A Model for the Determination of Potato Tuber Mass by the Measurement of Carbon Dioxide Concentration
Abstract
:1. Introduction
2. Results and Discussion
Description of the Proposed Model
3. Materials and Methods
Verification of the Proposed Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nasir, M.W.; Toth, Z. Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, 12, 635. [Google Scholar] [CrossRef]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of Short Period Water Stress Determines Potato Plant Growth, Yield and Tuber Quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 20 June 2023).
- Keyta, F.; Karpuhin, M. The area of nutrition and yield of potato in the middle urals. Agrar. Bull. 2019, 182, 17–21. [Google Scholar] [CrossRef]
- Van De Vijver, R.; Mertens, K.; Heungens, K.; Nuyttens, D.; Wieme, J.; Maes, W.H.; Van Beek, J.; Somers, B.; Saeys, W. Ultra-High-Resolution UAV-Based Detection of Alternaria Solani Infections in Potato Fields. Remote Sens. 2022, 14, 6232. [Google Scholar] [CrossRef]
- Çalışkan, M.E.; Yavuz, C.; Yağız, A.K.; Demirel, U.; Çalışkan, S. Comparison of Aeroponics and Conventional Potato Mini Tuber Production Systems at Different Plant Densities. Potato Res. 2021, 64, 41–53. [Google Scholar] [CrossRef]
- Rumiantsev, B.; Dzhatdoeva, S.; Zotov, V.; Kochkarov, A. Analysis of the Potato Vegetation Stages Based on the Dynamics of Water Consumption in the Closed Urban Vertical Farm with Automated Microclimate Control. Agronomy 2023, 13, 954. [Google Scholar] [CrossRef]
- Broćić, Z.; Oljača, J.; Pantelić, D.; Rudić, J.; Momčilović, I. Potato Aeroponics: Effects of Cultivar and Plant Origin on Minituber Production. Horticulturae 2022, 8, 915. [Google Scholar] [CrossRef]
- Cook, M.E.; Croxdale, J.L.; Tibbitts, T.W.; Goins, G.; Brown, C.S.; Wheeler, R.M. Development and Growth of Potato Tubers in Microgravity. Adv. Space Res. 1998, 21, 1103–1110. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Kreuze, J.; Amoros, W.; Valdivia-Silva, J.E.; Ranck, J.; Garcia, S.; Salas, E.; Yactayo, W. Extreme Salinity as a Challenge to Grow Potatoes under Mars-like Soil Conditions: Targeting Promising Genotypes. Int. J. Astrobiol. 2019, 18, 18–24. [Google Scholar] [CrossRef]
- Medina, F.J.; Manzano, A.; Villacampa, A.; Ciska, M.; Herranz, R. Understanding Reduced Gravity Effects on Early Plant Development Before Attempting Life-Support Farming in the Moon and Mars. Front. Astron. Space Sci. 2021, 8, 729154. [Google Scholar] [CrossRef]
- Massa, G.; Dufour, N.; Carver, J.; Hummerick, M.; Wheeler, R.; Morrow, R.; Smith, T.M. VEG-01: Veggie Hardware Validation Testing on the International Space Station. Open Agric. 2017, 2, 33–41. [Google Scholar] [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Batt, P.J. Managing Agricultural Value Chains in a Rapidly Urbanizing World. Agronomy 2022, 12, 1590. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Buja, I.; Sabella, E.; Monteduro, A.G.; Chiriacò, M.S.; De Bellis, L.; Luvisi, A.; Maruccio, G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors 2021, 21, 2129. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, E.; Kirchgessner, N.; Pfeifer, J.; Walter, A. Assessing Potato Tuber Diel Growth by Means of X-ray Computed Tomography. Plant Cell Environ. 2015, 38, 2318–2326. [Google Scholar] [CrossRef]
- Divya, K.L.; Mhatre, P.H.; Venkatasalam, E.P.; Sudha, R. Crop Simulation Models as Decision-Supporting Tools for Sustainable Potato Production: A Review. Potato Res. 2021, 64, 387–419. [Google Scholar] [CrossRef]
- Woli, P.; Hoogenboom, G.; Alva, A. Simulation of Potato Yield, Nitrate Leaching, and Profit Margins as Influenced by Irrigation and Nitrogen Management in Different Soils and Production Regions. Agric. Water Manag. 2016, 171, 120–130. [Google Scholar] [CrossRef]
- Machakaire, A.T.B.; Steyn, J.M.; Caldiz, D.O.; Haverkort, A.J. Forecasting Yield and Tuber Size of Processing Potatoes in South Africa Using the LINTUL-Potato-DSS Model. Potato Res. 2016, 59, 195–206. [Google Scholar] [CrossRef]
- Rana, A.; Dua, V.K.; Chauhan, S.; Sharma, J. Climate Change and Potato Productivity in Punjab—Impacts and Adaptation. Potato Res. 2020, 63, 597–613. [Google Scholar] [CrossRef]
- Janssen, B.H.; Guiking, F.C.T.; Van Der Eijk, D.; Smaling, E.M.A.; Wolf, J.; Van Reuler, H. A System for Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS). Geoderma 1990, 46, 299–318. [Google Scholar] [CrossRef]
- Xu, Y.; He, P.; Xu, X.; Qiu, S.; Ullah, S.; Gao, Q.; Zhou, W. Estimating Nutrient Uptake Requirements for Potatoes Based on QUEFTS Analysis in China. Agron. J. 2019, 111, 2387–2394. [Google Scholar] [CrossRef]
- Sun, T.; Yang, X.; Tang, S.; Han, K.; He, P.; Wu, L. Genotypic Variation in Nutrient Uptake Requirements of Rice Using the QUEFTS Model. Agronomy 2020, 11, 26. [Google Scholar] [CrossRef]
- Kang, F.; Wang, Z.; Xiong, H.; Li, Y.; Wang, Y.; Fan, Z.; Zhao, H.; Kuang, D.; Chen, Z.; Wang, J.; et al. Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model. Agronomy 2020, 10, 1776. [Google Scholar] [CrossRef]
- Grisafi, F.; DeJong, T.M.; Tombesi, S. Fruit Tree Crop Models: An Update. Tree Physiol. 2022, 42, 441–457. [Google Scholar] [CrossRef]
- Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T.; et al. Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Tayade, R.; Yoon, J.; Lay, L.; Khan, A.L.; Yoon, Y.; Kim, Y. Utilization of Spectral Indices for High-Throughput Phenotyping. Plants 2022, 11, 1712. [Google Scholar] [CrossRef]
- Bachmann-Pfabe, S.; Dehmer, K.J. Evaluation of Wild Potato Germplasm for Tuber Starch Content and Nitrogen Utilization Efficiency. Plants 2020, 9, 833. [Google Scholar] [CrossRef]
- Haverkort, A.J. Potato Handbook: Crop of the Future; Aardappelwereld B.V.: The Hague, The Netherlands, 2018. [Google Scholar]
- PotatoWorld Team. Photosynthesis and Starch Formation in Potatoes. Available online: https://blog.potatoworld.eu/photosynthesis-and-starch-formation-in-potatoes (accessed on 29 March 2023).
- Smith, J.H.C. Molecular Equivalence of Carbohydrates to Carbon Dioxide in Photosynthesis. Plant Physiol. 1943, 18, 207–223. [Google Scholar] [CrossRef]
- Wang, H.; Prentice, I.C.; Keenan, T.F.; Davis, T.W.; Wright, I.J.; Cornwell, W.K.; Evans, B.J.; Peng, C. Towards a Universal Model for Carbon Dioxide Uptake by Plants. Nat. Plants 2017, 3, 734–741. [Google Scholar] [CrossRef]
- Timlin, D.; Lutfor Rahman, S.M.; Baker, J.; Reddy, V.R.; Fleisher, D.; Quebedeaux, B. Whole Plant Photosynthesis, Development, and Carbon Partitioning in Potato as a Function of Temperature. Agron. J. 2006, 98, 1195–1203. [Google Scholar] [CrossRef]
- Chapman, H.W. Absorption of CO2 by Leaves of the Potato. Am. Potato J. 1951, 28, 602–615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumiantsev, B.; Dzhatdoeva, S.; Sadykhov, E.; Kochkarov, A. A Model for the Determination of Potato Tuber Mass by the Measurement of Carbon Dioxide Concentration. Plants 2023, 12, 2962. https://doi.org/10.3390/plants12162962
Rumiantsev B, Dzhatdoeva S, Sadykhov E, Kochkarov A. A Model for the Determination of Potato Tuber Mass by the Measurement of Carbon Dioxide Concentration. Plants. 2023; 12(16):2962. https://doi.org/10.3390/plants12162962
Chicago/Turabian StyleRumiantsev, Boris, Sofya Dzhatdoeva, Elchin Sadykhov, and Azret Kochkarov. 2023. "A Model for the Determination of Potato Tuber Mass by the Measurement of Carbon Dioxide Concentration" Plants 12, no. 16: 2962. https://doi.org/10.3390/plants12162962
APA StyleRumiantsev, B., Dzhatdoeva, S., Sadykhov, E., & Kochkarov, A. (2023). A Model for the Determination of Potato Tuber Mass by the Measurement of Carbon Dioxide Concentration. Plants, 12(16), 2962. https://doi.org/10.3390/plants12162962