Valorization of Two African Typical Crops, Sorghum and Cassava, by the Production of Different Dry Pasta Formulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization and Total Antioxidant Capacity of the Raw Materials
2.2. Chemical Characterization and Total Antioxidant Capacity of Dry Pasta
2.3. Cooking Quality Parameters and Sensory Evaluation of Pasta Samples
3. Materials and Methods
3.1. Plant Material
3.2. Milling and Pasta-Making Process
3.3. Chemical Characterization and Total Antioxidant Capacity of Dry Pasta
3.4. Cooking Quality and Sensory Evaluation of Cooked Pasta
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- African Migration Trends to Watch in 2022. Available online: https://africacenter.org/spotlight/african-migration-trends-to-watch-in-2022/ (accessed on 4 August 2022).
- Noi Italia, Popolazione e Società–Stranieri. 2022. Available online: https://noi-italia.istat.it/pagina.php?L=0&categoria=4&dove=ITALIA (accessed on 19 June 2023).
- Bellesia-Contuzzi, G. Comfort Food, Acquired Taste, and Fusion Cuisine. A Migrant Journey. Comp. Stud. Mod. 2017, 10, 85–98. [Google Scholar]
- Martínez-Moreno, F.; Ammar, K.; Solís, I. Global changes in cultivated area and breeding activities of durum wheat from 1800 to date: A historical review. Agronomy 2022, 12, 1135. [Google Scholar] [CrossRef]
- Flagella, Z. Qualità nutrizionale e tecnologica del frumento duro. Ital. J. Agron. 2006, 1, 203–239. (In Italian) [Google Scholar] [CrossRef] [Green Version]
- IPO. The World Pasta Industry Status Report—International Pasta Organization. 2021. Available online: http://www.internationalpasta.org (accessed on 9 June 2023).
- USDA. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459200 (accessed on 1 June 2023).
- Espitia-Hernández, P.; Chavez Gonzalez, M.L.; Ascacio-Valdés, J.A.; Dávila-Medina, D.; Flores-Naveda, A.; Silva, T.; Ruelas Chacón, X.; Sepúlveda, L. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit. Rev. Food Sci. Nutr. 2022, 62, 2269–2280. [Google Scholar] [CrossRef] [PubMed]
- Galassi, E.; Taddei, F.; Ciccoritti, R.; Nocente, F.; Gazza, L. Biochemical and technological characterization of two C4 gluten-free cereals: Sorghum bicolor and Eragrostis tef. Cereal Chem. 2020, 97, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Wellens, J.; Raes, D.; Fereres, E.; Diels, J.; Coppye, C.; Adiele, J.G.; Heng, L.K. Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz). Agric. Water Manag. 2022, 263, 107491. [Google Scholar] [CrossRef]
- FAO. Ethiopia: Report on Feed Inventory and Feed Balance; FAO: Rome, Italy, 2018; 160p, Available online: https://www.fao.org/3/ca1718en/CA1718EN.pdf (accessed on 18 November 2021).
- Guira, F.; Some, K.; Kabore, D.; Sawadogo-Lingani, H.; Traore, Y.; Savadogo, A. Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Sci. Nutr. 2017, 5, 415–423. [Google Scholar] [CrossRef]
- Ferraro, V.; Piccirillo, C.; Tomlins, K.; Pintado, M.E. Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) crops and their derived foodstuffs: Safety, security and nutritional value. Crit. Rev. Food Sci. Nutr. 2016, 56, 2714–2727. [Google Scholar] [CrossRef]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Alimi, B.A. Progress in research and applications of cassava flour and starch: A review. J. Food Sci. Technol. 2019, 56, 2799–2813. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Rome. Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 9 May 2023).
- Jolayemi, O.L.; Opabode, J.T. Responses of cassava (Manihot esculenta Crantz) varieties to in vitro mannitol induced drought stress. J. Crop Improv. 2018, 32, 566–578. [Google Scholar] [CrossRef]
- Reilly, K.; Gómez-Vásquez, R.; Buschmann, H.; Tohme, J.; Beeching, J.R. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Mol. Biol. 2003, 53, 669–685. [Google Scholar] [CrossRef]
- Falade, K.O.; Akingbala, J.O. Utilization of cassava for food. Food Rev. Int. 2010, 27, 51–83. [Google Scholar] [CrossRef]
- Durante, M.; Lenucci, M.S.; Gazza, L.; Taddei, F.; Nocente, F.; De Benedetto, G.E.; De Caroli, M.; Piro, G.; Mita, G. Bioactive composition and sensory evaluation of innovative spaghetti supplemented with free or α-cyclodextrin chlatrated pumpkin oil extracted by supercritical CO2. Food Chem. 2019, 294, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Gazza, L.; Nocente, F. Innovative Pasta with High Nutritional and Health Potential. Foods 2022, 11, 2448. [Google Scholar] [CrossRef]
- Ferreira, S.M.R.; de Mello, A.P.; dos Anjos, M.D.C.R.; Krüger, C.C.H.; Azoubel, P.M.; de Oliveira Alves, M.A. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta. Food Chem. 2016, 191, 147–151. [Google Scholar] [CrossRef]
- Lawal, O.M.; Fogliano, V.; Rotte, I.; Fagbemi, T.N.; Dekker, M.; Linnemann, A.R. Leafy vegetables fortification enhanced the nutritional profile and reduced the glycemic index of yellow cassava pasta. Food Funct. 2022, 13, 6118–6128. [Google Scholar] [CrossRef]
- de Oliveira, L.D.L.; de Orlandin, L.C.; de Aguiar, L.A.; Queiroz, V.A.V.; Zandonadi, R.P.; Botelho, R.B.A.; de Alencar Figueiredo, L.F. Gluten-Free Sorghum Pasta: Composition and Sensory Evaluation with Different Sorghum Hybrids. Foods 2022, 11, 3124. [Google Scholar] [CrossRef]
- Biselli, C.; Volante, A.; Desiderio, F.; Tondelli, A.; Gianinetti, A.; Finocchiaro, F.; Taddei, F.; Gazza, L.; Sgrulletta, D.; Cattivelli, L.; et al. GWAS for Starch-Related Parameters in Japonica Rice (Oryza sativa L.). Plants 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Ciccoritti, R.; Taddei, F.; Nicoletti, I.; Gazza, L.; Corradini, D.; D’Egidio, M.G.; Martini, D. Use of bran fractions and debranned kernels for the development of pasta with high nutritional and healthy potential. Food Chem. 2017, 225, 77–86. [Google Scholar] [CrossRef]
- Lawal, O.M.; Sanni, O.; Oluwamukomi, M.; Fogliano, V.; Linnemann, A.R. The addition of fluted pumpkin (Telfairia occidentalis) leaf powder improves the techno-functional properties of cassava pasta. Food Struct. 2021, 30, 100241. [Google Scholar] [CrossRef]
- Hazard, B.; Trafford, K.; Lovegrove, A.; Griffiths, S.; Uauy, C.; Shewry, P. Strategies to improve wheat for human health. Nat. Food 2020, 1, 475–480. [Google Scholar] [CrossRef]
- Masato, O.; Kentaro, M.; Tatsuro, M.; Akio, F.; Yukako, H.; Yasuki, M. Effects of drying temperature on the properties of starch in pasta. LWT 2021, 145, 111171. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E.; Rémésy, C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J. Cereal Sci. 2008, 48, 258–276. [Google Scholar] [CrossRef]
- Pontieri, P.; Troisi, J.; Di Fiore, R.; Di Maro, A.; Bean, S.R.; Tuinstra, M.R.; Del Giudice, A.; Pizzolante, G.; Alifano, P.; Giudice, L.D. Mineral contents in grains of seven food-grade sorghum hybrids grown in a Mediterranean environment. Aust. J. Crop Sci. 2014, 8, 1550–1559. [Google Scholar]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT 2019, 114, 108421. [Google Scholar] [CrossRef]
- Lawal, O.M.; van Stuijvenberg, L.; Boon, N.; Awolu, O.; Fogliano, V.; Linnemann, A.R. Technological and nutritional properties of amaranth-fortified yellow cassava pasta. J. Food Sci. 2021, 86, 5213–5225. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M.; Sestili, F.; Botticella, E.; Masci, S.; Lafiandra, D. Can manipulation of durum wheat amylose content reduce the glycaemic index of spaghetti? Foods 2020, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Fiorda, F.A.; Soares, M.S., Jr.; da Silva, F.A.; Grosmann, M.V.; Souto, L.R. Microestructure, texture and colour of gluten-free pasta made with amaranth flour, cassava starch and cassava bagasse. LWT 2013, 54, 132–138. [Google Scholar] [CrossRef]
- Sang, Y.; Bean, S.; Seib, P.A.; Pedersen, J.; Shi, Y.C. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 2008, 56, 6680–6685. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Ribotta, P.D.; León, A.E.; Bustos, M.C. Gluten-free sorghum pasta: Starch digestibility and antioxidant capacity compared with commercial products. J. Sci. Food Agric. 2019, 99, 1351–1357. [Google Scholar] [CrossRef]
- Rachman, A.; Brennan, M.A.; Morton, J.; Brennan, C.S. Effect of cassava and banana flours blend on physico-chemical and glycemic characteristics of gluten-free pasta. J. Food Process. Preserv. 2019, 43, e14084. [Google Scholar] [CrossRef]
- D’Egidio, M.G.; Mariani, B.M.; Nardi, S.; Novaro, P.; Cubadda, R. Chemical and technological variables and their relationships: A predictive equation for pasta cooking quality. Cereal Chem. 1990, 67, 275–281. [Google Scholar]
- D’Egidio, M.G.; Mariani, B.M.; Nardi, S.; Novaro, P. Viscoelastograph measures and total organic matter test: Suitability in evaluating textural characteristics of cooked pasta. Process Eng. 1993, 2, 97–112. [Google Scholar]
- Gazza, L.; Galassi, E.; Nocente, F.; Natale, C.; Taddei, F. Cooking quality and chemical and technological characteristics of wholegrain einkorn pasta obtained from micronized flour. Foods 2022, 11, 2905. [Google Scholar] [CrossRef]
- International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 105/2); ICC: Vienna, Austria, 1994. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis 996.11, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis 2002.02, Resistant Starch in Starch and Plant Materials; AOAC: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis 991.43, 16th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD, USA, 1995. [Google Scholar]
- American Association of Cereal Chemists. 08-01.01 Ash. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Martini, D.; Taddei, F.; Nicoletti, I.; Ciccoritti, R.; Corradini, D.; D’Egidio, M.G. Effects of genotype and environment on phenolic acids content and total antioxidant capacity in durum wheat. Cereal Chem. 2014, 91, 310–317. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. 66-50.01 Pasta and noodle cooking quality-firmness. In Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
Protein | TS | RS | Amylose | TDF | TAC | Ash | |
---|---|---|---|---|---|---|---|
Flour | (g/100 g) | (g/100 g) | (g/100 g) | (g/100 g) | (g/100 g) | (mmol TEAC/kg) | (g/100 g) |
CF | 2.25 ± 0.07 c | 86. 9 ± 0.9 a | 0.30 ± 0.01 b | 20 ± 4 c | 7.5 ± 0.2 c | 18.9 ± 0.4 c | 0.77 ± 0.01 d |
SF | 9.4 ± 0.2 b | 77 ± 1 b | 0.37 ± 0.01 a | 23.3 ± 0.1 bc | 12.2 ± 0.1 b | 34.3 ± 0.2 b | 1.888 ± 0.003 b |
DWF | 14.936 ± 0.005 a | 64 ± 4 c | 0.31 ± 0.01 b | 25 ± 2 b | 12.90 ± 0.09 a | 57 ± 1 a | 1.974 ± 0.009 a |
DS | 14.07 ± 0.03 b | 79 ± 2 b | 0.262 ± 0.005 c | 29.3 ± 0.1 a | 4.6 ± 0.3 d | 35.7 ± 0.1 b | 0.860 ± 0.006 c |
Proteins | TS | RS | Amylose | TDF | TAC | Ash | |
---|---|---|---|---|---|---|---|
Pasta | (g/100 g) | (g/100 g) | (g/100 g) | % | (g/100 g) | (mmol TEAC/kg) | (g/100 g) |
DS100 | 13.86 ±0.04 a | 78.9 ± 0.5 c | 0.310 ± 0.007 c | 28.9 ± 0.9 a | 4.34 ± 0.06 f | 29.9 ± 0.5 d | 0.85 ± 0.01 e |
C100 | 2.10 ± 0.07 e | 91.7 ± 0.2 a | 0.27 ± 0.02 d | 22.1 ± 0.3 c | 8.32 ± 0.05 c | 21.2 ± 0.4 e | 0.83 ± 0.01 f |
C50:DS50 | 5.97 ± 0.07 c | 73 ± 2 d | 0.417 ± 0.005 b | 29.4 ± 0.6 a | 5.04 ± 0.07 e | 31.1 ± 0.2 d | 0.915 ± 0.004 d |
C50:DW50 | 9.81 ± 0.05 b | 79.8 ± 0.1 c | 0.525 ± 0.001 a | 29.0 ± 0.8 a | 11.0 ± 0.1 a | 35.1 ± 0.5 b | 1.535 ± 0.002 a |
C50:S50 | 5.3 ± 0.2 d | 84 ± 2 b | 0.170 ± 0.003 e | 29.2 ± 0.4 a | 8.83 ± 0.01 b | 33 ± 1 c | 1.26 ± 0.05 c |
DS50:S50 | 9.9 ± 0.1 b | 73 ± 1 d | 0.510 ± 0.005 a | 25 ± 1 b | 5.4 ± 0.1 d | 39.9 ± 0.5 a | 1.372 ± 0.006 b |
Pasta Formulations (%) | ||||||
---|---|---|---|---|---|---|
Flours | DS100 | C100 | C50:DS50 | C50:DW50 | C50:S50 | DS50:S50 |
Cassava | - | 100 | 50 | 50 | 50 | - |
Sorghum whole meal | - | - | - | - | 50 | 50 |
Durum wheat semolina | 100 | - | 50 | - | - | 50 |
Durum wheat whole meal | - | - | - | 50 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galassi, E.; Gazza, L.; Nocente, F.; Kouagang Tchakoutio, P.; Natale, C.; Taddei, F. Valorization of Two African Typical Crops, Sorghum and Cassava, by the Production of Different Dry Pasta Formulations. Plants 2023, 12, 2867. https://doi.org/10.3390/plants12152867
Galassi E, Gazza L, Nocente F, Kouagang Tchakoutio P, Natale C, Taddei F. Valorization of Two African Typical Crops, Sorghum and Cassava, by the Production of Different Dry Pasta Formulations. Plants. 2023; 12(15):2867. https://doi.org/10.3390/plants12152867
Chicago/Turabian StyleGalassi, Elena, Laura Gazza, Francesca Nocente, Phabiola Kouagang Tchakoutio, Chiara Natale, and Federica Taddei. 2023. "Valorization of Two African Typical Crops, Sorghum and Cassava, by the Production of Different Dry Pasta Formulations" Plants 12, no. 15: 2867. https://doi.org/10.3390/plants12152867
APA StyleGalassi, E., Gazza, L., Nocente, F., Kouagang Tchakoutio, P., Natale, C., & Taddei, F. (2023). Valorization of Two African Typical Crops, Sorghum and Cassava, by the Production of Different Dry Pasta Formulations. Plants, 12(15), 2867. https://doi.org/10.3390/plants12152867