Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics
Abstract
:1. Introduction
2. Results
2.1. Ash-Free Caloric Value and Construction Cost of Leaves among Different Chinese Fir Clones
2.2. C Content, N Content, Specific Leaf Area, and Ash Content of Leaves
2.3. Correlation between Ash-Free Caloric Value, Construction Cost, and Other Indexes
2.4. PCA of Indexes of Different Clones of Chinese Fir
2.5. Correlation Analysis between Chinese Fir Leaf Indexes and Environmental Factors
3. Discussion
3.1. Energy Investment Strategies for Different Clones of Chinese Fir Based on Calorific Value and Construction Cost
3.2. Response Characteristics of Leaf Indexes of Different Clones of Chinese Fir to Climate Change
4. Materials and Methods
4.1. Overview of the Study Area
4.2. Test Materials
4.3. Determination of Specific Leaf Area, Ash Content, and Calorific Value
4.4. Determination of Carbon (C) and Nitrogen (N) Content
4.5. Calculation of Cost of Leaf Construction
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooq, T.H.; Yan, W.; Chen, X.; Shakoor, A.; Rashid, M.H.U.; Gilani, M.M.; He, Z.; Wu, P. Dynamics of canopy development of Cunninghamia lanceolata mid-age plantation in relation to foliar nitrogen and soil quality influenced by stand density. Glob. Ecol. Conserv. 2020, 24, e01209. [Google Scholar] [CrossRef]
- Li, S.; Zhou, L.; Addo-Danso, S.D.; Ding, G.; Sun, M.; Wu, S.; Lin, S. Nitrogen supply enhances the physiological resistance of Chinese fir plantlets under polyethylene glycol (PEG)-induced drought stress. Sci. Rep. 2020, 10, 7509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Chhin, S.; Zhang, J. Effects of competition, age and climate on tree slenderness of Chinese fir plantations in southern China. For. Ecol. Manag. 2020, 458, 117815. [Google Scholar] [CrossRef]
- Yan, X.; Ke-Yan, Z.; Shu-Bin, Z.; Jiao-Lin, Z. Differences in leaf caloric values and construction costs between liana and tree species in Bauhinia. Plant Sci. J. 2020, 38, 428–436. [Google Scholar]
- Song, G.; Li, Y.; Zhang, J.; Li, M.; Hou, J.; He, N. Significant phylogenetic signal and climate-related trends in leaf caloric value from tropical to cold-temperate forests. Sci. Rep. 2016, 6, 36674. [Google Scholar] [CrossRef] [Green Version]
- Guang-yan, S.; Nian-peng, H.; Ji-hua, H. Changes in leaf calorific value in main Chinese forests and its influencing factors. For. Res. 2016, 29, 133–139. [Google Scholar]
- Li, F.L.; Zhong, L.; Cheung, S.G.; Wong, Y.S.; Shin, P.K.S.; Lei, A.P.; Zhou, H.C.; Song, X.; Tam, N.F.Y. Is laguncularia racemosa more invasive than Sonneratia apetala in northern Fujian, China in terms of leaf energetic cost? Mar. Pollut. Bull. 2020, 152, 110897. [Google Scholar] [CrossRef]
- Li, F.; Yang, Q.; Zan, Q.; Tam, N.F.Y.; Shin, P.K.S.; Vrijmoed, L.L.P.; Cheung, S.G. Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: Implications for invasiveness of alien species. Mar. Pollut. Bull. 2011, 62, 1957–1962. [Google Scholar] [CrossRef]
- Zhu, S.-D.; Li, R.-H.; Song, J.; He, P.-C.; Liu, H.; Berninger, F.; Ye, Q. Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Ann. Bot. 2016, 117, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Falcão, H.M.; Medeiros, C.D.; Almeida-Cortez, J.; Santos, M.G. Leaf construction cost is related to water availability in three species of different growth forms in a Brazilian tropical dry forest. Theor. Exp. Plant Physiol. 2017, 29, 95–108. [Google Scholar] [CrossRef]
- Ronzhina, D.A.; Ivanov, L.A. Construction costs and mesostructure of leaves in hydrophytes. Russ. J. Plant Physiol. 2014, 61, 776–783. [Google Scholar] [CrossRef]
- Sheng, J.; Chen, J.; Liu, C.; Yang, Z.; Yang, Y.; Guan, X.; Lin, J. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose 2020, 27, 4067–4077. [Google Scholar] [CrossRef]
- Zeng, W.; Tang, S.; Xiao, Q. Calorific values and ash contents of different parts of Masson Pine trees in southern China. J. Res. 2014, 25, 779–786. [Google Scholar] [CrossRef]
- Lin, H.; Cao, M. Plant Energy Storage Strategy and Caloric Value. Ecol. Model. Modell. 2008, 217, 132–138. [Google Scholar] [CrossRef]
- Haworth, M.; Belcher, C.M.; Killi, D.; Dewhirst, R.A.; Materassi, A.; Raschi, A.; Centritto, M. Impaired photosynthesis and increased leaf construction costs may induce floral stress during episodes of global warming over macroevolutionary timescales. Sci. Rep. 2018, 8, 8661. [Google Scholar] [CrossRef] [Green Version]
- Li, F.L.; Zhong, L.; Wen, W.; Tian, T.T.; Li, H.C.; Cheung, S.G.; Wong, Y.S.; Shin, P.K.S.; Zhou, H.C.; Tam, N.F.Y.; et al. Do distribution and expansion of exotic invasive asteraceae plants relate to leaf construction cost in a man-made wetland? Mar. Pollut. Bull. 2021, 163, 111958. [Google Scholar] [CrossRef]
- Liu, G.; Gao, Y.; Huang, F.F.; Yuan, M.Y.; Peng, S.L. The invasion of coastal areas in south China by ipomoea cairica may be accelerated by the ecotype being more locally adapted to salt stress. PLoS ONE 2016, 11, e0149262. [Google Scholar] [CrossRef] [Green Version]
- Nurbolat, S.; Guanghui, L.; Lamei, J.; Lei, Z. Convergent variation in the leaf traits of desert plants in the ebinur lake basin. Front. Environ. Sci. 2022, 10, 927572. [Google Scholar] [CrossRef]
- Saha, U.K.; Sonon, L.; Kane, M. Prediction of calorific values, moisture, ash, carbon, nitrogen, and sulfur content of Pine tree biomass using near infrared spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 242–255. [Google Scholar] [CrossRef]
- Han, W.X.; Chen, Y.H.; Zhao, F.J.; Tang, L.Y.; Jiang, R.F.; Zhang, F.S. Floral, climatic and soil PH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 2012, 21, 376–382. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Diaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Bernhardt, E.S.; van Bodegom, P.M.; Cornelissen, J.H.C.; Kattge, J.; Laughlin, D.C.; Niinemets, U.; Penuelas, J.; Reich, P.B.; Yguel, B.; et al. Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta-analysis. N. Phytol. 2017, 213, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, C.; Lee, S.-H.; Kang, H. Estimation of carbon storage in coastal wetlands and comparison of different management schemes in south Korea. J. Ecol. Environ. 2019, 43, 1–12. [Google Scholar] [CrossRef]
- February, E.C.; Higgins, S.I. Rapid leaf deployment strategies in a deciduous savanna. PLoS ONE 2016, 11, e0157833. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Ratul, S.B.; Sharmin, A.; Rahman, K.S.; Ashaduzzaman, M.; Uddin, G.M.N. Comparison of calorific values and ash content for different woody biomass components of six mangrove species of Bangladesh Sundarbans. J. Indian Acad. Wood Sci. 2019, 16, 110–117. [Google Scholar] [CrossRef]
- Kumar, M.; Garkoti, S.C. Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir Pine forest in the central himalaya, India. Plant Ecol. 2021, 222, 723–735. [Google Scholar] [CrossRef]
- Hemati, Z.; Hossain, M.; Rozainah, M.Z. Determination of carbon and nitrogen in litter fall of mangrove ecosystem in peninsular malaysia. Pak. J. Bot. 2017, 49, 1381–1386. [Google Scholar]
- Li, F.-L.; Yang, L.; Zan, Q.-J.; Shin, P.-K.S.; Cheung, S.-G.; Wong, Y.-S.; Tam, N.F.-Y.; Lei, A.-P. Does energetic cost for leaf construction in sonneratia change after introduce to another mangrove wetland and differ from native mangrove plants in south China? Mar. Pollut. Bull. 2017, 124, 1071–1077. [Google Scholar] [CrossRef]
- Yan, P.; Xu, L.; He, N. Variation in the calorific values of different plants organs in China. PLoS ONE 2018, 13, e099762. [Google Scholar] [CrossRef] [Green Version]
- Osunkoya, O.O.; Bayliss, D.; Panetta, F.D.; Vivian-Smith, G. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species. Ann. Bot. 2010, 106, 371–380. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Gao, J.; Wang, L. Latitudinal and climate effects on key plant traits in Chinese forest ecosystems. Glob. Ecol. Conserv. 2019, 17, e00674. [Google Scholar] [CrossRef]
- Williams, G.M.; Nelson, A.S. Spatial variation in specific leaf area and horizontal distribution of leaf area in juvenile western larch (larix occidentalis nutt.). Trees Struct. Funct. 2018, 32, 1621–1631. [Google Scholar] [CrossRef]
- Bo, X.; Jin-niu, W.; Fu-sung, S. Impacts of ontogenetic and altitudinal changes on morphological traits and biomass allocation patterns of fritillaria unibracteata. J. Mt. Sci. 2020, 17, 83–94. [Google Scholar]
- Cao, Y.; Li, N.; Lin, J.; Zhang, Y.; Ma, X.; Wu, P. Root system-rhizosphere soil-bulk soil interactions in different Chinese fir clones based on fungi community diversity change. Front. Ecol. Evol. 2022, 10, 1028686. [Google Scholar] [CrossRef]
- Williams, K.; Percival, F.; Merinot, J.; Mooney, H.A. Estimation of tissue Construction Cost from Heat of Combustion and Organic Nitrogen Content. Plant Cell Environ. 1987, 10, 725–734. [Google Scholar]
Clones | L27 | S4 | S18 | S22 | P2 | P17 | P302 | Yang020 | Yang061 |
---|---|---|---|---|---|---|---|---|---|
Carbon content (%) | 46.46 ± 0.34a | 44.9 ± 0.67b | 45.43 ± 0.20b | 45.0 ± 0.53b | 45.5 ± 0.12ab | 45.6 ± 0.43ab | 45.73 ± 0.93ab | 45.39 ± 0.46b | 45.64 ± 0.44ab |
Index | AFCV | CCm | AC | Cmass | Nmass | SLA | Contribution Rate |
---|---|---|---|---|---|---|---|
PC1 | −0.821 | −0.772 | 0.719 | −0.816 | −0.054 | −0.235 | 41.88% |
PC2 | 0.233 | −0.465 | −0.602 | −0.202 | −0.981 | −0.202 | 27.95% |
Clones | L27 | S4 | S18 | S22 | P2 | P17 | P302 | Yang020 | Yang061 |
---|---|---|---|---|---|---|---|---|---|
PC1 | −2.629 | 1.807 | 0.343 | 1.772 | 1.252 | −0.979 | −0.352 | −0.780 | −0.433 |
PC2 | −0.224 | 1.403 | 0.981 | −0.982 | −1.529 | −1.636 | −0.822 | 1.290 | 1.529 |
Year | Annual Average Temperature (°C) | Annual Average Precipitation (mm) |
---|---|---|
2010 | 19.85 | 1786.31 |
2011 | 19.55 | 1400.52 |
2012 | 19.83 | 1980.95 |
2013 | 20.03 | 1825.30 |
2014 | 20.26 | 1424.96 |
2015 | 20.41 | 1781.80 |
2016 | 20.40 | 2473.20 |
2017 | 20.62 | 1563.26 |
2018 | 20.47 | 1392.85 |
2019 | 20.77 | 1779.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Cao, Y.; Wu, J.; Zhang, T.; Zou, X.; Ma, X.; Wu, P. Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics. Plants 2023, 12, 2723. https://doi.org/10.3390/plants12142723
Li N, Cao Y, Wu J, Zhang T, Zou X, Ma X, Wu P. Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics. Plants. 2023; 12(14):2723. https://doi.org/10.3390/plants12142723
Chicago/Turabian StyleLi, Nana, Yue Cao, Jinghui Wu, Ting Zhang, Xianhua Zou, Xiangqing Ma, and Pengfei Wu. 2023. "Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics" Plants 12, no. 14: 2723. https://doi.org/10.3390/plants12142723
APA StyleLi, N., Cao, Y., Wu, J., Zhang, T., Zou, X., Ma, X., & Wu, P. (2023). Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics. Plants, 12(14), 2723. https://doi.org/10.3390/plants12142723