A New Leaf Essential Oil from Endemic Gynoxys laurifolia (Kunth) Cass. of Southern Ecuador: Chemical and Enantioselective Analyses
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis
2.2. Enantioselective Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Plant Distillation and Sample Preparation
4.3. Qualitative GC–MS Analysis
4.4. Quantitative GC–FID Analysis
4.5. Enantioselective Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megadiverse Countries, UNEP-WCMC. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 15 June 2023).
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
- Chiriboga, X.; Gilardoni, G.; Magnaghi, I.; Vita Finzi, P.; Zanoni, G.; Vidari, G. New Anthracene Derivatives from Coussarea macrophylla. J. Nat. Prod. 2003, 66, 905–909. [Google Scholar] [CrossRef]
- Gilardoni, G.; Tosi, S.; Mellerio, G.; Maldonado, M.E.; Chiriboga, X.; Vidari, G. Lipophilic Components from the Ecuadorian Plant Schistocarpha eupatorioides. Nat. Prod. Commun. 2011, 6, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, G.; Chiriboga, X.; Finzi, P.V.; Vidari, G. New 3,4-Secocycloartane and 3,4-Secodammarane Triterpenes from the Ecuadorian Plant Coussarea macrophylla. Chem. Biodivers. 2015, 12, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Morocho, V.; Valarezo, L.P.; Tapia, D.A.; Cartuche, L.; Cumbicus, N.; Gilardoni, G. A Rare Dirhamnosyl Flavonoid and Other Radical-scavenging Metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador. Chem. Biodivers. 2021, 16, e2100260. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical Composition, Enantiomeric Analysis, AEDA Sensorial Evaluation and Antifungal Activity of the Essential Oil from the Ecuadorian Plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292. [Google Scholar] [CrossRef]
- Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants 2020, 9, 1403. [Google Scholar] [CrossRef]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Andrade, M.D.; Vidari, G.; Gilardoni, G. Essential Oil and Major Non-Volatile Secondary Metabolites from the Leaves of Amazonian Piper subscutatum. Plants 2021, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Malagón, O.; Bravo, C.; Vidari, G.; Cumbicus, N.; Gilardoni, G. Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador. Plants 2022, 11, 2972. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasbourg, France, 2013; p. 743. [Google Scholar]
- The WFO Plant List. Available online: https://wfoplantlist.org/plant-list/taxon/wfo-4000016595-2022-12?page=1 (accessed on 15 June 2023).
- Jorgensen, P.; Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; pp. 286–288. [Google Scholar]
- Malagón, O.; Cartuche, P.; Montaño, A.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants 2022, 11, 398. [Google Scholar] [CrossRef]
- Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 849. [Google Scholar] [CrossRef] [PubMed]
- Cumbicus, C.; Malagón, O.; Cumbicus, N.; Gilardoni, G. The Leaf Essential Oil of Gynoxys buxifolia (Kunth) Cass. (Asteraceae): A Good Source of Furanoeremophilane and Bakkenolide A. Plants 2023, 12, 1323. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-193263321. [Google Scholar]
- NIST Chemistry WebBook, SRD 69. Available online: https://webbook.nist.gov/chemistry (accessed on 15 June 2023).
- Røstelien, T.; Borg-Karlson, A.K.; Fäldt, J.; Jacobsson, U.; Mustaparta, H. The Plant Sesquiterpene Germacrene D Specifically Activates a Major Type of Antennal Receptor Neuron of the Tobacco Budworm Moth Heliothis virescens. Chem. Senses 2000, 25, 141. [Google Scholar] [CrossRef] [Green Version]
- Stranden, M.; Liblikas, I.; Koenig, W.A.; Almaas, T.J.; Borg-Karlson, A.K.; Mustaparta, H. (–)-Germacrene D Receptor Neuronesin Three Species of Heliothine Moths: Structure-activity Relationships. J. Comp. Physiol. A 2003, 189, 563. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef] [Green Version]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, M.; Steuer, C. α-Pinene: A Never-Ending Story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- da Silva, E.B.; Matsuo, A.L.; Figueiredo, C.R.; Chaves, M.H.; Sartorelli, P.; Lago, J.H. Chemical Constituents and Cytotoxic Evaluation of Essential Oils from Leaves of Porcelia macrocarpa (Annonaceae). Nat. Prod. Commun. 2013, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, G.R.; Reid, E.H.; Turner, B.P.; Jamieson, A.T. Bakkenolide A. Its Distribution in Petasites Species and Cytotoxic Properties. Phytochemistry 1976, 15, 1713. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, Z.; Zhang, R.R.; Sun, X.Z.; Yuan, Y.F.; Hu, J.; Wang, X. Bakkenolide A Inhibits Leukemia by Regulation of HDAC3 and PI3K/Akt-related Signaling Pathways. Biomed. Pharmacother. 2016, 83, 958. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, J.; Bloszyk, E.; Harmatha, J.; Novotny, L. The Effect of Bisaboloangelone, Helenalin and Bakkenolide A on Development and Behaviour of Some Stored Product Beetles. Z. Ang. Ent. 1984, 98, 394. [Google Scholar] [CrossRef]
- Isman, M.B.; Brard, N.L.; Nawrot, J.; Harmatha, J. Antifeedant and Growth Inhibitory Effects of Bakkenolide-A and Other Sesquiterpene Lactones on the Variegated Cutworm, Peridroma saucia Hubner (Lep., Noctuidae). J. Appl. Enthomol. 1989, 107, 524. [Google Scholar] [CrossRef]
- Brenna, E.; Fuganti, C.; Serra, S. Enantioselective Perception of Chiral Odorants. Tetrahedron Asymmetry 2003, 14, 1–42. [Google Scholar] [CrossRef]
- Libro Rojo de las Plantas Endémicas de Ecuador. Available online: https://bioweb.bio/floraweb/librorojo/home (accessed on 28 July 2023).
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457. [Google Scholar] [CrossRef]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290. [Google Scholar] [CrossRef]
N. | Identification | 5%-Phenyl-Methylpolysiloxane | Polyethylene Glycol | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LRI a | LRI b | % | σ | Reference | LRI a | LRI b | % | σ | Reference | ||
1 | α-thujene | 924 | 924 | 0.1 | 0.02 | [19] | 1027 | 1020 | 0.1 | 0.01 | [20] |
2 | α-pinene | 932 | 932 | 11.0 | 0.02 | [19] | 1020 | 1028 | 10.3 | 0.57 | [20] |
3 | α-fenchene | 949 | 945 | 0.1 | 0.02 | [19] | 1062 | 1060 | trace | - | [20] |
4 | sabinene | 973 | 969 | 0.8 | 0.02 | [19] | 1118 | 1121 | 0.5 | 0.29 | [20] |
5 | β-pinene | 979 | 974 | 4.5 | 0.02 | [19] | 1107 | 1105 | 4.4 | 0.14 | [20] |
6 | myrcene | 991 | 988 | 0.7 | 0.02 | [19] | 1160 | 1167 | 0.6 | 0.04 | [20] |
7 | dehydro-1,8-cineole | 994 | 988 | 0.1 | 0.02 | [19] | 1185 | 1192 | 0.1 | 0.01 | [20] |
8 | α-phellandrene | 1009 | 1002 | 1.6 | 0.02 | [19] | 1204 | 1205 | 1.9 | 0.34 | [20] |
9 | α-terpinene | 1019 | 1014 | 1.6 | 0.06 | [19] | 1174 | 1179 | 1.2 | 0.07 | [20] |
10 | p-cymene | 1028 | 1020 | 1.3 | 0.06 | [19] | 1263 | 1268 | 1.1 | 0.04 | [20] |
11 | limonene | 1031 | 1024 | 0.8 | 0.06 | [19] | 1195 | 1192 | 0.6 | 0.09 | [20] |
12 | β-phellandrene | 1033 | 1025 | 4.0 | 0.06 | [19] | 1204 | 1205 | 3.0 | 0.13 | [20] |
13 | 1,8-cineol | 1035 | 1026 | 0.5 | 0.06 | [19] | 1214 | 1220 | 0.3 | 0.27 | [20] |
14 | (E)-β-ocimene | 1048 | 1044 | 0.5 | 0.02 | [19] | 1247 | 1256 | 0.3 | 0.02 | [20] |
15 | γ-terpinene | 1060 | 1054 | 0.4 | 0.02 | [19] | 1238 | 1238 | 0.5 | 0.17 | [20] |
16 | terpinolene | 1088 | 1086 | 0.5 | 0.02 | [19] | 1275 | 1278 | 0.5 | 0.16 | [20] |
17 | p-cymenene | 1097 | 1089 | trace | - | [19] | 1428 | 1425 | 0.1 | 0.02 | [20] |
18 | linalool | 1106 | 1095 | 0.3 | 0.01 | [19] | 1552 | 1556 | 0.2 | 0.08 | [20] |
19 | n-nonanal | 1112 | 1100 | 2.8 | 0.11 | [19] | 1390 | 1387 | 2.6 | 0.18 | [20] |
20 | 2-(1-Z)-propenyl-phenol | 1138 | 1146 | 0.1 | 0.02 | [19] | - | - | - | - | - |
21 | prenyl isovalerate | 1149 | 1147 | 0.1 | 0.02 | [19] | - | - | - | - | - |
22 | (E)-2-nonenal | 1169 | 1157 | trace | - | [19] | 1632 | 1642 | 0.1 | 0.02 | [20] |
23 | terpinen-4-ol | 1187 | 1174 | 0.3 | 0.03 | [19] | 1592 | 1589 | 0.1 | 0.09 | [20] |
24 | α-terpineol | 1204 | 1186 | 0.1 | 0.04 | [19] | 1679 | 1675 | 0.1 | 0.04 | [20] |
25 | n-decanal | 1215 | 1201 | 0.6 | 0.04 | [19] | 1491 | 1501 | 0.4 | 0.3 | [20] |
26 | thymol methyl ether | 1237 | 1232 | 0.1 | 0.04 | [19] | 1588 | 1586 | trace | - | [20] |
27 | linalyl acetate | 1255 | 1254 | 1.1 | 0.04 | [19] | 1564 | 1569 | 1.0 | 0.07 | [20] |
28 | carvona | 1257 | 1239 | 1.3 | 0.04 | [19] | 1699 | 1704 | 0.8 | 0.28 | [20] |
29 | (E)-2-decenal | 1273 | 1260 | 0.4 | 0.04 | [19] | 1632 | 1630 | 0.6 | 0.02 | [20] |
30 | n-undecanal | 1316 | 1305 | 0.1 | 0.04 | [19] | 1597 | 1598 | 0.1 | 0.01 | [20] |
31 | p-vinylguaiacol | 1323 | 1309 | 0.3 | 0.04 | [19] | 2193 | 2197 | 0.6 | 0.07 | [20] |
32 | δ-elemene | 1332 | 1335 | trace | - | [19] | 1453 | 1452 | 0.1 | 0.01 | [20] |
33 | α-terpineol acetate | 1353 | 1346 | 0.1 | 0.01 | [19] | 1651 | 1650 | 0.1 | 0.03 | [20] |
34 | geranyl acetate | 1366 | 1379 | 0.2 | 0.01 | [19] | 1719 | 1717 | 0.2 | 0.1 | [20] |
35 | α-ylangene | 1376 | 1373 | 0.5 | 0.01 | [19] | 1474 | 1472 | 1.2 | 0.04 | [20] |
36 | bourbonene | 1383 | 1387 | 0.1 | 0.01 | [19] | 1497 | 1496 | trace | - | [20] |
37 | β-elemene | 1390 | 1389 | 1.5 | 0.16 | [19] | 1576 | 1575 | 1.0 | 0.31 | [20] |
38 | cyperene | 1406 | 1400 | 0.6 | 0.16 | [19] | 1519 | 1520 | 0.3 | 0.24 | [20] |
39 | α-cedrene | 1417 | 1410 | trace | - | [19] | 1566 | 1566 | 0.1 | 0.01 | [20] |
40 | (E)-β-caryophyllene | 1420 | 1417 | 13.2 | 1.42 | [19] | 1574 | 1575 | 15.0 | 0.47 | [20] |
41 | β-copaene | 1431 | 1430 | 0.1 | 1.42 | [19] | 1566 | 1565 | 0.3 | 0.02 | [20] |
42 | aromadendrene | 1440 | 1439 | 0.1 | 1.42 | [19] | 1618 | 1622 | 0.3 | 0.06 | [20] |
43 | spirolepechinene | 1446 | 1449 | 0.3 | 1.42 | [19] | 1644 | - | 0.7 | 0.55 | § |
44 | α-humulene | 1457 | 1452 | 1.5 | 1.42 | [19] | 1643 | 1644 | 1.6 | 0.05 | [20] |
45 | alloaromadendrene | 1462 | 1458 | trace | - | [19] | 1617 | 1618 | 0.1 | 0.01 | [20] |
46 | cis-cadina-1(6),4-diene | 1465 | 1461 | 0.5 | 0.02 | [19] | 1768 | 1778 | 0.1 | 0.09 | [20] |
47 | 1,5-di-epi-aristolochene | 1472 | 1471 | 0.3 | 0.02 | [19] | 1657 | - | 0.4 | 0.14 | § |
48 | β-chamigrene | 1475 | 1476 | 0.2 | 0.02 | [19] | 1697 | 1686 | 0.1 | 0.02 | [20] |
49 | γ-muurolene | 1478 | 1478 | 0.6 | 0.02 | [19] | 1665 | 1668 | 0.2 | 0.2 | [20] |
50 | germacrene D | 1484 | 1480 | 18.9 | 0.02 | [19] | 1683 | 1684 | 18.0 | 0.57 | [20] |
51 | γ-amorphene | 1490 | 1495 | 0.7 | 0.02 | [19] | 1695 | 1693 | 0.4 | 0.23 | [20] |
52 | bicyclogermacrene | 1498 | 1500 | 4.0 | 0.02 | [19] | 1714 | 1706 | 3.0 | 0.1 | [20] |
53 | α-muurolene | 1501 | 1500 | trace | - | [19] | 1720 | 1723 | 0.1 | 0.08 | [20] |
54 | α-bulnesene | 1512 | 1509 | 0.4 | 0.05 | [19] | 1615 | 1618 | 0.8 | 0.23 | [20] |
55 | γ-cadinene | 1517 | 1513 | trace | - | [19] | 1712 | 1716 | 0.9 | 0.03 | [20] |
56 | n-tridecanal | 1519 | 1509 | 0.2 | 0.01 | [19] | 1807 | 1809 | 0.3 | 0.17 | [20] |
57 | δ-cadinene | 1522 | 1522 | 1.0 | 0.01 | [19] | 1738 | 1744 | 0.3 | 0.04 | [20] |
58 | cis-calamenene | 1526 | 1528 | 0.1 | 0.01 | [19] | 1809 | 1814 | trace | - | [20] |
59 | (E)-γ-macrocarpene | 1530 | 1527 | 0.2 | 0.01 | [19] | 1815 | - | 0.1 | 0.02 | § |
60 | kessane | 1534 | 1529 | 0.4 | 0.01 | [19] | 1830 | - | 0.1 | 0.04 | § |
61 | α-cadinene | 1542 | 1537 | 0.1 | 0.01 | [19] | 1767 | 1769 | trace | - | [20] |
62 | undetermined (MW 220) | 1549 | - | 1.2 | 0.05 | - | 1741 | - | 0.6 | 0.22 | - |
63 | cis-cadinene ether | 1552 | 1552 | 0.1 | 0.01 | [19] | 2010 | - | 0.1 | 0.02 | § |
64 | (E)-nerolidol | 1567 | 1561 | 0.3 | 0.01 | [19] | 2042 | 2053 | 0.2 | 0.04 | [20] |
65 | gleenol | 1577 | 1586 | 0.1 | 0.01 | [19] | 2035 | 2032 | 0.1 | 0.01 | [20] |
66 | germacrene-4-ol | 1583 | 1574 | 0.2 | 0.01 | [19] | 2035 | 2050 | 0.3 | 0.01 | [20] |
67 | spathulenol | 1585 | 1577 | 0.7 | 0.01 | [19] | 2108 | 2106 | 0.3 | 0.25 | [20] |
68 | caryophyllene oxide | 1590 | 1582 | 1.1 | 0.01 | [19] | 1933 | 1940 | 1.3 | 0.05 | [20] |
69 | globulol | 1593 | 1590 | 0.4 | 0.01 | [19] | 1999 | 2010 | 0.3 | 0.04 | [20] |
70 | viridiflorol | 1602 | 1592 | 0.9 | 0.03 | [19] | 2065 | 2062 | 1.1 | 0.04 | [20] |
71 | cubeban-11-ol | 1604 | 1594 | 0.4 | 0.03 | [19] | 2018 | - | 0.8 | 0.18 | § |
72 | undetermined (MW 222) | 1613 | - | 1.0 | 0.05 | - | 2058 | - | 0.9 | 0.08 | - |
73 | tetradecanal | 1623 | 1611 | 0.2 | 0.03 | [19] | 1921 | 1921 | 0.3 | 0.01 | [20] |
74 | di-epi-1,10-cubenol | 1624 | 1618 | 0.4 | 0.03 | [19] | 2053 | 2054 | 0.6 | 0.04 | [20] |
75 | alloaromadendrene epoxide | 1646 | 1639 | trace | - | [19] | 1650 | 1646 | 0.7 | 0.03 | [20] |
76 | α-epi-cadinol | 1654 | 1638 | 0.1 | 0.03 | [19] | 2156 | 2170 | 0.7 | 0.03 | [20] |
77 | α-cadinol | 1656 | 1652 | 0.1 | 0.03 | [19] | 2215 | 2218 | 0.7 | 0.03 | [20] |
78 | α-muurolol | 1659 | 1644 | 0.1 | 0.03 | [19] | 2161 | 2165 | 0.5 | 0.1 | [20] |
79 | undetermined (MW 222) | 1668 | - | 1.1 | 0.16 | - | 2217 | - | 1.0 | 0.03 | - |
80 | khushinol | 1683 | 1679 | 0.8 | 0.03 | [19] | 2227 | - | 0.5 | 0.03 | § |
81 | α-bisabolol | 1699 | 1685 | trace | - | [19] | 2212 | 2214 | 0.5 | 0.05 | [20] |
82 | shyobunol | 1705 | 1688 | 0.1 | 0.04 | [19] | 1935 | 1930 | 0.5 | 0.04 | [20] |
83 | bakkenolide A | 1851 | 1845 | 3.2 | 0.04 | [18] | 2428 | 2430 | 3.4 | 0.12 | [18] |
84 | n-nonadecane | 1900 | 1900 | 0.3 | 0.05 | [19] | 1900 | 1900 | 0.4 | 0.01 | [20] |
85 | 1-eicosene | 1995 | 1987 | 0.1 | 0.02 | [19] | 1980 | - | 0.1 | 0.04 | § |
86 | n-heneicosane | 2100 | 2100 | 0.5 | 0.04 | [19] | 2100 | 2100 | 0.5 | 0.02 | [20] |
87 | 1-docosene | 2193 | 2189 | 0.1 | 0.01 | [19] | 2205 | - | 0.1 | 0.02 | § |
88 | n-tricosane | 2300 | 2300 | 0.3 | 0.01 | [19] | 2300 | 2300 | 0.1 | 0.01 | [20] |
89 | n-tetracosane | 2400 | 2400 | 0.1 | 0.01 | [19] | 2400 | 2400 | 0.5 | 0.01 | [20] |
90 | n-pentacosane | 2500 | 2500 | 0.1 | 0.01 | [19] | 2500 | 2500 | trace | - | [20] |
monoterpene hydrocarbons | 27.9 | 25.1 | |||||||||
oxygenated monoterpenes | 4.2 | 2.9 | |||||||||
sesquiterpene hydrocarbons | 45.3 | 45.2 | |||||||||
oxygenated sesquiterpenes | 12.3 | 15.1 | |||||||||
others | 6.2 | 6.7 | |||||||||
total | 95.9 | 95.0 |
Enantiomers | LRI | Enantiomeric Distribution (%) | e.e. (%) |
---|---|---|---|
(1S,5S)-(−)-α-pinene | 925 * | 64.8 | 29.6 |
(1R,5R)-(+)-α-pinene | 926 * | 35.2 | |
(1S,5S)-(−)-β-pinene | 979 * | 100.0 | 100.0 |
(1R,5R)-(+)-sabinene | 1006 * | 49.8 | 0.4 |
(1S,5S)-(−)-sabinene | 1012 * | 50.2 | |
(R)-(−)-α-phellandrene | 1026 * | 100.0 | 100.0 |
(R)-(−)-β-phellandrene | 1050 ** | 100.0 | 100.0 |
(S)-(−)-limonene | 1057 ** | 100.0 | 100.0 |
(S)-(+)-linalyl acetate | 1257 ** | 100.0 | 100.0 |
(R)-(−)-linalool | 1305 * | 62.3 | 24.6 |
(S)-(+)-linalool | 1307 * | 37.7 | |
(R)-(−)-terpinen-4-ol | 1339 * | 53.0 | 6.0 |
(S)-(+)-terpinen-4-ol | 1379 * | 47.0 | |
(S)-(−)-α-terpineol | 1402 * | 66.3 | 32.6 |
(R)-(+)-α-terpineol | 1407 * | 33.7 | |
(S)-(−)-germacrene D | 1467 ** | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilardoni, G.; Lara, L.R.; Cumbicus, N.; Malagón, O. A New Leaf Essential Oil from Endemic Gynoxys laurifolia (Kunth) Cass. of Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 2878. https://doi.org/10.3390/plants12152878
Gilardoni G, Lara LR, Cumbicus N, Malagón O. A New Leaf Essential Oil from Endemic Gynoxys laurifolia (Kunth) Cass. of Southern Ecuador: Chemical and Enantioselective Analyses. Plants. 2023; 12(15):2878. https://doi.org/10.3390/plants12152878
Chicago/Turabian StyleGilardoni, Gianluca, Luis Rubén Lara, Nixon Cumbicus, and Omar Malagón. 2023. "A New Leaf Essential Oil from Endemic Gynoxys laurifolia (Kunth) Cass. of Southern Ecuador: Chemical and Enantioselective Analyses" Plants 12, no. 15: 2878. https://doi.org/10.3390/plants12152878
APA StyleGilardoni, G., Lara, L. R., Cumbicus, N., & Malagón, O. (2023). A New Leaf Essential Oil from Endemic Gynoxys laurifolia (Kunth) Cass. of Southern Ecuador: Chemical and Enantioselective Analyses. Plants, 12(15), 2878. https://doi.org/10.3390/plants12152878