.J.; Silva, E.M.R.D. Phosphate solubilization in solid and liquid media by soil bacteria and fungi. Pesqui. Agropecuária Bras. 2005, 40, 1149–1152. [Google Scholar] [CrossRef]
- Cheng, J.; Zhuang, W.; Li, N.N.; Tang, C.L.; Ying, H.J. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation. Lett. Appl. Microbiol. 2017, 64, 73–78. [Google Scholar] [CrossRef]
- Rosa, P.A.L.; Mortinho, E.S.; Jalal, A.; Galindo, F.S.; Buzetti, S.; Fernandes, G.C.; Teixeira Filho, M.C.M. Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Front. Environ. Sci. 2020, 32, 192. [Google Scholar] [CrossRef]
- Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Fertilization and Liming Recommendations for the State of São Paulo, 2nd ed.; Instituto Agonronomico: Campinas, Brazil, 1996; 285p.
- Cantarella, H.; van Raij, B.; Quaggio, J.A. Soil and plant analyses for lime and fertilizer recommendations in Brazil. Comm. Soil Sci. Plant Anal. 1998, 29, 1691–1706. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; Fernandes, G.C.; Rodrigues, W.L.; Boleta, E.H.M.; Jalal, A.; Céu, E.G.O.; Lima, B.H.D.; Lavres, J.; Teixeira Filho, M.C.M. Improving sustainable field-grown wheat production with Azospirillum brasilense under tropical conditions: A potential tool for improving nitrogen management. Front. Environ. Sci. 2022, 10, 95. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Goswami, M.P.; Bhattacharyya, L.H. Perspective of beneficial microbes in agriculture under changing climatic scenario: A Review. J. Phytol. 2016, 8, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.S.; Minocheherhomji, F.P. Plant growth promoting Rhizobacteria: Blessing to agriculture. Int. J. Pure Appl. Biosci. 2018, 6, 481–492. [Google Scholar] [CrossRef]
- Lopes, C.M.; Silva, A.M.M.; Estrada-Bonilla, G.A.; Ferraz-Almeida, R.; Vieira, J.L.V.; Otto, R.; Cardoso, E.J.B.N. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. J. Clean. Prod. 2021, 298, 126821. [Google Scholar] [CrossRef]
- Rosa, P.A.L.; Galindo, F.S.; Oliveira, C.E.D.S.; Jalal, A.; Mortinho, E.S.; Fernandes, G.C.; Teixeira Filho, M.C.M. Inoculation with plant growth-promoting bacteria to reduce phosphate fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms 2022, 10, 192. [Google Scholar] [CrossRef]
- de Miranda, E.E.; Marcelo, F.F. Sugarcane: Food production, energy, and environment. In Sugarcane Biorefinery, Technology and Perspectives; Academic Press: Cambridge, MA, USA, 2020; pp. 67–88. [Google Scholar]
- Duarte, A.; Salgado, A.P., Jr.; Lemos, S.V.; de Souza, M.A., Jr.; de Almeida, A.F. Proposal of operating best practices that contribute to the technical efficiency in Brazilian sugar and ethanol mills. J. Clean. Prod. 2019, 214, 173–184. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Cherubin, M.R.; Franco, A.L.; Santos, A.S.; Gelain, J.G.; Dias, N.M.; Diniz, T.R.; Almeida, A.N.; Feigl, B.J.; Davies, C.A.; et al. Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil’s bioenergy industry? Renew. Sustain. Energ. Rev. 2019, 102, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Fukami, J.; Ollero, F.J.; Megias, M.; Hungary, M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 2017, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, L.P.; Ferrando, L.; Fernández-Scavino, A.; García de Salamone, I.E. Microorganisms reveal what plants do not: Wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant Soil 2018, 424, 405–417. [Google Scholar] [CrossRef]
- Marra, L.M.; de Oliveira, S.M.; Soares, C.R.F.S.; Moreira, F.M.S. Solubilization of inorganic phosphates by inoculant strains from tropical vegetables. Sci. Agri. 2011, 68, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F.S.; Rodrigues, W.L.; Fernandes, G.C.; Boleta, E.H.M.; Jalal, A.; Rosa, P.A.L.; Teixeira Filho, M.C.M. Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. Eur. J. Agron. 2022, 134, 126471. [Google Scholar] [CrossRef]
- Pankievicz, V.C.; do Amaral, F.P.; Santos, K.F.; Agtuca, B.; Xu, Y.; Schueller, M.J.; Ferrieri, R.A. Robust biological nitrogen fixation in a model grass–bacterial association. Plant J. 2015, 81, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Skonieski, F.R.; Viégas, J.; Martin, T.N.; Mingotti, C.C.A.; Naetzold, S.; Tonin, T.J.; Meinerz, G.R. Effect of nitrogen topdressing fertilization and inoculation of seeds with Azospirillum brasilense on corn yield and agronomic characteristics. Agronomy 2019, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Rekha, K.; Baskar, B.; Srinath, S.; Usha, B. Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots. Can. J. Microbiol. 2018, 64, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Prakash, J.; Arora, N.K. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 2019, 9, 126. [Google Scholar] [CrossRef]
- Ramirez, L.C.C.; Leal, L.C.S.; Galvez, Y.A.; Burbano, V.E.M. Bacillus: A genus of bacteria that exhibits important phosphate solubilizing abilities. Nova 2014, 12, 165–178. (In Spanish) [Google Scholar]
- Jalal, A.; Azeem, K.; Teixeira Filho, M.C.M.; Khan, A. Enhancing soil properties and maize yield through organic and inorganic nitrogen and diazotrophic bacteria. In Sustainable Crop Production; IntechOpen: London, UK, 2020; pp. 165–178. [Google Scholar]
- Martins, M.R.; Jantalia, C.P.; Reis, V.M.; Döwich, I.; Polidoro, J.C.; Alves, B.J.R.; Urquiaga, S. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15 N recovery by maize in a Cerrado Oxisol. Plant Soil 2018, 422, 239–250. [Google Scholar] [CrossRef] [Green Version]
- David, B.V.; Chandrasehar, G.; Selvam, P.N. Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop Improvement through Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 221–243. [Google Scholar]
- Kamble, R.; Jadhav, P.; Gurjar, M. Biocontrol potential of Pseudomonas species against phytopathogens. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2, 558–568. [Google Scholar]
- Alaylar, B.; Egamberdieva, D.; Gulluce, M.; Karadayi, M.; Arora, N.K. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J. Microbiol. Biotechnol. 2020, 36, 93. [Google Scholar] [CrossRef]
- Jing, X.; Cui, Q.; Li, X.; Yin, J.; Ravichandran, V.; Pan, D.; Zhang, Y. Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb. Biotechnol. 2020, 13, 118–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda, M.E.B. Phosphate solubilization as a microbial strategy for promoting plant growth. Corpoica Sci. Technol. Agric. 2014, 15, 101–113, (In Spanish, abstract in English). [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy—USDA; Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Santos, H.G.; Jacomine, P.K.T.; Angels, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Agricultural Research Corporation. In Brazilian System of Soil Classification; Embrapa: Brasilia, Brazil, 2018. [Google Scholar]
- Cantarella, H.; van Raij, B.; Camargo, C.E.O. Other industrial crops: Sugarcane. In Technical Bulletin 100: Liming and Fertilization Recommendations for the State of São Paulo; van Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 1997; pp. 237–239. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Assessment of the Nutritional Status of Plants: Principles and Applications; Potaphos: Piracicaba, Brazil, 1997. [Google Scholar]
- Fernandes, A.C. Calculations in the Sugarcane Agroindustry; STAB: Piracicaba, Brazil, 2003. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Braz. J. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef] [Green Version]
P2O5 Doses (Kg ha−1) | Leaf N Concentration | Leaf P Concentration |
---|---|---|
g kg−1 | ||
0 | 19.42 | 1.43 |
45 | 19.23 | 1.48 |
90 | 19.97 | 1.50 |
135 | 19.33 | 1.69 |
180 | 20.15 | 1.82 |
Inoculations | ||
Without inoculation | 17.35 b | 1.48 |
Azospirillum brasilense | 20.03 a | 1.55 |
Bacillus subtilis | 19.97 a | 1.49 |
Pseudomonas fluorescens | 19.78 a | 1.61 |
Azospirillum brasilense + Bacillus subtilis | 20.20 a | 1.65 |
Azospirillum brasilense + Pseudomonas fluorescens | 19.73 a | 1.72 |
Bacillus subtilis + Pseudomonas fluorescens | 20.12 a | 1.61 |
Azospirillum brasilense + Bacillus subtilis + Pseudomonas fluorescens | 19.76 a | 1.56 |
Test F | ||
P2O5 doses (D) | ns | ** |
Inoculation (I) | * | * |
D × I | ns | * |
Overall Means | 19.62 | 1.58 |
standard Error | 0.62 | 0.05 |
CV (%) | 9.93 | 9.84 |
P2O5 Doses (Kg ha−1) | Fiber | Purity | Brix | Pol | TRS | STY | SUY |
---|---|---|---|---|---|---|---|
% | % | % | % | kg Sugar t−1 Cane | t ha−1 | t ha−1 | |
0 | 11.16 | 87.27 | 21.19 | 18.47 | 156.33 | 89.37 | 13.94 |
45 | 11.12 | 87.53 | 21.18 | 18.59 | 157.80 | 93.19 | 14.72 |
90 | 10.98 | 87.84 | 20.99 | 18.56 | 157.10 | 95.91 | 15.05 |
135 | 11.22 | 86.93 | 21.04 | 18.14 | 153.03 | 98.19 | 15.04 |
180 | 11.14 | 86.93 | 21.08 | 18.35 | 154.99 | 97.39 | 17.10 |
Inoculation | |||||||
Without inoculation | 11.01 | 87.74 a | 21.27 | 18.54 | 157.00 | 87.21 | 13.72 |
Azospirillum brasilense | 11.07 | 87.72 a | 20.96 | 18.35 | 154.44 | 101.52 | 15.66 |
Bacillus subtilis | 10.99 | 86.56 a | 21.29 | 18.47 | 156.69 | 97.22 | 15.25 |
Pseudomonas fluorescens | 11.17 | 87.41 a | 20.77 | 18.09 | 153.23 | 99.53 | 15.23 |
Azospirillum brasilense + Bacillus subtilis | 11.11 | 87.38 a | 21.21 | 18.57 | 157.70 | 92.82 | 14.62 |
Azospirillum brasilense + Pseudomonas fluorescens | 11.15 | 86.84 a | 21.05 | 18.60 | 157.07 | 93.75 | 14.69 |
Bacillus subtilis + Pseudomonas fluorescens | 11.11 | 87.49 a | 21.15 | 18.42 | 155.72 | 93.39 | 14.56 |
Azospirillum brasilense + Bacillus subtilis + Pseudomonas fluorescens | 11.39 | 87.25 a | 21.06 | 18.36 | 154.96 | 93.04 | 14.44 |
Test F | |||||||
P2O5 doses (D) | ns | ns | ns | ns | ns | ** | * |
Inoculation (I) | * | ns | * | ns | ns | ** | * |
D × I | ** | ns | ** | ** | ** | ** | ** |
Overall Means | 11.12 | 87.29 | 09.21 | 18.42 | 155.85 | 94.81 | 14.77 |
Standard Error | 0.078 | 0.41 | 0.12 | 0.20 | 1.66 | 2.29 | 0.37 |
CV (%) | 3.12 | 2.12 | 2.55 | 4.87 | 4.77 | 10.83 | 11.34 |
Before Planting Sugarcane | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Layers (m) | P | S-SO4 | OM | pH | K | Ca | Mg | H + Al | Al | Sb |
mg dm−3 | g dm−3 | CaCl2 | mmolc dm−3 | |||||||
0.00–0.25 | 2 | 3 | 13 | 4.7 | 2.6 | 8 | 6 | 20 | 1 | 16.6 |
0.25–0.50 | 2 | 2 | 12 | 4.8 | 2.4 | 9 | 7 | 20 | 2 | 18.4 |
Layers (m) | B a | Cu b | Fe b | Mn b | Znb | CEC | V | m | ||
mg dm−3 | mmolc dm−3 | % | % | |||||||
0.00–0.25 | 0.22 | 0.8 | 14 | 16.2 | 0.6 | 36.6 | 45 | 6 | ||
0.25–0.50 | 0.22 | 1.0 | 7 | 8.3 | 0.3 | 38.4 | 48 | 10 | ||
Before regrowth of 2nd ratoon cane | ||||||||||
Layers (m) | P | S-SO4 | OM | pH | K | Ca | Mg | H + Al | Al | Sb |
mg dm−3 | g dm−3 | CaCl2 | mmolc dm−3 | |||||||
0.00–0.25 | 7 | 2 | 16 | 5 | 1 | 9 | 7 | 23 | 2 | 18 |
0.25–0.50 | 5 | 2 | 11 | 5 | 1 | 9 | 6 | 20 | 2 | 17 |
Layers (m) | B a | Cu b | Fe b | Mn b | Zn b | CEC | V | M | ||
mg dm−3 | mmolc dm−3 | % | % | |||||||
0.00–0.25 | 0 | 1 | 25 | 21 | 1 | 41 | 44 | 10 | ||
0.25–0.50 | 0 | 1 | 16 | 12 | 1 | 37 | 45 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, G.C.; Rosa, P.A.L.; Jalal, A.; Oliveira, C.E.d.S.; Galindo, F.S.; Viana, R.d.S.; De Carvalho, P.H.G.; Silva, E.C.d.; Nogueira, T.A.R.; Al-Askar, A.A.; et al. Technological Quality of Sugarcane Inoculated with Plant-Growth-Promoting Bacteria and Residual Effect of Phosphorus Rates. Plants 2023, 12, 2699. https://doi.org/10.3390/plants12142699
Fernandes GC, Rosa PAL, Jalal A, Oliveira CEdS, Galindo FS, Viana RdS, De Carvalho PHG, Silva ECd, Nogueira TAR, Al-Askar AA, et al. Technological Quality of Sugarcane Inoculated with Plant-Growth-Promoting Bacteria and Residual Effect of Phosphorus Rates. Plants. 2023; 12(14):2699. https://doi.org/10.3390/plants12142699
Chicago/Turabian StyleFernandes, Guilherme Carlos, Poliana Aparecida Leonel Rosa, Arshad Jalal, Carlos Eduardo da Silva Oliveira, Fernando Shintate Galindo, Ronaldo da Silva Viana, Pedro Henrique Gomes De Carvalho, Edson Cabral da Silva, Thiago Assis Rodrigues Nogueira, Abdulaziz A. Al-Askar, and et al. 2023. "Technological Quality of Sugarcane Inoculated with Plant-Growth-Promoting Bacteria and Residual Effect of Phosphorus Rates" Plants 12, no. 14: 2699. https://doi.org/10.3390/plants12142699
APA StyleFernandes, G. C., Rosa, P. A. L., Jalal, A., Oliveira, C. E. d. S., Galindo, F. S., Viana, R. d. S., De Carvalho, P. H. G., Silva, E. C. d., Nogueira, T. A. R., Al-Askar, A. A., Hashem, A. H., AbdElgawad, H., & Teixeira Filho, M. C. M. (2023). Technological Quality of Sugarcane Inoculated with Plant-Growth-Promoting Bacteria and Residual Effect of Phosphorus Rates. Plants, 12(14), 2699. https://doi.org/10.3390/plants12142699