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Abstract: Grain shape is an important agronomic trait directly associated with yield in rice. In order
to explore new genes related to rice grain shape, a high-density genetic map containing 2193 Bin
markers (526957 SNP) was constructed by whole-genome resequencing of 208 recombinant inbred
(RILs) derived from a cross between ZP37 and R8605, with a total genetic distance of 1542.27 cM.
The average genetic distance between markers was 0.76 cM, and the physical distance was 201.29
kb. Quantitative trait locus (QTL) mapping was performed for six agronomic traits related to rice
grain length, grain width, length-to-width ratio, thousand-grain weight, grain cross-sectional area,
and grain perimeter under three different environments. A total of 39 QTLs were identified, with
mapping intervals ranging from 8.1 kb to 1781.6 kb and an average physical distance of 517.5 kb.
Among them, 15 QTLs were repeatedly detected in multiple environments. Analysis of the genetic
effects of the identified QTLs revealed 14 stable genetic loci, including three loci that overlapped with
previously reported gene positions, and the remaining 11 loci were newly identified loci associated
with two or more environments or traits. Locus 1, Locus 3, Locus 10, and Locus 14 were novel loci
exhibiting pleiotropic effects on at least three traits and were detected in multiple environments.
Locus 14, with a contribution rate greater than 10%, influenced grain width, length-to-width ratio,
and grain cross-sectional area. Furthermore, pyramiding effects analysis of three stable genetic loci
showed that increasing the number of QTL could effectively improve the phenotypic value of grain
shape. Collectively, our findings provided a theoretical basis and genetic resources for the cloning,
functional analysis, and molecular breeding of genes related to rice grain shape.

Keywords: rice; recombinant inbred lines; high-density genetic map; grain shape; QTL mapping

1. Introduction

Rice is one of the world’s most important staple crops, providing sustenance for over
half of the global population. However, the current level of rice production is still insuffi-
cient to meet the demands of population growth. It is projected that the overall demand
for rice will increase in the coming decades, particularly in Africa and Asia [1–3]. There-
fore, enhancing rice yield continues to be a major focus in the field of rice breeding [4,5].
Grain shape is an important agronomic trait closely associated with yield characteristics in
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rice [6]. Accurate genetic analysis of grain shape traits holds significant theoretical value
for high-yield and high-quality molecular breeding in rice.

Grain shape traits in rice primarily include grain length (GL), grain width (GW),
grain length-to-width ratio (GLWR), and so on. These traits are typically quantitative in
nature, influenced by multiple genes, although a few are controlled by single or double
genes [7,8]. Studies have shown that genes controlling different grain shape traits exhibit
complementary and cumulative effects [9,10]. To date, over 100 genes/quantitative trait
loci (QTLs) related to rice grain shape traits have been reported, distributed across almost
all rice chromosomes. Examples of genes predominantly controlling GL include GS3 [11],
GL3.1 [12], GL4 [13], and GLW7 [14]. Genes mainly controlling GW include GW2 [15],
GW5 [16], GW8 [17], and GS5 [18]. Additionally, there are other important genes, such as
TGW6 [19], TGW2 [20], and qTGW3 [21], which primarily affect rice yield by regulating
grain shape and thousand-grain weight (TGW).

Some QTLs that control grain traits exhibit pleiotropy, simultaneously affecting multi-
ple traits related to rice grains. For example, the GL7/GW7 gene located on chromosome
7 influences both GL and GW. Upregulation of GL7 leads to decreased transverse cell
division and increased longitudinal cell division, resulting in thinner and longer grains
with improved appearance [22,23]. Another example is the GL2/GS2 gene located on
chromosome 2, which is a major QTL that simultaneously influences GL, GW, and grain
weight in rice [9,24]. Additionally, genes such as GW6a [25] and GS9 [26] also exhibit
pleiotropic effects and play crucial roles in grain shape. The localization, cloning, and
functional analysis of genes related to rice grain shape have significant implications for
improving yield and enhancing grain quality.

With the rapid development of high-throughput sequencing technology in recent
years, the cost of sequencing has continuously decreased. Single nucleotide polymorphism
(SNP) has emerged as a third-generation molecular marker technology, which allows for
the rapid acquisition of a large number of polymorphic markers in a short period of time.
It has become a preferred choice for constructing high-density genetic maps due to its
advantages of high throughput, high marker density, and time and labor efficiency. This
technology provides an effective means for exploring and identifying important agronomic
trait QTLs, facilitating subsequent fine mapping and breeding applications [27].

In recent years, a number of researchers have localized rice grain shape QTLs by using
a high-density genetic map constructed by whole genome resequencing of recombinant
inbred lines in rice [28–30]. In addition, an increasing number of researchers have used high-
density genetic linkage maps to identify and discover some other important agronomic
trait genes/QTLs. For example, Chen et al. [31] have used the GBS strategy to detect
85,743 high-quality SNP markers, constructing a high-density genetic map containing
2711 recombinant bin markers. The average physical distance between markers is 137.68 kb,
and a total of 12 significant QTL clusters affecting grain shape and endosperm chalkiness
are detected. Among them, four QTLs are consistent with previously reported positions,
while eight are new QTL clusters. In 2021, Yang et al. [32] utilized this high-density genetic
map to identify 16 additive loci associated with early seedling vigor (ESV), three of which
are stable QTLs. Jin et al. [33] have constructed a high-density genetic map with a total
length of 2456.4 cM, containing 3830 SNP markers, with an average genetic distance of
0.82 cM between markers. Fifteen QTLs related to rice grain quality with LOD scores ≥ 4
are identified. Yang et al. [34] have used GBS technology to construct a high-density genetic
map with 2498 bin markers, with an average physical distance of only 149.38 kb between
markers. They have detected a total of 20 QTLs for anaerobic tolerance at the germination
and bud stages, with six loci overlapping with those in previous reports and nine loci
being novel.

In this study, we aimed to construct a high-density bin genetic map by performing
whole-genome resequencing of two superior parents, R8605 and ZP37, along with their
hybrid-derived population consisting of 208 RILs. Subsequently, we evaluated the grain-
related traits of the RIL population in three distinct environments. Leveraging the high-
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density genetic map, we successfully identified novel and consistent QTLs associated with
rice grain-related traits. The ultimate goal of this research was to establish a foundation
for the cloning, functional analysis, and molecular breeding of genes involved in rice
grain-related traits.

2. Results
2.1. Phenotypic Variation in the ZP37 X R8605 RIL Population

This study examined and statistically analyzed six grain-related traits of the parents
ZP37, R8605, and the 208 RILs in three different environments (Table 1). The results
showed that compared to ZP37, R8605 exhibited increased values for all grain-related traits.
Analysis of variance indicated significant or extremely significant differences between the
two parents for GL, GLWR, TGW, PL, and AS. However, the difference in GW was only
significant in the 2019 environment and not in the other two environments. Overall, the
significant differences in grain-related traits between ZP37 and R8605 indicated substantial
genetic variation between the parents, which was favorable for QTL identification. Fre-
quency distribution and the results of skewness and kurtosis tests for each grain-related
trait showed wide variation in the ZP37/R8605 RIL population. The coefficient of variation
for the six traits ranged from 4.00% to 11.08% across the three environments. Among them,
the coefficient of variation for TGW was relatively higher, ranging from 10.17% to 11.08%,
indicating that TGW was more susceptible to environmental influences. All six traits exhib-
ited approximately normal or near-normal continuous distributions in the RIL population,
indicating that they were quantitative traits controlled by multiple genes. The trends of
variation were similar across the three environments, and there was evidence of transgres-
sive segregation in the RIL population, which was consistent with the requirements for
QTL mapping.

Table 1. Phenotypes of ZP37, R8605, and the ZP37 × R8605 RIL population across cropping seasons.

Trait a Environment b
Parents c RIL Population

ZP37 R8605 Mean Range Skewness Kurtosis CV d (%)

GL (mm)
2019 8.56 ± 0.21 9.27 ± 0.10 ** 8.91 7.96–10.23 0.42 −0.06 4.78
2020 8.68 ± 0.22 9.49 ± 0.12 ** 9.02 7.90–10.29 0.08 0.25 4.65
2022 8.80 ± 0.09 9.54 ± 0.22 ** 9.43 8.48–10.70 0.30 0.13 4.37

GW (mm)
2019 2.40 ± 0.06 2.55 ± 0.02 * 2.42 2.08–2.75 −0.02 −0.65 6.06
2020 2.45 ± 0.03 2.57 ± 0.08 2.48 2.12–2.97 0.00 −0.21 6.29
2022 2.52 ± 0.04 2.61 ± 0.09 2.46 2.09–2.98 0.21 −0.02 6.30

GLWR
2019 3.57 ± 0.02 3.63 ± 0.03 * 3.72 3.15–4.55 0.33 −0.35 7.60
2020 3.55 ± 0.06 3.70 ± 0.07 * 3.67 2.99–4.68 0.39 0.00 8.02
2022 3.49 ± 0.05 3.66 ± 0.05 * 3.87 3.04–4.81 0.45 0.15 7.86

TGW(g)
2019 17.36 ± 0.11 21.95 ± 0.34 ** 20.20 15.19–28.69 0.32 0.13 11.08
2020 18.22 ± 0.17 23.40 ± 0.21 ** 21.76 16.23–28.35 0.07 −0.03 10.17
2022 19.70 ± 0.35 24.47 ± 0.14 ** 23.13 15.16–29.95 −0.07 0.32 10.37

AS (mm2)
2019 16.25 ± 0.06 17.96 ± 0.23 ** 16.89 13.77–20.70 0.05 −0.49 8.18
2020 16.53 ± 0.11 18.64 ± 0.30 ** 17.53 13.95–21.07 −0.10 −0.17 8.14
2022 16.95 ± 0.19 19.39 ± 0.25 ** 18.24 14.76–22.81 0.15 −0.21 8.23

PL (mm)
2019 19.89 ± 0.10 21.36 ± 0.22 ** 20.73 18.68–23.63 0.43 −0.05 4.48
2020 20.08 ± 0.19 21.57 ± 0.18 ** 17.53 18.97–23.57 0.04 −0.02 4.16
2022 21.19 ± 0.013 22.42 ± 0.37 ** 22.00 19.93–24.53 0.17 −0.06 4.00

a Trait: GL, grain length; GW, grain width; GLWR, length-to-width ratio of grain; TGW, 1000-grain-weight;
AS, area size of grain; PL, perimeter length of grain. b Environment: 2019 is the early season in 2019, Nanning; 2020
is the late season in 2020, Nanning; 2022 is the late season in 2022, Guiping. c Parent refers to the mean ± standard
deviation (SD) of the parents, *: p < 0.05, **: p < 0.01. d CV (%), coefficient of variation.

2.2. Correlation Analysis

Figure 1 displays the pairwise phenotypic correlations between the six grain-related
traits in the three different environments. There were some variations in the correlation
coefficients among different ecological environments, while the differences were minor.
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The results across the three environments were highly similar, indicating significant or
extremely significant correlations between the grain-related traits. GL and GW analysis
revealed no significant correlation for the simple traits, suggesting that GL and GW had
different genetic bases. GL exhibited extremely significant positive correlations with GLWR,
TGW, PL, and AS, with an exceptionally high correlation with PL (r ≥ 0.98). GW showed
significant or extremely significant correlations with GLWR, TGW, PL, and AS, with the
highest correlation observed with AS (r≥ 0.83), while the correlation with PL was relatively
low (r ≤ 0.18). For the composite trait GLWR, all five traits had varying degrees of impact,
with GW having the most considerable influence (r ≤ −0.77). Regarding TGW, both
GW and AS exhibited extremely significant positive correlations with large correlation
coefficients (r ≥ 0.68). GL also showed an extremely significant correlation with TGW,
indicating that GW was the most influential simple trait of TGW in this population. At the
same time, GL also had some impact on TGW.
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2.3. Sequencing Data Analysis and Construction of the High-Density Genetic Map

Using the GBS method, we conducted whole-genome resequencing on ZP37/R8605
parents and their derived 208 RIL progenies. ZP37 and R8605 parents yielded 12.75 Gbp and
12.21 Gbp of clean data, respectively. The total data volume for the 208 RILs was 972.76 Gbp,
with an average of 4.68 Gbp per family. The Q30 score reached over 80% for all samples.
A total of 804,031 polymorphic SNPs were detected between the parents, which were
filtered and refined to obtain 526,957 high-quality, biallelic, and homozygous SNPs. These
SNP markers were converted into 2193 bin markers, which were assigned to 12 linkage
groups corresponding to the 12 chromosomes of rice. The total genetic map distance of the
12 chromosomes was 1542.27 cM, with marker numbers ranging from 71 to 308, averaging
182.75 per chromosome. The genetic distances ranged from 68.68 to 193.02 cM, with an
average genetic distance of 128.52 cM. The average genetic and physical distances between
adjacent bin markers were 0.76 cM and 201.29 kb, respectively (Figure 2A,B and Table 2).
Among them, chromosomes 3 and 4 had the highest number of bin markers, with 293 and
308 markers, respectively. Chromosomes 6 and 10 had fewer bin markers, with 88 and
71 markers, respectively. Chromosomes 1 and 10 had the most considerable average map
distance, measuring 1.03 and 1.10 cM, respectively, while chromosome 3 had the smallest
average map distance of 0.47 cM. Table 2 presents the essential information regarding
marker numbers, total map distance, and average map distance for each chromosome. The
Spearman correlation coefficients between marker genetic and physical map distances were
close to 1 (0.99965), indicating significant collinearity between genetic markers and the
genome (Figure 2C). The constructed high-density genetic map demonstrated high quality
and met the requirements for QTL mapping.
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Table 2. Distribution of genetic markers across the 12 chromosomes in rice.

Chromosome Number of Bin
Markers Length (cM) Average Genetic Distance

between Markers (cM)
Average Physical Distance

between Markers (kb)

1 122 126.24 1.03 354.65
2 248 138.35 0.56 144.88
3 293 137.93 0.47 124.27
4 308 192.93 0.63 115.14
5 151 96.82 0.64 198.39
6 88 68.68 0.78 355.05
7 120 98.58 0.82 247.34
8 196 143.89 0.73 145.10
9 162 119.46 0.74 142.04

10 71 78.38 1.10 326.85
11 235 147.96 0.63 123.47
12 199 193.02 0.97 138.34

Total 2193 1542.24 0.76 201.29

2.4. QTL Mapping for Grain Shape Traits

QTL analysis was performed using the constructed high-density genetic map and
phenotypic data of six grain-related traits in 208 RIL progenies and their parents across three
environments. QTLs with overlapping confidence intervals for the same trait in different
environments were grouped together as the same QTL. A total of 39 QTLs associated with
grain morphology were identified (Table 3), distributed across chromosomes 2, 3, 4, 5, 7,
and 8. The mapping intervals ranged from 8.1 kb to 1781.6 kb, with an average physical
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distance of 517.5 kb. The LOD scores ranged from 2.85 to 12.30, and the percentage of
variance explained (PVE) of individual QTLs ranged from 1.45% to 14.20%. Among them,
15 QTLs were repeatedly detected in more than two different environments. Both positive
and negative additive effects were observed in the identified QTLs, indicating that both
parents contributed favorable alleles.

Most of the detected QTLs were located within the same interval or in close proximity.
The specific results for each grain-related trait QTL localization were as follows:

GL: In the three environments, five major-effect QTLs were identified on chromosomes
2, 7, and 8. The PVE ranged from 1.74% to 6.96%. Among them, two QTLs, qGL-7-1, and
qGL-7-3 were detected in a single environment, while qGL-2, qGL-7-2, and qGL-8 were stable
QTLs detected in multiple environments. The other QTLs showed positive additive effects
except for qGL-2, which exhibited a negative additive effect. This finding indicated that the
beneficial allele for qGL-2 originated from R8605, while the beneficial alleles for the other
five QTLs were derived from ZP37.

GW: A total of five GW QTLs were detected across chromosomes 3, 4, and 8 in the
three environments. The PVE of individual QTLs ranged from 3.23% to 14.10%. Among
them, two QTLs, qGW-3-1 and qGW-4-1, were detected in a single environment, while
qGW-3-2, qGW-4-2, and qGW-8 were stable QTLs detected in multiple environments. The
two QTLs on chromosome 4 exhibited negative additive effects, while the three QTLs on
chromosomes 3 and 8 showed positive additive effects. It is worth noting that qGW-8 on
chromosome 8 was not only detected in all three environments but also had a consistently
high PVE (PVE ≥ 9.21), and its beneficial allele originated from ZP37.

GLWR: A total of six GLWR QTLs were detected across chromosomes 2, 3, 4, 7, and
8 in the three environments. The PVE of individual QTLs ranged from 1.45% to 14.20%.
Among them, five QTLs (qGLWR-2-1, qGLWR-2-2, qGLWR-4, qGLWR-5, and qGLWR-7) were
detected in a single environment, while the QTL qGLWR-8 was a stable QTL repeatedly
detected in all three environments, with contribution percentages of 14.20%, 13.83%, and
12.46%, respectively. It was a high-contributing QTL, and its beneficial allele originated
from ZP37.

TGW: A total of eight QTLs for TGW were detected across chromosomes 2, 4, 5, 7, and 8
in the three environments. The PVE of individual QTLs ranged from 2.09% to 5.75%. Seven
QTLs (qTGW-2, qTGW-4-1, qTGW-4-2, qTGW-4-3, qTGW-7-1, qTGW-7-2, and qTGW-8-2)
were detected in a single environment, while two QTLs (qTGW-3 and qTGW-8-1) were
stable QTLs detected in multiple environments. Except for qTGW-2 and qTGW-3, which
exhibited positive additive effects, the other seven QTLs showed negative additive effects.
This finding indicated that the beneficial alleles for increasing TGW mainly originated
from R8605.

AS: A total of nine QTLs were detected on chromosomes 02, 03, 04, 07, and 08 across
three different environments. The PVE of individual QTLs ranged from 2.45% to 8.08%.
Six of these QTLs, namely qAS-2-1, qAS-2-2, qAS-4-2, qAS-4-3, qAS-4-4, and qAS-7, were
detected in a single environment, while three QTLs, qAS-3, qAS-4-1, and qAS-8, were
identified as stable QTLs across multiple environments. In addition, five of these QTLs
associated with the AS trait displayed negative additive effects, while four showed positive
additive effects, indicating that both parental lines contributed favorable alleles.

PL: Only three QTLs for PL were detected across three different environments on
chromosomes 02, 07, and 08. The PVE of individual QTLs ranged from 3.12% to 6.91%.
All three QTLs were identified as stable QTLs across multiple environments. Among
them, qPL-7 and qPL-8 exhibited negative additive effects, while qPL-2 displayed a positive
additive effect, indicating that both parental lines contributed favorable alleles.
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Table 3. QTLs for grain size-related traits of recombinant inbred lines in different environments.

Trait QTL Chr. Marker Interval Physical Interval (bp) QTL Interval Size (kb) Environment LOD PVE (%) ADD

GL qGL-2 2 Block1305–Block1318 29,677,627–30,291,539 613.9 2020 5.56 6.50 0.16
2 Block1305–Block1318 29,677,627–30,291,539 613.9 2022 4.81 5.39 0.14

qGL-7-1 7 Block5298–Block5303 2,305,563–2,667,445 361.9 2022 3.43 2.16 −0.09
qGL-7-2 7 Block5433–Block5439 20,606,977–21,226,418 619.4 2019 4.68 5.72 −0.15

7 Block5433–Block5439 20,606,977–21,226,418 619.4 2020 5.53 4.98 −0.14
qGL-7-3 7 Block5588–Block5589 28,557,384–28,724,630 167.2 2022 2.85 1.74 −0.08
qGL-8 8 Block6010–Block6012 23,379,921–23,447,755 67.8 2019 4.85 6.96 −0.17

8 Block5989–Block6010 22,065,235–23,387,924 1322.7 2020 5.56 6.12 −0.15
8 Block5989–Block6010 22,065,235–23,387,924 1322.7 2022 4.81 3.46 −0.11

GW qGW-3-1 3 Block1966–Block1967 15,915,064–16,067,455 152.4 2022 3.00 3.29 0.04
qGW-3-2 3 Block1968–Block1974 16,148,731–16,617,377 468.6 2019 4.81 4.93 0.05

3 Block1970–Block1974 16,148,731–16,617,377 468.6 2022 3.00 3.90 0.05
qGW-4-1 4 Block3702–Block3701 19,871,103–19,942,280 71.2 2019 4.81 3.23 −0.04
qGW-4-2 4 Block3808–Block3815 20,702,635–20,878,645 176.0 2020 4.89 5.89 −0.06

4 Block3808–Block3815 20,702,635–20,878,645 176.0 2022 3.00 3.29 −0.04
qGW-8 8 Block6167–Block6169 27,555,403–27,911,017 355.6 2019 8.91 9.21 0.07

8 Block6167–Block6169 27,555,403–27,911,017 355.6 2020 15.71 14.10 0.09
8 Block6167–Block6169 27,555,403–27,911,017 355.6 2022 11.57 10.73 0.07

GLWR qGLWR-2-1 2 Block821 9,286,980–10,372,621 1085.6 2019 3.88 2.91 0.07
qGLWR-2-2 2 Block1221–Block1270 26,355,325–27,386,770 1031.4 2020 3.68 2.03 0.06
qGLWR-4 4 Block3684–Block3688 19,157,777–19,344,941 187.2 2022 3.00 2.01 0.06
qGLWR-5 5 Block4850–Block4851 27,634,637–27,858,389 223.8 2020 3.68 3.53 0.08
qGLWR-7 7 Block5298–Block5299 2,305,563–2,328,233 22.7 2022 3.00 1.45 −0.05
qGLWR-8 8 Block6167–Block6169 27,555,403–27,911,017 355.6 2019 16.30 14.20 −0.16

8 Block6167–Block6169 27,555,403–27,911,017 355.6 2020 15.51 13.83 −0.16
8 Block6167–Block6169 27,555,403–27,911,017 355.6 2022 16.12 12.46 −0.16

TGW qTGW-2 2 Block1305–Block1318 29,677,627–30,291,539 613.9 2020 4.85 4.97 0.41
qTGW-3 3 Block1970–Block1974 16,148,731–16,617,377 468.6 2019 3.29 2.66 0.05

3 Block1970–Block1974 16,148,731–16,617,377 468.6 2022 4.70 3.67 0.67
qTGW-4-1 4 Block3830–Block3834 20,994,282–21,294,165 299.9 2020 3.97 3.92 −0.64
qTGW-4-2 4 Block3948–Block3949 24,101,830–24,109,967 8.1 2022 4.89 3.76 −0.68
qTGW-4-3 4 Block3955–Block3957 24,194,456–24,626,257 431.8 2019 4.54 2.93 −0.56
qTGW-7-1 7 Block5435–Block5490 20,956,479–22,680,384 1723.9 2020 3.97 4.23 −0.67
qTGW-7-2 7 Block5588–Block5589 28,557,384–28,724,630 167.2 2019 3.00 2.09 −0.48
qTGW-8-1 8 Block5806–Block5808 19,645,419–19,698,589 53.2 2019 4.79 3.76 −0.64

8 Block5807–Block5808 19,672,283–19,698,589 263.1 2022 4.89 5.75 −0.85
qTGW-8-2 8 Block5989–Block6012 22,065,235–23,447,755 1382.5 2020 4.85 4.60 −0.70
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Table 3. Cont.

Trait QTL Chr. Marker Interval Physical Interval (bp) QTL Interval Size (kb) Environment LOD PVE (%) ADD

AS qAS-2-1 2 Block1352–Block1354 31,122,113–31,447,924 325.8 2020 4.88 5.34 0.48
qAS-2-2 2 Block1376–Block1377 32,614,759–32,704,042 89.3 2019 3.60 4.07 0.41
qAS-3 3 Block1970–Block1974 16,148,731–16,617,377 468.6 2019 3.78 3.38 0.37

3 Block1970–Block1974 16,148,731–16,617,377 468.6 2022 2.87 4.25 0.45
qAS-4-1 4 Block3830–Block3834 20,994,282–21,294,165 299.9 2019 3.39 3.42 −0.38

4 Block3830–Block3834 20,994,282–21,294,165 299.9 2020 4.88 4.77 −0.46
qAS-4-2 4 Block3948–Block3949 24,101,830–24,109,967 8.1 2022 3.00 3.55 −0.42
qAS-4-3 4 Block3955–Block3967 24,194,456–25,976,047 1781.6 2022 3.00 3.31 −0.40
qAS-4-4 4 Block4088–Block4087 30,322,633–30,361,362 38.7 2022 3.00 2.45 −0.35
qAS-7 7 Block5435–Block5463 20,956,479–21,435,416 478.9 2019 3.35 3.51 −0.38
qAS-8 8 Block6167–Block6169 27,555,403–27,911,017 355.6 2020 9.17 8.08 0.60

8 Block6167–Block6169 27,555,403–27,911,017 355.6 2022 5.70 6.30 0.55
PL qPL-2 2 Block1305–Block1318 29,677,627–30,291,539 613.9 2020 5.03 6.91 0.34

2 Block1305–Block1318 29,677,627–30,291,539 613.9 2022 4.93 5.79 0.31
qPL-7 7 Block5433–Block5439 20,606,977–21,226,418 619.4 2019 4.80 5.85 −0.33

7 Block5433–Block5435 20,606,977–20,956,479 349.5 2020 5.03 5.83 −0.31
qPL-8 8 Block5989–Block6010 22,065,235–23,387,924 1322.7 2019 4.93 6.06 −0.34

8 Block5989–Block6012 22,065,235–23,447,755 1382.5 2020 5.03 4.44 −0.27
8 Block5989–Block6010 22,065,235–23,387,924 1322.7 2022 3.41 3.12 −0.23

LOD, logarithm of odds; PVE (%), phenotypic variation explained (%); ADD, additive effect; a positive value indicates an increasing effect from parent ZP37.
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2.5. Analysis of Loci with Stable Genetic Effects of Grain Shape

Through genetic effect analysis of all identified 39 grain-related QTLs, a total of
14 loci with stable genetic effects were obtained, involving 30 QTLs (Table 4). Among
them, three loci overlapped with previously reported genes/QTLs, while the remaining
11 loci were newly discovered. Locus 2 was identified in the analysis of grain cross-
sectional area traits in 2020. It was located within the interval of Block1352-Block13543
on chromosome 2, with a contribution rate of 5.34%. The corresponding physical position
was 31,122,113-31,447,924 bp. A positive regulator, PGL2 [35], is associated with rice GL
and GW within this interval. Locus 8 was mapped as a QTL for GLWR in the 2020
environment. It was located within the interval of Block4850-Block4851 on chromosome 5,
with a contribution rate of 3.53%. The physical position was 27,634,637-27,858,389 bp.
Within this interval, there is a gene OsPUP7 [36] that simultaneously controls rice plant
height, number of grains per panicle, and grain shape cytokinin transporter. Locus 13
(qGL-8, qTGW-8-2, and qPL-8) was a pleiotropic locus that affected GL, TGW, and PL. It was
mapped to the interval of Block5989-Block6012 on chromosome 8, with a physical distance
of 22,065,235-23,447,755 bp. Within this position, a G protein gamma subunit GGC2 [37]
regulates rice GL and GW.

The other 11 newly identified loci in this study were detected in different environ-
ments, indicating their stable genetic effects and highlighting the value and reliability of
high-density genetic maps for QTL analysis. Locus 4 and Locus 12 were repeatedly detected
as QTLs for a single trait in two environments. The remaining nine loci were associated with
multiple traits, among which Locus 1, Locus 3, Locus 10, and Locus 14 exhibited genetic
pleiotropy, controlling three or more traits and detected across multiple environments. Lo-
cus 1, located within the interval of Block1305–Block1318 on chromosome 2, corresponded
to the physical position of 29,677,627–30,291,539 bp. It simultaneously influenced traits
such as GL, TGW, and PL. Locus 3, located within the interval of Block1968–Block1974
on chromosome 3, corresponded to the physical position of 16,148,731–16,617,377 bp. It
simultaneously affected traits such as GW, TGW, and AS. Locus 10, located within the
interval of Block5433–Block5490 on chromosome 7, corresponded to the physical position
of 20,606,977–22,680,384 bp. It simultaneously influenced traits such as GL, TWG, AS,
and PL.

Notably, Locus 14 had the most prominent genetic effect, with a contribution rate
exceeding 10%. It was located within the interval of Block6167–Block6169 on chromosome
8, corresponding to the physical position of 27,555,403–27,911,017 bp. It simultaneously
affected traits such as GW, GLWR, and AS.
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Table 4. Major QTL clusters associated with grain shape traits detected in this study.

S. No. Locus QTL Marker Interval Physical Interval (bp) PVE (%) Overlapped QTL Reported

1 Locus 1 qGL-2 (2020, 2022); qTGW-2 (2020); qPL-2 (2020, 2022) Block1305–Block1318 29,677,627–30,291,539 4.97–6.91
2 Locus 2 qAS-2-1 (2020) Block1352–Block1354 31,122,113–31,447,924 5.34 PGL2
3 Locus 3 qGW-3-2 (2019, 2022); qTGW-3 (2019, 2022); qAS-3 (2019, 2022) Block1968–Block1974 16,148,731–16,617,377 2.66–4.93
4 Locus 4 qGW-4-2 (2020, 2022) Block3808–Block3815 20,702,635–20,878,645 3.29–5.89
5 Locus 5 qTGW-4-1 (2020); qAS-4-1 (2019, 2020) Block3830–Block3834 20,994,282–21,294,165 3.42–4.77
6 Locus 6 qTGW-4-2 (2022); qAS-4-2 (2022) Block3948–Block3949 24,101,830–24,109,967 3.55–3.76
7 Locus 7 qTGW-4-3 (2019); qAS-4-3 (2022) Block3955–Block3967 24,194,456–25,976,047 2.93–3.31
8 Locus 8 qGLWR-5 (2020) Block4850–Block4851 27,634,637–27,858,389 3.53 OsPUP7
9 Locus 9 qGL-7-1 (2022); qGLWR-7 (2022) Block5298–Block5303 2,305,563–2,667,445 1.45–2.16

10 Locus 10 qGL-7-2 (2019, 2020); qTGW-7-1 (2020); qAS-7 (2019); qPL-7 (2019, 2020) Block5433–Block5490 20,606,977–22,680,384 3.51–5.85
11 Locus 11 qGL-7-3 (2022); qTGW-7-2 (2019) Block5588–Block5589 28,557,384–28,724,630 1.74–2.09
12 Locus 12 qTGW-8-1 (2019, 2022) Block5807–Block5808 19,672,283–19,698,589 3.76–5.75
13 Locus 13 qGL-8 (2019, 2020, 2022); qTGW-8-2 (2020); qPL-8 (2019, 2020, 2022) Block5989–Block6012 22,065,235–23,447,755 3.42–6.96 GGC2
14 Locus 14 qGW-8 (2019, 2020, 2022); qGLWR-8 (2019, 2020, 2022); qAS-8 (2020, 2022) Block6167–Block6169 27,555,403–27,911,017 6.30–14.20
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2.6. Analysis of Genetic Pleiotropy and Pyramiding Effects of Three Grain-Related Loci

This study selected three QTLs with stable genetic effects, namely Locus 1, Locus 10,
and Locus 13, for further analysis of their pleiotropic effects on multiple traits, such as GL,
PL, and TGW, across multiple environments. First, the RIL population was divided into
two genotypic groups, aa, and bb, based on the bin-marked genotypes within different
QTL intervals, excluding the heterozygous type. The differences in corresponding traits
between the two genotypic groups were then evaluated.

The results showed that RILs with favorable alleles exhibited higher average pheno-
typic values for all corresponding traits than RILs without favorable alleles. Some traits
were detected with QTLs only in one or two environments, but differences between the
aa and bb genotypic groups were observed across all three environments. Analysis of
variance indicated that, except for the QTL qTGW-2 controlled by Locus 1, which did not
reach significance in the 2019 environment for TGW, the remaining traits showed signifi-
cant or highly significant differences across all three environments (Table 5). This finding
suggested that these three stable QTLs were reliable and could enhance the value of the
corresponding traits.

To further confirm the combined effects of these three stable QTLs on six traits, in-
cluding GL, GW, GLWR, TGW, AS, and PL, the RIL population was divided into eight
combinations based on the combination of the three loci (Figure 3). Through analyzing
the relationship between the phenotypic values and the number of favorable alleles in
different combination types, the results were as follows. Except for GW and GLWR, all
other phenotypic values increased with the number of favorable alleles, and some reached
significant levels. It is worth noting that Hap1, which carries all three favorable genes,
showed significant improvements in GL, TGW, AS, and PL compared to Hap2, Hap3, Hap4
(carrying two favorable genes), Hap5, Hap6, Hap7 (carrying one favorable gene), and Hap8
(carrying zero favorable genes). However, significant improvements were observed in
the GL when analyzing the phenotypic values based on the presence of zero, one, or two
favorable genes.
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Table 5. Summary of the phenotypic effects of three stable QTL.

Trait QTL Environment
Number of RILs of

Marker Type aa
Number of RILs of

Marker Type bb
Donors of Positive

Allele
Phenotypic Value

DifferenceMarker Type aa Marker Type bb

Locus 1
GL (mm) - 2019 82 120 bb 8.82 ± 0.37 9.00 ± 0.45 0.17 **

qGL-2 2020 8.85 ± 0.37 9.13 ± 0.42 0.28 **
qGL-2 2022 9.27 ± 0.38 9.54 ± 0.40 0.28 **

TGW(g) - 2019 19.82 ± 2.09 20.42 ± 2.34 0.60
qTGW-2 2020 21.11 ± 2.18 22.18 ± 2.18 1.07 **

- 2022 22.57 ± 2.53 23.51 ± 2.17 0.94 **
PL (mm) - 2019 20.51 ± 0.79 20.90 ± 0.99 0.39 **

qPL-2 2020 20.81 ± 0.80 21.43 ± 0.86 0.62 **
qPL-2 2022 21.65 ± 0.84 22.26 ± 0.82 0.61 **

Locus 10
GL (mm) qGL-7-2 2019 88 118 aa 9.07 ± 0.42 8.80 ± 0.39 0.27 **

qGL-7-2 2020 9.17 ± 0.42 8.91 ± 0.38 0.26 **
- 2022 9.55 ± 0.42 9.34 ± 0.39 0.21 **

TGW(g) - 2019 20.87 ± 2.14 19.69 ± 2.18 1.18 **
qTGW-7-1 2020 22.49 ± 2.19 21.2 ± 2.09 1.29 **

- 2022 23.61 ± 2.50 22.72 ± 2.24 0.90 **
AS (mm2) qAS-7 2019 17.27 ± 1.26 16.60 ± 1.41 0.66 **

- 2020 17.89 ± 1.39 17.25 ± 1.40 0.64 **
- 2022 18.51 ± 1.62 18.01 ± 1.38 0.49 *

PL (mm) qPL-7 2019 21.08 ± 0.90 20.47 ± 0.87 0.60 **
qPL-7 2020 21.51 ± 0.87 20.93 ± 0.80 0.58 **

- 2022 22.26 ± 0.89 21.80 ± 0.83 0.46 **
Locus 13
GL (mm) qGL-8 2019 83 122 aa 9.11 ± 0.43 8.79 ± 0.37 0.32 **

qGL-8 2020 9.19 ± 0.38 8.90 ± 0.41 0.30 **
qGL-8 2022 9.56 ± 0.42 9.35 ± 0.39 0.21 **

TGW(g) - 2019 20.75 ± 2.46 19.83 ± 2.02 0.92 **
qTGW-8-2 2020 22.23 ± 2.44 21.45 ± 2.01 0.77 *

- 2022 23.58 ± 2.60 22.86 ± 2.22 0.73 *
PL (mm) qPL-8 2019 21.12 ± 0.95 20.47 ± 0.82 0.65 **

qPL-8 2020 21.51 ± 0.79 20.94 ± 0.87 0.57 **
qPL-8 2022 22.25 ± 0.88 21.84 ± 0.84 0.41 **

“-” indicates that no QTL was detected during the season. “aa” indicates the genotype of ZP37. “bb” indicates the genotype of R8605. The difference of phenotypes of favorable alleles
minus that of an unfavorable allele; *: p < 0.05, **: p < 0.01.
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Figure 3. Pyramiding effects analysis of three stable QTLs. (A) Summary of the traits associated with
the three QTLs. A yellow background indicates that the locus is associated with the trait, while a
gray background indicates that the locus is not associated with the trait. (B) Pyramiding effects for
different numbers of favorable alleles of the QTL. Letters from a to e indicate significantly different
values according to statistical analysis (a = 0.05).

In contrast, the improvements in other traits did not reach significant levels. Our
results indicated that the genetic effects of these three loci were stable and reliable, and the
pyramiding of favorable alleles mainly exhibited an additive effect, effectively improving
the phenotypic values of the correlated traits. However, if the goal is to significantly
improve the phenotypic values of the correlated traits, only one or pyramiding of two
favorable QTLs is unlikely to achieve the desired effect. It is necessary to pyramide all three
favorable genes to achieve the ideal effect.

3. Discussion

Currently, most researchers employ traditional molecular markers, such as RFLP, SSR,
and InDel, to construct genetic maps with an accuracy of approximately 1–10 Mb [38].
Due to limitations in the number and coverage density of polymorphic genetic markers,
the mapping intervals are larger, and the precision is lower. Additionally, they cannot
accurately detect reciprocal translocation breakpoints [39]. In contrast, the bin map is
constructed based on sequencing technology, with a higher number and density of markers.
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It achieves a precision of up to 100 kb and provides accurate physical positions, enabling
more precise QTL mapping with smaller intervals.

Furthermore, each bin contains multiple non-recombinant SNPs, effectively reducing
the occurrence of missed reciprocal translocation breakpoints. In this study, we utilized
whole-genome resequencing technology to construct a high-density genetic map based on
bin markers, encompassing 2193 bin markers. The total map distance was 1542.27 cM, with
an average physical distance of 201.29 kb between markers. QTL mapping was performed
for rice GL, GW, GLWR, TGW, AS, and PL in three different environments. A total of
39 QTLs were identified, with mapping intervals ranging from 8.1 kb to 1781.6 kb and
an average physical distance of 517.5 kb. Among them, 15 QTLs were detected in two or
more environments. We obtained 14 stable genetic effect loci, including three loci that over-
lapped with previous reports and 11 loci that represented new QTLs consistently associated
with two or more environments or traits. Compared to genetic maps constructed using
traditional markers, the bin map exhibited significantly improved marker density, higher
QTL mapping resolution, and enhanced positional accuracy. Additionally, previous studies
have indicated that QTLs controlling related traits are not uniformly distributed across
chromosomes; instead, many QTLs are closely linked or clustered in specific chromosomal
regions [40]. In previous studies using traditional genetic maps for mapping, it is often
challenging to precisely locate multiple adjacent loci within a segment where multiple
peaks exceed the threshold LOD value, leading to the omission of some loci with smaller ef-
fects [41]. In our present study, we identified several QTLs located in close proximity on the
chromosomes, such as qGW-3-1 and qGW-3-2 on chromosome 3, spanning 15.92–16.07 Mb
and 16.15–16.62 Mb, respectively, as well as qAS-4-2 and qAS-4-3 on chromosome 4, span-
ning 24.10–24.11 Mb and 24.19–24.63 Mb, respectively. This finding illustrated that the bin
map enabled more precise detection of QTLs, accurately pinpointing adjacent loci.

In recent years, numerous researchers have used different genetic populations and
markers to identify and clone many QTLs related to grain size in rice. The reported
pathways regulating rice grain size include the ubiquitin-proteasome system, G-protein
signaling, mitogen-activated protein kinase (MAPK) signaling, plant hormone perception
and homeostasis, transcriptional regulatory factors, and epigenetic modifications. It has
been reported that GGC2 affects GL and GW in rice through the G-protein pathway, thereby
influencing the appearance quality and yield of rice [37]. In this study, GGC2 was located
in the Locus 13 region, which showed consistent expression and pleiotropic effects across
multiple environments when assessing the traits of GL, TGW, and PL. Additionally, a QTL,
qGLWR-5, associated with GLWR was mapped to chromosome 5, in the same position as
the previously reported gene OsPUP7, which affects rice grain shape. OsPUP7, a cytokinin
transport protein, plays a crucial role in various biological processes, such as cell division
and differentiation, thereby regulating grain shape and size [36]. On chromosome 2, a
QTL, qAS-2-1, controlling AS, was located at the same position as the previously reported
gene PGL2, which influences rice grain size. PGL2 encodes an atypical bHLH protein that
regulates GL and GW in rice through interactions with the typical bHLH protein APG [35].

The utilization of the same mapping population across multiple environments for
QTL mapping is highly significant for aggregation breeding. It enables the detection of
stable QTLs with minimal environmental influence, which can be consistently identified.
Additionally, the identification of pleiotropic QTLs is valuable in breeding, as multiple traits
can be simultaneously selected using a single genomic region [42,43]. In this study, among
the newly identified QTLs, Locus 14 was a stable QTL detected in multiple environments
and simultaneously influenced multiple traits, such as GW, GLWR, and AS. It exhibited
pleiotropy and had a high contribution rate, providing a foundation for gene cloning.
Furthermore, three genetic pleiotropic loci were associated with GL, TGW, AS, and PL,
namely Locus 1, Locus 3, and Locus 10. These loci not only stably expressed QTLs across
multiple environments, but also demonstrated pleiotropy. All of these loci were important
QTLs and provided opportunities for using marker-assisted selection (MAS) to improve
rice grain yield and appearance traits.
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Pyramide breeding is a viable approach for increasing yield. In previous studies, the ag-
gregation analysis of multiple QTLs related to GL and GW, such as GS3, GL2/OsGRF/GS24,
GW8, GL3.1/ospplkl1, and GLW7/OsSPL13 has shown that introducing multiple favorable
alleles can effectively increase GL and improve rice yield [6,10,13]. This study identified
14 stable genetic loci related to grain traits. Through the aggregation analysis of three
of these loci, the results were consistent with our expected goals. The accumulation of
multiple favorable alleles could effectively increase GL and improve rice yield (Figure 3),
demonstrating that these loci could be applied in aggregation breeding in rice.

4. Materials and Methods
4.1. Plant Materials

In the present study, ZP37, a local variety collected by our research group, was char-
acterized by strong and stout stems, numerous secondary branches, and strong disease
resistance. R8605, on the other hand, was a hybrid rice restorer line developed by the Rice
Research Institute of Guangxi Academy of Agricultural Sciences. It exhibited characteristics
such as exceptionally long panicles, cold tolerance, and high-quality and high-yield traits.
Using R8605 as the paternal parent and ZP37 as the maternal parent, an F1 hybrid was
obtained, and subsequent generations were generated through multiple generations of
self-pollination using the single seed descent method. This resulted in the construction of a
set of RIL populations (F8:9 generation). Both the parental lines and RILs were planted in
Nanning City, Guangxi, China (108◦22′ E, 22◦48′ N) for early-season cultivation in 2019 and
late-season cultivation in 2020. Additionally, in 2022, they were also planted in Guiping
City, Guangxi, China (114◦07′ E, 22◦32′ N). These planting locations were labeled as 2019,
2020, and 2022, respectively. The sowing and transplanting of the early-season planting
took place on 1 March and 2 April each year, respectively, while those for the late-season
planting occurred on 18 July and 4 August, respectively. Each RIL or parental line was
arranged in a randomized complete block design, with six rows per line and six plants per
row, spaced at 20 cm × 20 cm intervals. Single seedling transplanting was employed, and
field management followed standard local agricultural practices.

4.2. Phenotype Investigation and Data Analysis

During the rice maturation stage, we collected three plants at random from each
plot for harvesting. The harvested grains were naturally dried, and any empty grains
were removed from the samples. To analyze the grain-related traits, we utilized the SC-G
automatic seed phenotyping system (Hangzhou WSeen Detection Technology Co., Ltd.,
Hangzhou, China). The system was operated following the provided instructions, with
precise settings and appropriate threshing thresholds to ensure accurate measurements.
Six specific traits were analyzed in this study, including GW, GL, GLWR, area size (AS) of
grain, perimeter length (PL) of grain, and TGW. The grains were then weighed using an
electronic balance, and the average values from the three plants were recorded as the final
phenotypic values for each trait.

The data were recorded, analyzed, and processed using WPS Office Excel. Histograms
depicting the different traits of the RIL population across multiple environments were
created. Statistical analysis was performed using DPS v9.01, and significant differences
were detected using the LSD method. Correlation analysis was conducted using SPSS
Statistics 26.

4.3. Genotype Identification and High-Density Genetic Map Construction of the RIL Population

During the tillering stage of rice, tender leaves of both the parental lines and the RIL
population (F8:9 generation) were collected. The DNA extraction and sequencing analysis
were entrusted to Biomarker Technologies Co., Ltd. (Beijing, China). The specific steps were
as follows. First, DNA extraction was performed using the CTAB method. After sample
validation, the DNA was randomly fragmented using the Covaris ultrasonic disruptor.
The fragmented DNA was subjected to end repair, 3′ end adenylation, sequencing adapter
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ligation, purification, and PCR amplification to construct sequencing libraries. The Illumina
sequencing platform was used to generate raw sequencing data, known as sequencing
reads. The data underwent filtering steps to remove adapter contamination, reads with
an N content exceeding 10%, and low-quality reads. This resulted in obtaining high-
quality clean reads for subsequent analysis. The sequencing reads were aligned to the
reference genome of the rice variety ‘Nipponbare’ (IRGSP-1.0) using the BWA software (http:
//bio-bwa.sourceforge.net/, accessed on 6 August 2023). Only uniquely aligned paired-
end reads were retained. Subsequently, the GATK software (version 3.6-0-g89b7209) [44]
was employed for SNP detection between the parental lines. Preprocessing steps were
performed, such as duplicate marking using Picard and local realignment using GATK. SNP
detection and filtering were conducted to obtain the final set of SNP loci. The genotypic
data of the 208 RILs were statistically analyzed. The “sliding window” method [45] was
employed to identify recombination breakpoints. Multiple consecutive SNP markers
showing tight linkage without recombination in all samples were considered a single block
(bin). The physical position of each bin was determined based on the starting point of
the bin marker. Within each bin, markers with the same genotype as ZP37 were labeled
“aa”, while markers with the same genotype as R8605 were labeled “bb”. Recombination
rates were calculated using the maximum likelihood function based on the genotypes, and
genetic distances were determined using the Kosambi mapping function. High-density
genetic maps were constructed using the maximum likelihood estimation method in the
HighMap software (Scmap V5). The best position for each marker was determined based
on the optimal AIC (Akaike information criterion) value.

4.4. QTL Mapping

The high-density genetic map constructed based on whole-genome resequencing was
used for trait mapping using the composite interval mapping (CIM) method. A significance
threshold (PIN) of 0.001 was set, and the genome-wide scan was performed with a step
size of 1 cM. The LOD threshold was determined through 1000 permutations using the PT
(permutation test) method. Initially, a confidence level of 99% was set, and if no mapping
interval was identified, it was reduced to 95% or 90%. If still no result was obtained, the
PT test results were not considered, and the LOD threshold was manually lowered to 3.0.
If no interval was identified at 3.0, it was further reduced to 2.5 or 2. The LOD value
at the peak was considered the LOD value of the corresponding QTL. The effect of the
QTL was estimated based on the bin marker at the peak position, and the additive effect
and the contribution rate of each QTL to the trait were calculated. QTLs were named
following the principles previously described [46]. A positive additive effect indicates that
the enhancing allele originates from the ZP37 parental line, while a negative value indicates
that it originates from the R8605 parental line.

4.5. Analysis of Genetically Stable Loci and Pyramiding Effects

The genotyping results of all bin markers within each mapping interval were analyzed.
The genotypes of the 208 offspring in this interval were classified as “aa” and “bb” types.
If different genotypes of bin markers were observed within the interval, it indicated the
occurrence of recombination events, and such intervals were classified as heterozygous
intervals. Stable QTL refers to the loci that can be repeatedly identified across multiple
environments. The stable QTLs with higher contribution rates were selected. The dis-
tribution of enhancing alleles in the RIL population was analyzed. The RIL population
was grouped based on the pyramiding of different favorable genes. The performance of
traits in each group was evaluated to analyze the aggregation effect of different numbers of
favorable genes.

5. Conclusions

In the present study, we constructed a high-density genetic map of a RIL population
derived from the cross between R8605 and ZP37. This map consisted of 2193 bin markers
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with an average physical distance of 201.29 kb between markers. A total of 39 QTLs
related to rice grain traits were identified in three different environments, with the mapping
intervals ranging from 8.1 kb to 1781.6 kb and an average physical distance of 517.5 kb.
By analyzing the genetic effects of the identified QTLs, 14 stable genetic loci (involving
30 QTLs) were obtained. Among them, four loci were novel loci exhibiting pleiotropic
effects, controlling at least three traits and detected in multiple environments. Furthermore,
pyramiding effects analysis of three loci showed that as the number of QTL increased, the
phenotypic values of grain traits could be effectively improved. Collectively, our newly
identified QTLs could be used in future breeding programs to enhance rice yield.
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