The Potential of Myrtaceae Species for the Phytomanagement of Treated Municipal Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil and Plant Chemistry
2.3. Statistical Analysis
3. Results and Discussion
3.1. Soil Chemistry
3.2. Plant Growth and Chemistry
3.3. Phytomanagement Potential
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, L.; Colombo, V.; Hassell, K.; Kellar, C.; Leahy, P.; Long, S.M.; Myers, J.H.; Pettigrove, V. Municipal wastewater effluent licensing: A global perspective and recommendations for best practice. Sci. Total Environ. 2017, 580, 1327–1339. [Google Scholar] [CrossRef]
- Liu, D.H.F.; Lipták, B.G. Wastewater Treatment; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Jones, E.R.; van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-level and gridded wastewater production, collection, treatment and re-use. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017. [Google Scholar]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Gluckman, P. New Zealand’s Fresh Waters: Values, State, Trends, and Human Impacts; Office of the Prime Minister’s Chief Science Advisor: Auckland, New Zealand, 2017. [Google Scholar]
- Davies-Colley, R.J. River water quality in New Zealand: An introduction and overview. In Ecosystem Services in New Zealand—Conditions and Trends; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 423–447. [Google Scholar]
- McDowell, R.W.; Larned, S.T.; Houlbrooke, D.J. Nitrogen and phosphorus in New Zealand streams and rivers: Control and impact of eutrophication and the influence of land management. N. Z. J. Mar. Freshw. Res. 2009, 43, 985–995. [Google Scholar] [CrossRef]
- Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Nutrient removal and biomass production in land treatment systems receiving domestic effluent. Ecol. Eng. 2009, 35, 1485–1492. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Ataria, J.; Baker, V.; Goven, J.; Langer, E.R.; Leckie, A.; Ross, M.; Horswell, J. From Tapu to Noa—Māori Cultural Views on Biowastes Management: A Focus on Biosolids; Centre for Integrated Biowaste Research: Christchurch, New Zealand, 2016. [Google Scholar]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Qian, Y.L.; Mecham, B. Long-term effects of recycled wastewater irrigation on soil chemical properties on golf course fairways. Agron. J. 2005, 97, 717–721. [Google Scholar] [CrossRef]
- Hänel, M.; Istenič, D.; Brix, H.; Arias, C.A. Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review. Forests 2022, 13, 810. [Google Scholar] [CrossRef]
- Evett, S.R.; Zalesny, R.S.; Kandil, N.F.; Stanturf, J.A.; Soriano, C. Opportunities for Woody Crop Production Using Treated Wastewater in Egypt. II. Irrigation Strategies. Int. J. Phytoremediation 2011, 13, 122–139. [Google Scholar] [CrossRef]
- Williams, M.C.; Wardle, G.M. Pinus radiata invasion in Australia: Identifying key knowledge gaps and research directions. Austral Ecol. 2007, 32, 721–739. [Google Scholar] [CrossRef]
- Esperschuetz, J.; Anderson, C.; Bulman, S.; Katamian, O.; Horswell, J.; Dickinson, N.M.; Robinson, B.H. Response of Leptospermum scoparium, Kunzea robusta and Pinus radiata to contrasting biowastes. Sci. Total Environ. 2017, 587–588, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Li, F.; Gutierrez-Gines, M.J.; Dickinson, N.; Gaw, S.; Bourke, M.; Robinson, B. Interactions of treated municipal wastewater with native plant species. Ecol. Eng. 2022, 183, 106741. [Google Scholar] [CrossRef]
- Sharma, P.; Tripathi, S.; Purchase, D.; Chandra, R. Integrating phytoremediation into treatment of pulp and paper industry wastewater: Field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. J. Environ. Chem. Eng. 2021, 9, 105547. [Google Scholar] [CrossRef]
- Hasan, S.M.M.; Akber, M.A.; Bahar, M.M.; Islam, M.A.; Akbor, M.A.; Siddique, M.A.B.; Islam, M.A. Chromium contamination from tanning industries and Phytoremediation potential of native plants: A study of savar tannery industrial estate in Dhaka, Bangladesh. Bull. Environ. Contam. Toxicol. 2021, 1–9. [Google Scholar] [CrossRef]
- Simcock, R.; Cavanagh, J.; Robinson, B.; Gutierrez-Gines, M.J. Using biowastes to establish native plants and ecosystems in New Zealand. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- McAlpine, K.G.; Wotton, D.M. Conservation and the Delivery of Ecosystem Services; Department of Conservation: Wellington, New Zealand, 2009.
- Franklin, H.M.; Dickinson, N.M.; Esnault, C.J.D.; Robinson, B.H. Native plants and nitrogen in agricultural landscapes of New Zealand. Plant Soil 2015, 394, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Esperschuetz, J.; Balaine, N.; Clough, T.; Bulman, S.; Dickinson, N.M.; Horswell, J.; Robinson, B.H. The potential of L. scoparium, K. robusta and P. radiata to mitigate N-losses in silvopastural systems. Environ. Pollut. 2017, 225, 12–19. [Google Scholar] [CrossRef]
- Franklin, H.M.; Woods, R.R.; Robinson, B.; Dickinson, N. Nitrous oxide emissions following dairy shed effluent application beneath Kunzea robusta (Myrtaceae) trees. Ecol. Eng. 2017, 99, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Wardle, P. Environmental influences on the vegetation of New Zealand. N. Z. J. Bot. 1985, 23, 773–788. [Google Scholar] [CrossRef]
- Gutierrez-Gines, M.J.; Robinson, B.H.; Esperschuetz, J.; Madejon, E.; Horswell, J.; McLenaghen, R. Potential Use of Biosolids to Reforest Degraded Areas with New Zealand Native Vegetation. J. Environ. Qual. 2017, 46, 906–914. [Google Scholar] [CrossRef] [Green Version]
- GHD. The Pot Levin WWTP. Groundwater Assessment; GHD: Christchurch, New Zealand, 2018. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29 Rev. 1; FAO: Rome, Italy, 1985. [Google Scholar]
- MWLR (Manaaki Whenua Landcare Research). Soils Map Viewer. Available online: https://soils-maps.landcareresearch.co.nz/#maps (accessed on 12 April 2023).
- Chappell, P.R. The Climate and Weather of Manawatu-Wanganui, 2nd ed.; NIWA: Wellington, New Zealand, 2015. [Google Scholar]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; NZ Soil Bureau: Lower Hutt, New Zealand, 1987. [Google Scholar]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, R.L. Nitrogen–Inorganic Forms. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpour, P., Tabatabai, N., Johnston, M.A., Summer, M.E., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Gray, C.W.; McLaren, R.G.; Roberts, A.H.C.; Condron, L.M. Effect of soil pH on cadmium phytoavailability in some New Zealand soils. N. Z. J. Crop. Hortic. Sci. 1999, 27, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction With Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 20 May 2023).
- Sparling, G.P.; Schipper, L.A. Ecological risk assessment: Soil quality at a national scale in New Zealand. J. Environ. Qual. 2002, 31, 1848–1857. [Google Scholar] [CrossRef]
- Sparling, G.P.; Barton, L.; Duncan, L.; McGill, A.; Speir, T.W.; Schipper, L.A.; Arnold, G.; Van Schaik, A. Nutrient leaching and changes in soil characteristics of four contrasting soils irrigated with secondary-treated municipal wastewater for four years. Aust. J. Soil Res. 2006, 44, 104–116. [Google Scholar] [CrossRef]
- Walker, C.; Lin, H.S. Soil property changes after four decades of wastewater irrigation: A landscape perspective. Catena 2008, 73, 63–74. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- FAO. User Manual for Irrigation with Treated Wastewater; FAO Regional Office of the Near East: Cairo, Egypt, 2003. [Google Scholar]
- Vogeler, I. Effect of Long-term Wastewater Application on Physical Soil Properties. Water Air Soil Pollut. 2009, 196, 385–392. [Google Scholar] [CrossRef]
- Farahani, E.; Emami, H.; Keller, T. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. Int. Agrophysics 2018, 32, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Reiser, R.; Simmler, M.; Portmann, D.; Clucas, L.; Schulin, R.; Robinson, B. Cadmium concentrations in New Zealand pastures: Relationships to soil and climate variables. J. Environ. Qual. 2014, 43, 917–925. [Google Scholar] [CrossRef]
- McLaren, R.G.; Cameron, K.C. Soil Science: Sustainable Production and Environmental Protection; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Barton, L.; McLay, C.D.A.; Schipper, L.A.; Smith, C.T. Denitrification rates in a wastewater-irrigated forest soil in New Zealand. J. Environ. Qual. 1999, 28, 2008–2014. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl. Agroecosystems 2002, 46, 237–256. [Google Scholar] [CrossRef]
- McDowell, R.W.; Condron, L.M. Estimating phosphorus loss from New Zealand grassland soils. N. Z. J. Agric. Res. 2004, 47, 137–145. [Google Scholar] [CrossRef]
- Barton, L.; Schipper, L.A.; Barkle, G.F.; McLeod, M.; Speir, T.W.; Taylor, M.D.; McGill, A.C.; van Schaik, A.P.; Fitzgerald, N.B.; Pandey, S.P. Land Application of Domestic Effluent onto Four Soil Types: Plant Uptake and Nutrient Leaching. J. Environ. Qual. 2005, 34, 635–643. [Google Scholar] [CrossRef]
- Taylor, M.; Drewry, J.; Curran-Cournane, F.; Pearson, L.; McDowell, R.; Lynch, B. Soil quality targets for Olsen P for the protection of environmental values. In Integrated Nutrient and Water Management for Sustainable Farming. Occasional Report No. 29; Currie, L.D., Singh, R., Eds.; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2016; p. 12. [Google Scholar]
- Drewry, J.J.; Cavanagh, J.-A.E.; McNeill, S.J.; Stevenson, B.A.; Gordon, D.A.; Taylor, M.D. Long-term monitoring of soil quality and trace elements to evaluate landuse effects and temporal change in the Wellington region, New Zealand. Geoderma Reg. 2021, 25, e00383. [Google Scholar] [CrossRef]
- Mittelstet, A.R.; Heeren, D.M.; Fox, G.A.; Storm, D.E.; White, M.J. Comparison of subsurface and surface runoff phosphorus transport rates in alluvial floodplains. Agric. Ecosyst. Environ. 2011, 141, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Chen, C.R.; Condron, L.M.; Sinaj, S.; Davis, M.R.; Sherlock, R.R.; Frossard, E. Effects of plant species on phosphorus availability in a range of grassland soils. Plant Soil 2003, 256, 115–130. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J.M. The Fate of Arsenic in Soil-Plant Systems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; pp. 1–37. [Google Scholar]
- Gutierrez-Gines, M.J.; Mishra, M.; McIntyre, C.; Chau, H.W.; Esperschuetz, J.; McLenaghen, R.; Bourke, M.P.; Robinson, B.H. Risks and benefits of pasture irrigation using treated municipal effluent: A lysimeter case study, Canterbury, New Zealand. Environ. Sci. Pollut. Res. 2020, 27, 11830–11841. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, N.; Marmiroli, M.; Das, B.; McLaughlin, D.; Leung, D.; Robinson, B. Endemic Plants as Browse Crops in Agricultural Landscapes of New Zealand. Agroecol. Sustain. Food Syst. 2015, 39, 224–242. [Google Scholar] [CrossRef]
- Meister, A.; Gutierrez-Gines, M.J.; Maxfield, A.; Gaw, S.; Dickinson, N.; Horswell, J.; Robinson, B. Chemical elements and the quality of mānuka (Leptospermum scoparium) honey. Foods 2021, 10, 1670. [Google Scholar] [CrossRef]
- Hahner, J.L.; Robinson, B.H.; Hong-Tao, Z.; Dickinson, N.M. The phytoremediation potential of native plants on New Zealand dairy farms. Int. J. Phytoremediation 2014, 16, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.V.P.; Gutiérrez-Ginés, M.J.; Smith, C.M.S.; Lehto, N.J.; Robinson, B.H. Mānuka (Leptospermum scoparium ) roots forage biosolids in low fertility soil. Environ. Exp. Bot. 2017, 133, 151–158. [Google Scholar] [CrossRef]
- KCDC (Kāpiti Coast District Council). A Guide to Growing Native Plants in Kapiti; KCDC: Paraparaumu, New Zealand, 1999. [Google Scholar]
- Jensen, H.; Orth, B.; Reiser, R.; Bürge, D.; Lehto, N.J.; Almond, P.; Gaw, S.; Thomson, B.; Lilburne, L.; Robinson, B. Environmental parameters affecting the concentration of iodine in New Zealand pasture. J. Environ. Qual. 2019, 48, 1517–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, L. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 1975, 13, 295–312. [Google Scholar] [CrossRef]
- Maathuis, F.J. Sodium in plants: Perception, signalling, and regulation of sodium fluxes. J. Exp. Bot. 2014, 65, 849–858. [Google Scholar] [CrossRef]
- Luo, J.; Lindsey, S.; Xue, J. Irrigation of meat processing wastewater onto land. Agric. Ecosyst. Environ. 2004, 103, 123–148. [Google Scholar] [CrossRef]
- National Research Council. Mineral Tolerance of Animals, 2nd ed.; National Academies Press: Washington, DC, USA, 2005.
- Horst, R.L.; Goff, J.P.; Reinhardt, T.A.; Buxton, D.R. Strategies for Preventing Milk Fever in Dairy Cattle1, 2. J. Dairy Sci. 1997, 80, 1269–1280. [Google Scholar] [CrossRef]
- Marden, M.; Lambie, S. Plot-Based, Growth Performance of Space-Planted Mānuka (Leptospermum scoparium) on Marginal Land, and Vulnerability to Erosion; Ministry for Primary Industries: Wellington, New Zealand, 2016.
- Meister, A.; Robinson, B.; Gutiérrez-Ginés, M.J. Water Quality Improvement in the Waiwiri Catchment through Strategic Establishment of Native Ecosystems with Bioactive Properties Used at a Land Treatment Site; ESR and University of Canterbury: Christchurch, New Zealand, 2023. [Google Scholar]
- Scott, N.A.; White, J.D.; Townsend, J.A.; Whitehead, D.; Leathwick, J.R.; Hall, G.M.J.; Marden, M.; Rogers, G.N.D.; Watson, A.J.; Whaley, P.T. Carbon and nitrogen distribution and accumulation in a New Zealand scrubland ecosystem. Can. J. For. Res. 2000, 30, 1246–1255. [Google Scholar] [CrossRef]
Parameter | Concentration in TMW (mg L−1) a | Application (kg ha−1 yr−1) |
---|---|---|
NO3−-N | 11 ± 1.2 | 513 |
NH4+-N | 8.0 ± 1.1 | 373 |
Total N | 48 ± 3.0 | 2240 |
PO43−-P | 1.2 ± 0.19 | 56 |
Total P | 6.6 ± 0.91 | 308 |
Ca | 12 ± 0.19 | 560 |
Mg | 3.2 ± 0.13 | 149 |
K | 25 ± 1.9 | 1167 |
Na | 61 ± 3.2 | 2847 |
B | 163 ± 12 (μg L−1) | 7.6 |
As, Cd, Cr, Cu, Hg, Ni, Pb | <0.01 | <0.47 |
Total suspended solids (TSS) | 13 ± 6.3 | 607 |
Electrical conductivity (EC) | 74 ± 5.1 (mS m−1) | - |
Sodium adsorption ratio (SAR) b | 4.0 ((meq L−1)1/2) | - |
0–10 cm | K. robusta | L. scoparium | Pasture |
---|---|---|---|
Irrigation (mm day−1) | 11 (2.5–50) | 10 (2.4–43) | 12 (2.6–81) |
pH | 4.7 (4.4–5.0) | 4.7 (4.4–5.0) | 4.8 (4.4–5.2) [−S] |
EC (dS m−1) | 149 (83–265) | 116 (54–250) | 118 (73–235) |
Total C (%) | 5.5 (3.4–8.7) | 4.9 (2.6–9.0) | 5.4 (3.5–10) |
Total N (%) | 0.27 (0.17–0.33) | 0.25 (0.13–0.49) | 0.28 (0.18–0.58) |
NO3−-N | 7.5 (2.5–23) | 7.0 (1.9–26) | 4.9 (1.8–16) [+S *] |
NH4+-N | 19 (11–33) | 16 (9. 1–30) | 16 (9.7–30) |
Total P | 579 (500–671) | 577 (491–678) | 535 (456–634) |
Olsen P | 131 (105–163) [+S] | 121 (66–222) [+S *] | 122 (91–214) |
Total Na | 734 (616–876) [+S] | 803 (689–936) | 708 (589–878) [+S *] |
Total K | 2584 (1999–3088) | 2506 (2080–3019) | 2278 (2008–2736) |
Total Ca | 7208 (6643–7822) | 7476 (6988–7997) | 7233 (6746–7834) |
Total Mg | 2570 (2325–2842) ab | 2580 (2299–2896) a | 2409 (2265–2631) b |
Extractable Mg | 129 (62–269) [−S *] | 158 (87–287) | 99 (37–235) [−S] |
Total As | 2.3 (1.9–2.6) a | 2.3 (2.0–2.5) ab | 2.0 (1.9–2.3) [+S *] b |
Total Cd (µg kg−1) | 8.3 (5.6–12.3) [−S *] a | 6.5 (4.8–8.8) [−S] ab | 5.5 (3.9–8.2) [−S] b |
Total Cu | 5.0 (4.1–5.9) | 4.7 (3.7–5.8) [−S *] | 4.6 (3.7–5.8) |
Total Pb | 4.2 (3.4–5.3) [−S] | 4.0 (3.6–4.5) | 3.9 (3.5–4.8) |
30–45 cm | K. robusta | L. scoparium | Pasture |
---|---|---|---|
pH | 5.3 (4.9–5.7) | 5.5 (5.0–6.1) | 5.3 (4.8–5.8) [−S] |
EC (dS m−1) | 30 (20–47) | 27 (19–39) | 22 (17–32) [+S] |
Total C (%) | 0.7 (0.5–1.0) | 0.6 (0.5–0.8) | 0.7 (0.5–0.9) |
Total N (%) | <0.05 | <0.05 | <0.05 |
NO3−-N | 2.0 (0.6–6.4) | 1.9 (0.6–5.9) | 1.1 (0.3–3.9) |
NH4+-N | 4.6 (2.5–8.5) | 4.2 (2.3–7.5) | 4.0 (2.0–7.2) |
Total P | 388 (307–490) | 372 (299–464) | 417 (325–524) |
Olsen P | 39 (22–66) ab | 28 (12–62) b | 50 (27–110) a |
Total Na | 734 (658–818) | 712 (586–866) | 680 (570–817) |
Total K | 2121 (1683–2676) | 2416 (2163–2700) | 2118 (1640–2423) |
Total Ca | 7418 (6771–8126) | 7726 (7296–8182) | 7562 (6487–8277) |
Total Mg | 2880 (2584–3209) | 3058 (2821–3315) | 2882 (2407–3198) |
Extractable Mg | 30 (18–52) | 32 (19–54) [−S] | 26 (14–44) [−S] |
Total As | 2.5 (2.2–2.9) [+S] | 2.6 (2.4–2.9) | 2.6 (2.2–3.0) |
Total Cd (µg kg−1) | 5.2 (3.5–7.9) | 6.5 (5.3–4.1) | 5.1 (3.5–7.7) |
Total Cu | 3.7 (3.4–3.9) | 3.7 (3.3–4.1) | 3.7 (3.2–4.0) |
Total Pb | 3.7 (3.4–4.2) | 3.8 (3.6–4.1) | 3.8 (3.4–4.2) |
Parameter | Kunzea robusta | Leptospermum scoparium | Pasture |
---|---|---|---|
Plant height (cm) | 164 (140–194) | 157 (137–180) | n.d. |
Plant biomass (g m−2) | - | - | 725 (525–835) |
C (%) | 51 (51–52) a | 52 (52–53) a | 43 (42–44) b |
N (%) | 2.0 (1.7–2.4) b | 2.2 (1.9–2.5) b | 2.8 (2.2–3.2) [+S **] a |
Biomass N (kg ha−1) | - | - | 204 (135–208) [+S] |
K (%) | 0.6 (0.5–0.7) b | 0.6 (0.5–0.7) [−S] b | 3.7 (3.0–4.4) a |
P (mg kg−1) | 2695 (2272–3196) [+S] b | 2398 (2009–2864) b | 4386 (3926–5314) a |
Biomass P (kg ha−1) | - | - | 32 (24–44) |
Mg (mg kg−1) | 1454 (1167–1746) b | 1614 (1371–1827) ab | 1884 (1550–2260) a |
Na (mg kg−1) | 4991 (4097–6082) | 4575 (3745–5588) [+S] | 5480 (3229–7013) [+S **] |
Zn (mg kg−1) | 51 (39–66) a | 30 (23–39) [−S] b | 35 (28–54) [+S *] b |
Mn (mg kg−1) | 1341 (907–1983) a | 651 (411–1032) [−S] b | 177 (108–338) [−S] c |
Cu (mg kg−1) | 3.1 (1.9–5.0) | 3.3 (2.4–4.5) [−S *] | 4.2 (3.1–6.1) |
Cr (mg kg−1) | 0.43 (0.22–0.84) [+S] ab | 0.33 (0.18–0.59) [+S] b | 0.57 (0.42–1.3) a |
As (µg kg−1) | 57 (43–77) [+S] a | 67 (49–91) a | 22 (14–30) b |
Cd (µg kg−1) | 17 (10–29) a | 12 (7.4–19) a | 2.4 (0.9–4.1) b |
Pb (µg kg−1) | 82 (55–121) [+S *] a | 83 (54–127) a | 14 (5.3–21) [+S] b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meister, A.; Gutiérrez-Ginés, M.J.; Lowe, H.; Robinson, B. The Potential of Myrtaceae Species for the Phytomanagement of Treated Municipal Wastewater. Plants 2023, 12, 2844. https://doi.org/10.3390/plants12152844
Meister A, Gutiérrez-Ginés MJ, Lowe H, Robinson B. The Potential of Myrtaceae Species for the Phytomanagement of Treated Municipal Wastewater. Plants. 2023; 12(15):2844. https://doi.org/10.3390/plants12152844
Chicago/Turabian StyleMeister, Alexandra, María Jesús Gutiérrez-Ginés, Hamish Lowe, and Brett Robinson. 2023. "The Potential of Myrtaceae Species for the Phytomanagement of Treated Municipal Wastewater" Plants 12, no. 15: 2844. https://doi.org/10.3390/plants12152844
APA StyleMeister, A., Gutiérrez-Ginés, M. J., Lowe, H., & Robinson, B. (2023). The Potential of Myrtaceae Species for the Phytomanagement of Treated Municipal Wastewater. Plants, 12(15), 2844. https://doi.org/10.3390/plants12152844