Comparative Cytogenetic of the 36-Chromosomes Genera of Orchidinae Subtribe (Orchidaceae) in the Mediterranean Region: A Summary and New Data
Abstract
:1. Introduction
2. Results
2.1. Anacamptis s.l.
2.2. Serapias L.
2.3. Himantoglossum s.l. (Including Comperia and Barlia)
2.4. Ophrys L.
2.5. Diagram of the Morphometric Parameters A1 (Intrachromosomal Index) and A2 (Interchromosomal Index); Mca (Mean Centromeric Asymmetry) and CVcl (Coefficient of Variation of Chromosome Length).
2.6. Fluorescence In Situ Hybridization (FISH) in Some Species
3. Discussion
4. Materials and Methods
4.1. Cytological Analysis
4.2. Nomenclature
4.3. Chromosome Numbers and Karyotype Parameters
5. Conclusions
- The study of epigenetic effects in orchid species is an intriguing and relatively new field of research, although only a few documented cases have been reported thus far. Epigenetics focuses on investigating heritable changes in phenotype that occur without altering the DNA sequence [88,89]. Some researchers have observed transcriptional activity in specific orchid species, suggesting a potential role for epigenetic factors. In certain Dactylorhiza species with variations in geographic and ecological contexts, it has been demonstrated that ecological divergence is primarily influenced by epigenetic factors that regulate gene expression in response to environmental stimuli [90]. Based on these fascinating discoveries and considering the intricate morphological, cytogenetic, and molecular complexities within Ophrys species, it is conceivable that similar epigenetic processes occur across numerous entities within this group. Such processes could potentially account for the formation of various microspecies and the notable phenotypic variation observed [91].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khapugin, A.A. A global systematic review on orchid data in protected areas. Nat. Conser. Res. 2020, 5 (Suppl. 1), 19–33. [Google Scholar] [CrossRef]
- Su, Y.Y.; Meng, Y.; Shi, Y.; Tang, G.D.; Liu, Z.J. Liparis funingensis (Orchidaceae; Epidendroideae; Malaxideae), a new species from Yunnan, China: Evidence from morphology and DNA. Phytotaxa 2014, 166, 85–93. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, G.Q.; Liu, Z.J.; Luo, Y.B. Two new species of Dendrobium (Orchidaceae: Epidendroideae) from China: Evidence from morphology and DNA. Phytotaxa 2014, 174, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Pridgeon, A.M.; Bateman, R.M.; Cox, A.V.; Hapeman, J.R.; Chase, M.W. Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 1. Intergeneric relationships and polyphyly of Orchis sensu lato. Lindleyana 1997, 12, 89–109. [Google Scholar]
- Cribb, P.J. Orchideae, Distribution. In Genera Orchidacearum 2: Orchidoideae; Pridgeon, A.M., Cribb, P.J., Chase, M.C., Rasmussen, F.N., Eds.; Oxford University Press: Oxford, UK, 2001; Part 1; p. 215. [Google Scholar]
- Wood, J. Amerorchis, Platanthera, Distribution. In Genera Orchidacearum 2: Orchidoideae; Pridgeon, A.M., Cribb, P.J., Chase, M.C., Rasmussen, F.N., Eds.; Oxford University Press: Oxford, UK, 2001; Part 1; pp. 245–247, 347. [Google Scholar]
- Van der Cingel, N.A. An Atlas of Orchid Pollination; A.A. Balkema: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Cozzolino, S.; Widmer, A. Orchid diversity: An evolutionary consequence of deception? Trends Ecol. Evol. 2005, 20, 487–494. [Google Scholar] [CrossRef]
- Piñeiro, F.L.; Byers, K.J.R.P.; Cai, J.; Sedeek, K.E.M.; Kellenberger, R.T.; Russo, A.; Qi, W.; Aquino, F.C.; Schlüter, P.M. A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia. Front. Plant Sci. 2019, 10, 1553. [Google Scholar] [CrossRef] [PubMed]
- Kullenberg, B.; Bergström, G. The pollination of Ophrys orchids. Bot. Not. 1976, 29, 11–19. [Google Scholar]
- Paulus, H.F.; Gack, C. Pollinators as prepollinating isolation factors: Evolution and speciation in Ophrys (Orchidaceae). Isr. J. Bot. 1990, 39, 43–79. [Google Scholar]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Orchid pollination by sexual swindle. Nature 1999, 399, 421. [Google Scholar] [CrossRef]
- Bateman, R.M.; Hollingsworth, M.P.; Preston, J.; Yi-Bo, L.; Pridgeon, M.A.; Chase, W.M. Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot. J. Linn. Soc. 2003, 142, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Bateman, R.M.; Sramkó, G.; Paun, O. Integrating restriction siteassociated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. Ann. Bot. 2018, 121, 85–105. [Google Scholar] [CrossRef] [Green Version]
- Delforge, P. Orchidés d’Europe, d’Afrique du Nord et do Proche-Orient, 4th ed.; Delachaux et Niestle: Paris, France, 2016. [Google Scholar]
- D’Emerico, S. Orchideae, Cytogenetics. In Genera Orchidacearum 2: Orchidoideae; Pridgeon, A.M., Cribb, P.J., Chase, M.C., Rasmussen, F.N., Eds.; Oxford University Press: Oxford, UK, 2001; Part 1; p. 335. [Google Scholar]
- Felix, L.P.; Guerra, M. Cytogenetics and cytotaxonomy of some Brazilian species of Cymbidioid orchids. Genet. Mol. Biol. 2000, 23, 957–978. [Google Scholar] [CrossRef]
- Turco, A.; Albano, A.; Medagli, P.; D’Emerico, S. Contribution to the study of wild Orchidaceae, genus Platanthera L.C.M. Richard. Karyotype and C-banding analysis of two species from Italy. Caryologia 2020, 73, 11–16. [Google Scholar] [CrossRef]
- Cozzolino, S.; D’Emerico, S.; Widmer, A. Evidence for reproductive isolate selection in Mediterranean orchids: Karyotype differences compensate for the lack of pollinator specificity. Proc. R. Soc. Lond. B 2004, 271 (Suppl. 5), 259–262. [Google Scholar] [CrossRef]
- Guerra, M. Patterns of heterochromatin distribution in plant chromosomes. Gen. Mol. Biol. 2000, 23, 1029–1041. [Google Scholar] [CrossRef]
- Greilhuber, J. Evolutionary changes of DNA and heterochromatin amounts in the Scilla bifoIia group (Liliaceae). In Genome and Chromatin: Organization, Evolution, Function; Springer: Vienna, Austria, 1979; pp. 263–280. [Google Scholar]
- Flavell, R.B. Repetitive DNA and chromosome evolution in plants. Philos. Trans. Ser. B 1986, 312, 227–242. [Google Scholar]
- Bateman, R.M.; Pridgeon, A.M.; Chase, M.W. Phylogenetics of subtribe Orchidinae (Orchidoideae, Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and reclassification to achieve monophyly of Orchis sensu stricto. Lindlejana 1997, 12, 113–141. [Google Scholar]
- Deniz, I.G.; Genç, I.; Yücel, G.; Sümbül, H.; Sezik, E.; Tuna, M. Karyomorphology and nuclear DNA content for sixteen Ophrys L. taxa from Turkey. Plant Biosyst. 2017, 152, 711–719. [Google Scholar] [CrossRef]
- D’Emerico, S.; Pignone, D.; Bartolo, G.; Pulvirenti, S.; Terrasi, C.; Stuto, S.; Scrugli, A. Karyomorphology, heterochromatic patterns and evolution in the genus Ophrys (Orchidaceae). Bot. J. Linn. Soc. 2005, 148, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Bianco, P.; D’Emerico, S.; Medagli, P.; Ruggiero, L. Polyploidy and aneuploidy in Ophrys, Orchis and Anacamptis (Orchidaceae). Plant Syst. Evol. 1991, 178, 235–245. [Google Scholar] [CrossRef]
- Lacadena, J.R.; Cermeno, M.C. Nucleolus organizer competition in Triticum aestivum–Aegilops umbellulata chromosome addition lines. Theoret. Appl. Genet. 1985, 71, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Cerbah, M.; Coulaud, J.; Sjliak-Yakovlev, S. rDNA Organization and Evolutionary relationships in the genus Hypochaeris (Asteraceae). J. Hered. 1998, 89, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Cabral, J.S.; Felix, L.P.; Guerra, M. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet. Mol. Biol. 2006, 29, 659–664. [Google Scholar] [CrossRef] [Green Version]
- D’Emerico, S.; Pignone, D.; Bianco, P. Karyomorphological analyses and heterochromatin characteristic disclose phyletic relationships among 2n = 32 and 2n = 36 species of Orchis (Orchidaceae). Pl. Syst. Evol. 1996, 200, 111–124. [Google Scholar] [CrossRef]
- Cozzolino, S.; Aceto, S.; Caputo, P.; Gaudio, L.; Nazzaro, R. Phylogenetic relationships in Orchis and some related genera: An approach using chloroplast DNA. Nord. J. Bot. 1997, 18, 79–87. [Google Scholar] [CrossRef]
- Aceto, S.; Caputo, P.; Cozzolino, S.; Gaudio, L.; Moretti, A. Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: Morphological gaps and molecular continuity. Molec. Phyl. Evol. 1999, 13, 67–76. [Google Scholar] [CrossRef]
- D’Emerico, S. Cytogenetic diversity in Orchis s.l. and allied genera (Orchidinae, Orchidaceae). In Plant Genome, Volume 1, Part B. Phanerogams (Higher Groups); Sharma, A.K., Sharma, A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 61–87. [Google Scholar]
- Guerra, M. Cytotaxonomy: The end of childhood. Plant Biosyst. 2012, 146, 703–710. [Google Scholar] [CrossRef]
- Turco, A.; Albano, A.; Medagli, P.; Wagensommer, R.P.; D’Emerico, S. Comparative chromosome studies in species of subtribe Orchidinae (Orchidaceae). Comp. Cytogen. 2021, 15, 507–525. [Google Scholar] [CrossRef]
- Bateman, R.M. Evolutionary classification of European orchids: The crucial importance of maximising explicit evidence and minimising authoritarian speculation. J. Eur. Orch. 2009, 41, 501–572. [Google Scholar]
- D’Emerico, S.; Bianco, P.; Medagli, P. Cytological and karyological studies on Orchidaceae. Caryologia 1993, 46, 309–319. [Google Scholar] [CrossRef]
- Rieseberg, L.H. Hybrid origin of plant species. Ann. Rev. Ecol. Syst. 1997, 28, 359–389. [Google Scholar] [CrossRef] [Green Version]
- D’Emerico, S.; Bianco, P.; Pignone, D. Cytomorphological characterization of diploid and triploid individuals of Orchis × gennarii Reichenb. Fil. (Orchidaceae). Caryologia 1996, 49, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Doro, D. Anacamptis berica—Una nuova specie tetraploide del gruppo di Anacamptis pyramidalis. J. Eur. Orch. 2020, 52, 427–460. [Google Scholar]
- Harrison, C.J.; Alvey, E.; Henderson, I.R. Meiosis in flowering plants and other green organism. J. Exp. Bot. 2010, 61, 2863–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sramkó, G.; Molnár, A.V.; Hawkins, J.A.; Bateman, R.M. Molecular phylogenetics and evolution of the Eurasiatic orchid genus Himantoglossum sl. Ann. Bot. 2014, 114, 1609–1626. [Google Scholar] [CrossRef] [PubMed]
- D’Emerico, S.; Bianco, P.; Medagli, P.; Ruggiero, L. Karyological studies of some taxa of the genera Himantoglossum, Orchis, Serapias and Spiranthes (Orchidaceae) from Apulia (Italy). Caryologia 1990, 43, 267–276. [Google Scholar] [CrossRef]
- Ströhlein, H.; Sundermann, H. Chromosomenzählungen bei Erdorchideen. Jahresbericht naturwiss. Ver. Wupp. 1972, 25, 75–80. [Google Scholar]
- World Flora Online (WFO). 2022. Available online: http://www.worldfloraonline.org/ (accessed on 20 February 2023).
- Capineri, R.; Rossi, W. Numeri cromosomici per la flora italiana: 1130–1131. Inform. Bot. Ital. 1987, 19, 314–318. [Google Scholar]
- Baumann, H.; Künkele, S. Die Gattung Serapias L. Eine taxonomische Übersicht. Arbeitskreis Heim. Orchid. Baden Württemberg 1989, 21, 701–946. [Google Scholar]
- Turco, A.; Albano, A.; Medagli, P.; D’Emerico, S.; Wagensommer, R.P. Orchidaceae in Puglia (Italy): Consistency, Distribution, and Conservation. Plants 2023, 12, 2223. [Google Scholar] [CrossRef] [PubMed]
- D’Emerico, S.; Pignone, D.; Scrugli, A. Giemsa C-band in some species of Serapias L. (Orchidaceae). Bot. J. Linn. Soc. 2000, 133, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Bernardos, S.; Amich, F.; Gallego, F. Karyological and taxonomic notes on Ophrys (Orchidoideae, Orchidaceae) from the Iberian Peninsula. Bot. J. Linn. Soc. 2003, 142, 395–406. [Google Scholar] [CrossRef]
- Bellusci, F.; Aquaro, G. Contribution to the cytotaxonomical knowledge of four species of Serapias L. (Orchidaceae). Caryologia 2008, 61, 294–299. [Google Scholar] [CrossRef]
- Brullo, C.; D’Emerico, S.; Pulvirenti, S. A cytological study of four Sicilian Serapias (Orchidaceae). Caryologia 2014, 67, 260–264. [Google Scholar] [CrossRef]
- Šegota, V.; Hršak, V.; Vuković, N.; Alegro, A.; Besendorfer, V.; Sedlar, Z.; Bogdanović, S.; Poljak, I. Disentangling the kinship of Serapias × todaroi Tin. (Orchidaceae) along the eastern Adriatic using chromosome count and morphometry. Flora 2018, 249, 9–15. [Google Scholar] [CrossRef]
- Gennaio, R.; Pellegrino, G. Serapias ausoniae (Orchidaceae; Orchideae): A new species from southern Italy confirmed by morphological, cytological and molecular analyses. Phytotaxa 2021, 516, 159–168. [Google Scholar] [CrossRef]
- Inda, L.A.; Pimentel, M.; Chase, M.W. Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: Inferences regarding timing of diversifi cation and evolution of pollination syndromes. Ann. Bot. 2012, 110, 71–90. [Google Scholar]
- Levitsky, G.A. The karyotype in systematics. Bull. Appl. Bot. Genet. Plant Breed 1931, 27, 220–240. [Google Scholar]
- Stebbins, G.L. Chromosomal Evolution in Higher Plants; Arnold: London, UK, 1971. [Google Scholar]
- Turco, A.; Albano, A.; Medagli, P.; Pulvirenti, S.; D’Emerico, S. New cytological data in Ophrys sect. Pseudophrys Godfery and comparative karyomorphological studies in Ophrys L. (Orchidaceae). Plant Biosyst. 2018, 152, 901–910. [Google Scholar] [CrossRef]
- Bianco, P.; Medagli, P.; D’Emerico, S.; Ruggiero, L. Nuovo rinvenimento di Ophrys × venusiana Baumann & Künkele (O. tarentina Gölz & Reinhard x O. tenthredinifera Willd.) e studio cariologico delle specie parentali. Webbia 1988, 42, 43–47. [Google Scholar]
- Bianco, P.; D’Emerico, S.; Medagli, P.; Ruggiero, L. Karyological studies of some taxa of the genus Ophrys (Orchidaceae) from Apulia (Italy). Caryologia 1989, 42, 57–63. [Google Scholar] [CrossRef]
- Greilhuber, J.; Ehrendorfer, F. Chromosome numbers and evolution in Ophrys (Orchidaceae). Pl. Syst. Evol. 1975, 124, 125–138. [Google Scholar] [CrossRef]
- Turco, A.; D’Emerico, S.; Medagli, P.; Albano, A. A cytological study on Ophrys (Orchidaceae) in Italy: New evidence and the importance of polyploidy. Plant Biosyst. 2013, 149, 24–30. [Google Scholar] [CrossRef]
- Smarda, P.; Bures, P.; Horová, L.; Leitch, I.J.; Mucina, L.; Pacini, E.; Tichý, L.; Grulich, V.; Rotreklová, O. Ecological and Evolutionary Significance of Genomic GC Content Diversity in Monocots. 2014. Available online: https://www.pnas.org/doi/10.1073/pnas.1321152111#supplementary-materials (accessed on 5 June 2023).
- Pedersen, C.; Linde-Laursen, I. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res. 1994, 2, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Heslop-Harrison, J.S.; Schwarzacher, T. Organisation of the plant genome in chromosomes. Plant J. 2011, 66, 18–33. [Google Scholar] [CrossRef]
- D’Emerico, S.; Galasso, I.; Pignone, D.; Scrugli, A. Localization of rDNA loci by Fluorescent In situ Hybridization in some wild orchids from Italy (Orchidaceae). Caryologia 2001, 54, 31–36. [Google Scholar] [CrossRef]
- Vanzela, L.L.; Cuadrado, A.; Vieira, A.O.S.; Jouve, N. Genome characterization and relationships between two species of the genus Lobelia (Campanulaceae) determined by repeated DNA sequenze. Syst. Evol. 1999, 214, 211–218. [Google Scholar] [CrossRef]
- Garcia, S.; Wendel, J.F.; Borowska-Zuchowska, N.; Aïnouche, M.; Kuderova, A.; Kovarik, A. The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants. Front. Plant Sci. 2020, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Rogers, S.O.; Honda, S.; Bendich, A.J. Variation in the ribosomal genes among individuals of Vicia faba. Plant Molec. Biol. 1986, 6, 339–345. [Google Scholar] [CrossRef]
- Panzera, F.; Gimenéz-Abiän, M.Y.; López-Säez, J.E.; Gimenéz-Martin, G.; Cuadrado, A.; Shaw, P.J.; Beven, A.F.; Cänovas, J.L.; De La Torre, C. Nucleolar organizer expression in AIlium cepa L. chromosomes. Chromosoma 1996, 105, 12–19. [Google Scholar] [CrossRef]
- Moraes, A.P.; Leitch, I.; Lia, J.; Leitch, A.R. Chromosome studies in Orchidaceae: Karyotype divergence in Neotropical genera in subtribe Maxillariinae. Bot. J. Linn. Soc. 2012, 170, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Querino, B.C.; Ferraz, M.E.; Mata-Sucre, Y.; Souza, G.; Felix, L.P. Cytomolecular diversity of the subtribe Laeliinae (Epidendroidae, Orchidaceae) suggests no relationship between genome size and heterochromatin abundance. Plant Syst. Evol. 2020, 306, 19. [Google Scholar] [CrossRef]
- Battaglia, E. A simplified Feulgen method using cold hydrolysis. Caryologia 1957, 9, 372–373. [Google Scholar] [CrossRef]
- Gerlach, W.L.; Bedbrook, J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl. Acids Res. 1979, 7, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, W.L.; Dyer, T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rDNA genes. Nucl. Acids Res. 1980, 8, 4851–4865. [Google Scholar] [CrossRef] [Green Version]
- Heslop-Harrison, J.S. The molecular cytogenetics of plants. J. Cell Sci. 1991, 100, 15–21. [Google Scholar] [CrossRef]
- Plants of the World Online (POWO). Facilitated by the Royal Botanic Gardens, Kew. 2023. Available online: http://www.plantsoftheworldonline.org/.3.2 (accessed on 5 June 2023).
- Levan, A.; Fredga, K.; Sandberg, A.A. Nomenclature for centromeric position on chromosomes. Hereditas 1964, 52, 201–220. [Google Scholar] [CrossRef]
- Romero Zarco, C. A new method for estimating karyotype asymmetry. Taxon 1986, 35, 526–530. [Google Scholar] [CrossRef]
- Paszko, B. A critical review and a new proposal of karyotype asymmetry indices. Plant Syst. Evol. 2006, 258, 39–48. [Google Scholar] [CrossRef]
- Zuo, L.; Yuan, Q. The difference between the heterogeneity of the centromeric index and intrachromosomal symmetry. Pl. Syst. Evol. 2011, 297, 141–145. [Google Scholar] [CrossRef]
- Peruzzi, L.; Eroğlu, H.E. Karyotype asymmetry: Again, how to measure and what to measure? Comp. Cytogen. 2013, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, E.A.; Connerton, I.; Bennett, S.T.; Barnes, S.R.; Parker, J.S.; Forster, J.W. Molecular analysis of the structure of the maize B-chromosome. Chrom. Res. 1996, 4, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.M.; Sharbel, T.F.; Beukeboom, L.W. B-chromosome evolution. Phil. Trans. R. Soc. Lond. B 2000, 355, 163–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, A.; Jones, N.; Martins, C.; Trifonov, V.A. Evolution, Composition and Regulation of Supernumerary B Chromosomes. Genes 2019, 10, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Emerico, S.; Cozzolino, S.; Pellegrino, G.; Pignone, D.; Scrugli, A. Karyotype structure, supernumerary chromosomes and heterochromatin distribution suggest a pathway of karyotype evolution in Dactylorhiza (Orchidaceae). Bot. J. Linn. Soc. 2002, 138, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Baumann, H.; D’Emerico, S.; Lorenz, R.; Pulvirenti, S. Supernumerary chromosomes and speciation processes in Dactylorhiza urvilleana subsp. phoenissa (Orchidaceae) from Lebanon. J. Eur. Orch. 2012, 44, 811–824. [Google Scholar]
- Fujimoto, R.; Sasaki, T.; Ishikawa, R.; Osabe, K.; Kawanabe, T.; Dennis, E.S. Molecular Mechanisms of Epigenetic Variation in Plants. Int. J. Mol. Sci. 2012, 13, 9900–9922. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Mukai, Y. Chromosome research in orchids: Current status and future prospects with special emphasis from molecular and epigenetic perspective. Nucleus 2015, 58, 173–184. [Google Scholar] [CrossRef]
- Paun, O.; Bateman, R.M.; Fay, M.F.; Hedren, M.; Civeyrel, L.; Chase, M.W. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae) research article. Biol. Evol. 2010, 27, 2465–2473. [Google Scholar] [CrossRef] [Green Version]
- Bateman, R.M.; Rudall, P.J.; Murphy, A.R.M.; Cowan, R.S.; Devey, D.S.; Peréz-Escobar, O.A. Whole plastomes are not enough: Phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade Ophrys sect. Sphegodes. J. Exp. Bot. 2021, 72, 654–681. [Google Scholar] [CrossRef]
Taxon | Code | Provenance | Formula | THL | MCA | CVCL | CVCI | A1 | A2 |
---|---|---|---|---|---|---|---|---|---|
Anacamptis morio (L.) R.M.Bateman, Pridgeon & M.W.Chase | mor | Italy | 32 m + 4 sm | 43.69 | 11.02 | 20.86 | 9.70 | 0.19 | 0.21 |
A. papilionacea (L.) R.M.Bateman, Pridgeon & M.W.Chase | pap | 16 m + 10 sm + 6 st | 42.59 | 28.11 | 27.77 | 25.68 | 0.41 | 0.28 | |
A. pyramidalis (L.) R.M.Bateman, Pridgeon & M.W.Chase 36 | py36 | 30 m + 6 sm | 51.58 | 16.27 | 31.25 | 12.24 | 0.26 | 0.31 | |
A. pyramidalis 72 | py72 | 44 m + 28 sm | 94.64 | 22.52 | 35.43 | 19.52 | 0.34 | 0.35 | |
A. collina (Banks & Sol. ex Russell) R.M.Bateman, Pridgeon & M.W.Chase | col | 22 m + 14 sm | 50.14 | 21.49 | 22.90 | 20.14 | 0.33 | 0.23 | |
A. coriophora (L.) R.M.Bateman, Pridgeon & M.W.Chase | cor | Italy-Spain | 16 m + 20 sm | 57.50 | 24.58 | 21.49 | 16.72 | 0.38 | 0.21 |
A. laxiflora (Lam.) R.M.Bateman, Pridgeon & M.W.Chase | lax | Italy | 32 m + 4sm | 37.68 | 12.00 | 26.30 | 8.30 | 0.21 | 0.26 |
A. palustris (Jacq.) R.M.Bateman, Pridgeon & M.W.Chase | pal | 30 m + 6sm | 45.95 | 19.46 | 19.81 | 12.35 | 0.32 | 0.2 | |
Serapias vomeracea (Burm.f.) Briq. | svo | 6 m + 18 sm + 12 st | 41.79 | 39.71 | 26.49 | 29.48 | 0.5 | 0.26 | |
S. bergonii E.G.Camus | sbe | 8 m + 24 sm + 4 st | 40.96 | 35.36 | 27.78 | 18.70 | 0.51 | 0.28 | |
S. orientalis s.l. | sap | 6 m + 22 sm + 8 st | 39.89 | 40.53 | 26.22 | 24.51 | 0.54 | 0.26 | |
S. parviflora Parl. | spa | 16 m + 18 sm + 2 st | 40.87 | 27.21 | 29.12 | 20.07 | 0.4 | 0.27 | |
S. cordigera L. | sco | 22 m + 14 sm | 39.28 | 27.57 | 37.22 | 15.73 | 0.42 | 0.38 | |
S. lingua L. 72 | sli72 | 36 m + 34 sm + 2 st | 63.34 | 27.64 | 27.63 | 17.56 | 0.42 | 0.28 | |
S. politisii Renz | spo | 22 m + 10 sm + 4 st | 40.47 | 24.91 | 29.08 | 24.86 | 0.39 | 0.28 | |
Himantoglossum hircinum (L.) Spreng. | hhi | 32 m + 4 sm | 46.06 | 13.00 | 25.53 | 8.66 | 0.22 | 0.25 | |
H. robertianum (Loisel.) P.Delforge | hro | 32 m + 4 sm | 62.80 | 14.49 | 36.37 | 10.60 | 0.24 | 0.36 | |
H. adriaticum H.Baumann | had | 30 m + 6 sm | 45.14 | 17.61 | 28.42 | 12.33 | 0.29 | 0.29 |
Taxon | Code | Provenance | Formula | THL | MCA | CVCL | CVCI | A1 | A2 |
---|---|---|---|---|---|---|---|---|---|
Ophrys apifera Huds. | opi | Italy | 24 m + 12 sm | 48.18 | 17.82 | 27.72 | 15.99 | 0.3 | 0.28 |
O. bertolonii Moretti | obe | 18 m + 18 sm | 45.09 | 23.77 | 23.05 | 18.70 | 0.38 | 0.25 | |
O. bombyliflora Link | obo | 32 m + 4 sm | 43.61 | 16.20 | 21.72 | 10.13 | 0.27 | 0.2 | |
O. ferrum-equinum Desf. | ofe | Greece | 18 m + 18 sm | 41.60 | 21.52 | 23.96 | 14.35 | 0.38 | 0.26 |
O. fusca s.l. | ofu | Italy | 32 m + 4 sm | 40.25 | 14.83 | 21.99 | 14.38 | 0.27 | 0.22 |
O. iricolor Desf. | oir | 22 m + 14 sm | 43.85 | 19.75 | 23.71 | 15.53 | 0.32 | 0.23 | |
O. pallida Raf. | opl | 26 m + 10 sm | 44.79 | 15.67 | 21.27 | 9.24 | 0.33 | 0.22 | |
O. apulica (O.Danesch & E.Danesch) O.Danesch & E.Danesch | oap | 20 m + 16 sm | 46.86 | 21.08 | 28.46 | 15.67 | 0.33 | 0.28 | |
O. lacaitae Lojac. | ola | 20 m + 16 sm | 47.43 | 24.42 | 26.86 | 20.75 | 0.39 | 0.27 | |
O. celiensis (O.Danesch & E.Danesch) P.Delforge | oox | 20 m + 16 sm | 44.10 | 23.19 | 23.14 | 20.64 | 0.36 | 0.23 | |
O. parvimaculata (O.Danesch & E.Danesch) Paulus & Gack | opa | 18 m + 18 sm | 40.04 | 22.79 | 28.42 | 21.07 | 0.4 | 0.29 | |
O. insectifera L. | oin | 10 m + 26 sm | 50.74 | 28.00 | 25.25 | 22.01 | 0.43 | 0.25 | |
O. lutea Cav. | olu | 28 m + 8 sm | 43.41 | 18.72 | 22.72 | 12.09 | 0.3 | 0.23 | |
O. sicula Tineo | osi | 28 m + 8 sm | 45.40 | 18.28 | 21.46 | 9.47 | 0.3 | 0.21 | |
O. conradiae Melki & Deschatres | oco | 22 m + 14 sm | 51.34 | 21.09 | 20.98 | 17.32 | 0.33 | 0.21 | |
O. classica Devillers-Tersch. & Devillers | osp | 26 m + 10 sm | 47.47 | 20.93 | 23.39 | 13.89 | 0.35 | 0.24 | |
O. incubacea Bianca | oat | 26 m + 10 sm | 42.91 | 19.55 | 22.24 | 12.42 | 0.32 | 0.22 | |
O. garganica E.Nelson ex O.Danesch & E.Danesch | ops | 24 m + 12 sm | 44.87 | 20.36 | 24.47 | 15.52 | 0.33 | 0.25 | |
O. tenthredinifera s.l. | ote | 30 m + 6 sm | 50.96 | 14.95 | 18.94 | 10.58 | 0.25 | 0.19 | |
O. umbilicate Desf. | oum | Turkey | 18 m + 18 sm | 51.23 | 20.51 | 27.47 | 20.38 | 0.36 | 0.32 |
O. biscutella O.Danesch & E.Danesch | obi | Italy | 20 m + 16 sm | 45.45 | 20.48 | 26.05 | 16.21 | 0.35 | 0.26 |
O. arachnitiformis Gren. & Phil. (incl. O. mateolana Medagli, D’Emerico, Bianco & Ruggiero and O. archipelagi Gölz & H.R.Reinhard) | oar | 20 m + 16 sm | 50.07 | 22.08 | 25.37 | 20.99 | 0.36 | 0.26 | |
O. tarentina Gölz & H.R.Reinhard | ota | 26 m + 10 sm | 44.95 | 21.26 | 22.78 | 16.19 | 0.31 | 0.23 | |
O. tardans O.Danesch & E.Danesch | otr | 32 m + 4 sm | 41.64 | 16.72 | 20.26 | 10.17 | 0.25 | 0.2 | |
O. speculum Link | ose | Turkey [15] | 32 m + 4 sm | 34.28 | 11.99 | 19.10 | 10.11 | 0.2 | 0.19 |
O. omegaifera H.Fleischm. | oom | [15] | 28 m + 8 sm | 39.90 | 15.34 | 19.52 | 11.01 | 0.25 | 0.21 |
O. mammosa Desf. | omm | [15] | 22 m + 14 sm | 33.34 | 20.76 | 21.06 | 16.78 | 0.32 | 0.21 |
O. lycia Renz & Taubenheim | oly | [15] | 26 m + 10 sm | 43.64 | 16.14 | 17.82 | 11.97 | 0.27 | 0.18 |
O. reinholdii Spruner ex H.Fleischm. | ore | [15] | 24 m + 12 sm | 37.65 | 16.47 | 21.69 | 13.63 | 0.3 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turco, A.; Albano, A.; Medagli, P.; Wagensommer, R.P.; D’Emerico, S. Comparative Cytogenetic of the 36-Chromosomes Genera of Orchidinae Subtribe (Orchidaceae) in the Mediterranean Region: A Summary and New Data. Plants 2023, 12, 2798. https://doi.org/10.3390/plants12152798
Turco A, Albano A, Medagli P, Wagensommer RP, D’Emerico S. Comparative Cytogenetic of the 36-Chromosomes Genera of Orchidinae Subtribe (Orchidaceae) in the Mediterranean Region: A Summary and New Data. Plants. 2023; 12(15):2798. https://doi.org/10.3390/plants12152798
Chicago/Turabian StyleTurco, Alessio, Antonella Albano, Pietro Medagli, Robert Philipp Wagensommer, and Saverio D’Emerico. 2023. "Comparative Cytogenetic of the 36-Chromosomes Genera of Orchidinae Subtribe (Orchidaceae) in the Mediterranean Region: A Summary and New Data" Plants 12, no. 15: 2798. https://doi.org/10.3390/plants12152798
APA StyleTurco, A., Albano, A., Medagli, P., Wagensommer, R. P., & D’Emerico, S. (2023). Comparative Cytogenetic of the 36-Chromosomes Genera of Orchidinae Subtribe (Orchidaceae) in the Mediterranean Region: A Summary and New Data. Plants, 12(15), 2798. https://doi.org/10.3390/plants12152798