Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber
Abstract
:1. Introduction
2. Results
2.1. Wax Quantitative and Scanning Electron Microscopy Observation
2.2. RNA-Seq and Quality
2.3. Functional Annotation of Differently Expressed Genes (DEGs)
2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis of Identified DEGs in Different Groups
2.5. Verification of DEGs Involved in Wax and Phenylpropanoid Biosynthesis Using Quantitative Real-Time PCR
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Fruits Surface Wax Quantitative and Scanning Electron Microscopy Observation
4.3. RNA Isolation and Sequencing
4.4. RNA Seq Data Analysis
4.5. Quantitative Real-Time PCR Validation of DEG Results
4.6. Data Statistical Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whitaker, T.W.; Davis, G.N. Cucurbits. Botany, cultivation, and utilization. Appl. Catal. B 2023, 250, 27. [Google Scholar]
- Kaur, H.; Manchanda, P.; Kumar, P.; Dhall, R.K.; Chhuneja, P.; Weng, Y. Genome-wide identification and characterization of parthenocarpic fruit set-related gene homologs in cucumber (Cucumis sativus L.). Sci. Rep. 2023, 13, 2403. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 2010, 127, 162–171. [Google Scholar] [CrossRef]
- Ornat, C.; Verdejo-Lucas, S.; Sorribas, F.J. Effect of the previous crop on population densities of Meloidogyne javanica and yield of cucumber. Nematropica 1997, 27, 85–90. [Google Scholar]
- Sorribas, F.J.; Ornat, C.; Verdejo-Lucas, S.; Galeano, M.; Valero, J.; Ornat, C. Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. Eur. J. Plant Pathol. 2005, 111, 29–38. [Google Scholar] [CrossRef]
- Giné, A.; Sorribas, F.J. Quantitative approach for the early detection of virulence selection of Meloidogyne incognita on resistant tomato in plastic greenhouse. Plant Pathol. 2017, 66, 1338–1344. [Google Scholar] [CrossRef]
- Gine, A.; Gonzalez, C.; Serrano, L.; Sorribas, F.J. Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur. J. Plant Pathol. 2017, 148, 795–805. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Abd-Alkarim, E.; El-Ramady, H.; El-Aidy, F.; Hamed, E.-S.; Taha, N.; Prohens, J.; Rakha, M. Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Sci. Hortic. 2021, 7, 61. [Google Scholar] [CrossRef]
- Lee, Y.; Hoang, N.V.; Do, V.G.; Foster, T.M.; McGhie, T.K.; Kim, S.; Yang, S.J.; Park, J.H.; Park, J.; Lee, J.Y. Identification of genes associated with the regulation of cold tolerance and the RNA movement in the grafted apple. Sci. Rep. 2023, 13, 11583. [Google Scholar] [CrossRef]
- Dias, R.C.S.; Picó, B.; Adalid, A.M.; Herraiz, J.; Espinós, A.; Nuez, F. Field resistance to melon vine decline in wild accessions of Cucumis spp. and in a Spanish accession of Cucumis melo. Cucurbit Genet. Coop. Rep. 2001, 24, 23–25. [Google Scholar]
- Liu, B.; Ren, J.; Zhang, Y.; An, J.; Chen, M.; Chen, H.; Xu, C.; Ren, H. A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agron. Sustain. Dev. 2015, 35, 251–259. [Google Scholar] [CrossRef]
- Expósito, A.; Pujolà, M.; Achaerandio, I.; Giné, A.; Escudero, N.; Fullana, A.M.; Cunquero, M.; Loza-Alvarez, P.; Sorribas, F.J. Tomato and melon Meloidogyne resistant rootstocks improve crop yield but melon fruit quality is influenced by the cropping season. Front. Plant Sci. 2020, 11, 560024. [Google Scholar] [CrossRef] [PubMed]
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nanomicro Lett. 2017, 9, 23. [Google Scholar] [CrossRef]
- Macabuhay, A.; Arsova, B.; Walker, R.; Johnson, A.; Watt, M.; Roessner, U. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Plant Sci. 2022, 27, 180–190. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Rahman, M.-U.; Ahmar, S.; Fiaz, S.; Azeem, F.; Shaheen, T.; Ijaz, M.; Bukhari, S.A.; Khan, S.A.; Mora-Poblete, F. Comparative genomic analysis of MYB transcription factors for cuticular wax biosynthesis and drought stress tolerance in Helianthus annuus L. Saudi J. Biol. Sci. 2021, 28, 5693–5703. [Google Scholar] [CrossRef]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef]
- Yeats, T.H.; Rose, J.K.C. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, X.; Lu, X.; Chen, G.; Chen, Z.H. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front. Plant Sci. 2017, 8, 621. [Google Scholar] [CrossRef]
- Bourdenx, B.; Bernard, A.; Domergue, F.; Pascal, S.; Léger, A.; Roby, D.; Pervent, M.; Vile, D.; Haslam, R.P.; Napier, J.A.; et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol. 2011, 156, 29–45. [Google Scholar] [CrossRef]
- Pascal, S.; Bernard, A.; Deslous, P.; Gronnier, J.; Fournier-Goss, A.; Domergue, F.; Rowland, O.; Joubès, J. Arabidopsis CER1-LIKE1Functions in a Cuticular Very-Long-Chain Alkane-Forming Complex. Plant Physiol. 2019, 179, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Aarts, M.G.M.; Keijzer, C.J.; Stiekema, W.J.; Pereira, A. Molecular Characterization of the CER1 Gene of Arabidopsis Involved in Epicuticular Wax Biosynthesis and Pollen Fertility. Plant Cell 1995, 7, 2115. [Google Scholar] [PubMed]
- Bernard, A.; Domergue, F.; Pascal, S.; Jetter, R.; Renne, C.; Faure, J.-D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Joubès, J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 2012, 24, 3106–3118. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Suh, M.C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell 2015, 34, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Bithell, S.L.; Condè, B.; Traynor, M.; Donald, E.C. Grafting for soilborne disease management in Australian vegetable production systems-a review. Australas. Plant Pathol. 2013, 42, 329–336. [Google Scholar] [CrossRef]
- Miao, L.; Di, Q.; Sun, T.; Li, Y.; Duan, Y.; Wang, J.; Yan, Y.; He, C.; Wang, C.; Yu, X. Integrated Metabolome and Transcriptome Analysis Provide Insights into the Effects of Grafting on Fruit Flavor of Cucumber with Different Rootstocks. Int. J. Mol. Sci. 2019, 20, 3592. [Google Scholar] [CrossRef]
- Jain, D.; Khurana, J.P. Role of Pathogenesis-Related (PR) Proteins in Plant Defense Mechanism. In Molecular Aspects of Plant-Pathogen Interaction; Springer: Singapore, 2018; pp. 265–281. [Google Scholar]
- Jonathan, D.J.; Jeffery, L.D. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar]
- Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of plant immunity. Annu. Rev. Plant Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef]
- Zhang, Y.; De Stefano, R.; Robine, M.; Butelli, E.; Bulling, K.; Hill, L.; Rejzek, M.; Martin, C.; Schoonbeek, H.J. Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physol. 2015, 169, 1568–1583. [Google Scholar]
- Deng, Y.; Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- García-Pérez, P.; Losada-Barreiro, S.; Bravo-Díaz, C.; Gallego, P.P. Exploring the use of Bryophyllum as natural source of bioactive compounds with antioxidant activity to prevent lipid oxidation of fish oil-in-water emulsions. Plants 2020, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kong, L.; Zhi, P.; Chang, C. Update on Cuticular Wax Biosynthesis and Its Roles in Plant Disease Resistance. Int. J. Mol. Sci. 2020, 21, 5514. [Google Scholar] [CrossRef]
- Yang, T.; Li, Y.; Liu, Y.; He, L.; Liu, A.; Wen, J.; Mysore, K.S.; Tadege, M.; Chen, J. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Plant Mol. Biol. Rep. 2021, 105, 193–204. [Google Scholar] [CrossRef]
- Ziv, C.; Zhao, Z.; Gao, Y.G.; Xia, Y. Multifunctional roles of plant cuticle during plant-pathogen interactions. Front. Plant Sci. 2018, 9, 1088. [Google Scholar] [CrossRef]
- Seo, P.J.; Park, C.M. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol. 2010, 186, 471–483. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Zhang, C.-L.; Wang, G.-L.; Wang, Y.-X.; Qi, C.-H.; Zhao, Q.; You, C.-X.; Li, Y.-Y.; Hao, Y.-J. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biol. 2019, 19, 362. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Gai, X.; Ren, J.; Liu, X.; Cai, Y.; Wang, Q.; Ren, H. Cucumis sativus L. WAX2 Plays a Pivotal Role in Wax Biosynthesis, Influencing Pollen Fertility and Plant Biotic and Abiotic Stress Responses. Plant Cell Physiol. 2015, 56, 1339–1354. [Google Scholar] [CrossRef]
- Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in Arabidopsis. Arab. Book 2011, 9, e0152. [Google Scholar] [CrossRef] [PubMed]
- Amaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef]
- Song, Z.; Chen, W.; Du, X.; Zhang, H.; Lin, L.; Xu, H. Chemical Constituents of Picea Neoveitchii. Phytochemistry 2011, 72, 490–494. [Google Scholar] [CrossRef]
- Wu, P.; Kong, Q.; Bian, J.; Ahammed, G.J.; Cui, H.; Xu, W.; Yang, Z.; Cui, J.; Liu, H. Unveiling Molecular Mechanisms of Nitric Oxide-Induced Low-Temperature Tolerance in Cucumber by Transcriptome Profifiling. Int. J. Mol. Sci. 2022, 23, 5615. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Wang, Z.; Guo, Y.; Zhang, X. Comparative transcriptome profiling reveals the role of phytohormones and phenylpropanoid pathway in early-stage resistance against powdery mildew in watermelon (Citrullus lanatus L.). Front. Plant Sci. 2022, 13, 1016822. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, Y.; Xian, Q.; Chen, X.; Xu, J. Transcriptome analysis reveals ethylene-mediated defense responses to Fusarium oxysporum f. sp. cucumerinum infection in Cucumis sativus L. BMC Plant Biol. 2020, 20, 334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, Y.; Zhou, S. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC Plant Biol. 2021, 21, 24. [Google Scholar]
- Chun, H.J.; Baek, D.; Cho, H.M.; Lee, S.H.; Jin, B.J.; Yun, D.J.; Hong, Y.S.; Kim, M.C. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signal. Behav. 2019, 14, 1629697. [Google Scholar] [CrossRef]
- Ma, D.; Reichelt, M.; Yoshida, K.; Gershenzon, J.; Constabel, C.P. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J. 2018, 96, 949–965. [Google Scholar] [CrossRef]
- Li, J.; Luan, Q.; Han, J.; Zhang, C.; Liu, M.; Ren, Z. CsMYB60 directly and indirectly activates structural genes to promote the biosynthesis of flavonols and proanthocyanidins in cucumber. Hortic. Res. 2020, 7, 103. [Google Scholar] [CrossRef]
- Grete, S. Rapid analysis in food processing and food control. In Proceedings of the Fourth European Conference on Food Chemistry, Loen, Norway, 1–4 June 1987; pp. 1–4. [Google Scholar]
- Pang, W.; Kim, Y.Y.; Li, X.; Choi, S.R.; Wang, Y.; Sung, C.K.; Im, S.; Ramchiary, N.; Zhou, G.; Lim, Y.P. Anatomic Characteristics Associated with Head Splitting in Cabbage (Brassica oleracea var. capitata L.). Public Libr. Sci. 2015, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Choi, S.R.; Wang, Y.; Ma, Y.; Choi, S.R.; Wang, Y.; Chhapekar, S.S.; Zhang, X.; Wang, Y.; Zhang, X.; et al. Starch content changes and metabolism-related gene regulation of Chinese cabbage synergistically induced by Plasmodiophora brassicae infection. Hortic. Res. 2022, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Nat. Methods 2001, 25, 402–408. [Google Scholar]
Brightness/d | |||||
---|---|---|---|---|---|
Treatments | 3 d | 6 d | 9 d | 12 d | 15 d |
SR | 1.03 ± 0.02 d | 1.12 ± 0.02 d | 1.24 ± 0.01 d | 1.35 ± 0.12 d | 1.23 ± 0.06 d |
BG | 1.31 ± 0.04 d ** | 1.53 ± 0.18 d * | 1.88 ± 0.03 d ** | 2.87 ± 0.02 d ** | 2.39 ± 0.10 d ** |
KEGG ID | Description | p-Value | padj (Adjusted p-Value) | Up-Regulated Genes | Down-Regulated Genes |
---|---|---|---|---|---|
csv00940 | Phenylpropanoid biosynthesis | 2.14 × 10−7 | 1.84 × 10−5 | CsaV3_6G039710 CsaV3_4G002330 CsaV3_4G002310 CsaV3_4G002320 CsaV3_6G039680 CsaV3_6G039690 CsaV3_4G002290 CsaV3_6G039700 CsaV3_4G002300 CsaV3_4G005430 CsaV3_4G033920 CsaV3_3G032830 CsaV3_1G012650 | CsaV3_4G023630 CsaV3_6G043930 CsaV3_4G023640 CsaV3_2G018020 CsaV3_6G039660 CsaV3_7G031610 CsaV3_7G031620 CsaV3_7G005720 CsaV3_2G036090 |
csv00360 | Phenylalanine metabolism | 4.87 × 10−6 | 0.000205961 | CsaV3_6G039710 CsaV3_4G002330 CsaV3_4G002310 CsaV3_4G002320 CsaV3_6G039680 CsaV3_6G039690 CsaV3_4G002290 CsaV3_6G039700 CsaV3_4G002300 | CsaV3_5G003800 CsaV3_6G039660 |
csv04712 | Circadian rhythm—plant | 7.18 × 10−6 | 0.000205961 | CsaV3_6G008360 CsaV3_3G050020 | CsaV3_5G014370 CsaV3_6G005020 CsaV3_2G025750 CsaV3_5G000090 CsaV3_7G024490 CsaV3_4G024430 CsaV3_1G005680 |
csv00908 | Zeatin biosynthesis | 0.000970456 | 0.020864805 | CsaV3_1G040500 CsaV3_5G006200 CsaV3_5G039210 CsaV3_3G040790 CsaV3_6G018570 | |
csv00904 | Diterpenoid biosynthesis | 0.002158979 | 0.037134438 | CsaV3_3G001940 CsaV3_3G049400 CsaV3_5G005560 | CsaV3_4G007790 CsaV3_1G011060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cao, R.; Yang, L.; Duan, X.; Zhang, C.; Yu, X.; Ye, X. Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber. Plants 2023, 12, 2963. https://doi.org/10.3390/plants12162963
Wang Y, Cao R, Yang L, Duan X, Zhang C, Yu X, Ye X. Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber. Plants. 2023; 12(16):2963. https://doi.org/10.3390/plants12162963
Chicago/Turabian StyleWang, Yidan, Ruifang Cao, Lu Yang, Xiaoyu Duan, Can Zhang, Xuejing Yu, and Xueling Ye. 2023. "Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber" Plants 12, no. 16: 2963. https://doi.org/10.3390/plants12162963
APA StyleWang, Y., Cao, R., Yang, L., Duan, X., Zhang, C., Yu, X., & Ye, X. (2023). Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber. Plants, 12(16), 2963. https://doi.org/10.3390/plants12162963