A Comprehensive Genome-Wide Investigation of the Cytochrome 71 (OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Phylogenetic Tree Analysis of OsCYP Genes in Rice
2.2. Chromosome Distribution and Gene Duplication Analysis of OsCYP71 Genes
2.3. Gene Structure and Basic Motif Analysis of OsCYP71 Gene
2.4. Promoter Element and GO Enrichment Analysis
2.5. Transcriptome Profiling of OsCYP71 Family Genes in Different Tissues and Phytohormone Treatments in Rice
2.6. Gene Diversity Analysis of OsCYP71P6 Alleles
2.7. Grouping of Rice Varieties Based on OsCYP71P6 Alleles
2.8. Descriptive Statistics of Yield-Related Traits for Different Alleles of OsCYP71P6
2.9. OsCYP71P6 Allelic Difference in Phenotypic Traits
2.10. Association of OsCYP71P6 SNPs with the Spikelet Fertility Using Linear Regression Model
3. Discussion
3.1. Identification and Evolutionary Analysis of the OsCYP71 Gene Family in Rice
3.2. The OsCYP71 Gene Family Contains Multiple Cis-Regulatory Involved in Plant Developmental Processes
3.3. The Effect of Promoter In/Dels of OsCYP71P6 on Yield-Related Traits
3.4. The Effect of 3′-UTR In/Dels of OsCYP71P6 on Single-Plant Yield
3.5. A Non-Synonymous Substitution Near the Signal Peptide Region of the OsCYP71P6 Gene Regulates Spikelet Fertility
3.6. Gene Diversity of OsCYP71P6 in Rice Varieties
4. Materials and Methods
4.1. Identification and Characterization of OsCYP71 Members in Rice Genome
4.2. Phylogenetic Tree, Gene Structure, and Conserved Motif Analysis of the OsCYP71 Family in Rice
4.3. Chromosome Localization, Gene Replication, Cis-Regulatory Elements, GO Enrichment, and Expression Analysis
4.4. Phenotyping for Different Traits
4.5. Development of Gene Specific Polymorphic Variants-Insertion/Deletions (GPV-In/Dels)
4.6. Experimental Validation of OsCYP71P6 In/Dels
4.7. Diversity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mizutani, M.; Ohta, D. Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 2010, 61, 291–315. [Google Scholar] [CrossRef]
- Nelson, D.R. The cytochrome p450 homepage. Hum. Genom. 2009, 4, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tehrim, S.; Wang, L.; Dossa, K.; Zhang, X.; Ke, T.; Liao, B. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. BMC Genom. 2017, 18, 733. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; He, T.; Wang, Y.; Liu, S.; Gao, Y.; Yan, H.; Xiang, Y. Genome and transcriptome analysis to understand the role diversification of cytochrome P450 gene under excess nitrogen treatment. BMC Plant Biol. 2021, 21, 447. [Google Scholar] [CrossRef] [PubMed]
- Jiu, S.; Xu, Y.; Wang, J.; Wang, L.; Liu, X.; Sun, W.; Sabir, I.a.; Ma, C.; Xu, W.; Wang, S. The cytochrome P450 monooxygenase inventory of grapevine (Vitis vinifera L.): Genome-wide identification, evolutionary characterization and expression analysis. Front. Genet. 2020, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Ohmura, E.; Nakamura, T.; Tian, R.H.; Yahara, S.; Yoshimitsu, H.; Nohara, T. 26-Aminocholestanol derivative, a novel key intermediate of steroidal alkaloids, from Solanum abutiloides. Tetrahedron Lett. 1995, 36, 8443–8444. [Google Scholar] [CrossRef]
- Guttikonda, S.K.; Trupti, J.; Bisht, N.C.; Chen, H.; An, Y.-Q.C.; Pandey, S.; Xu, D.; Yu, O. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases. BMC Plant Biol. 2010, 10, 243. [Google Scholar] [CrossRef]
- Schuler, M.A.; Werck-Reichhart, D. Functional genomics of P450s. Annu. Rev. Plant Biol. 2003, 54, 629–667. [Google Scholar] [CrossRef]
- Tang, B.; Cheng, Y.; Li, Y.; Li, W.; Ma, Y.; Zhou, Q.; Lu, K. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvatalugens. Chemosphere 2020, 259, 127490. [Google Scholar] [CrossRef]
- Ma, B.; Luo, Y.; Jia, L.; Qi, X.; Zeng, Q.; Xiang, Z.; He, N. Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis). J. Integr. Plant Biol. 2014, 56, 887–901. [Google Scholar] [CrossRef]
- Ren, J.; Yang, L.; Li, Q.; Zhang, Q.; Sun, C.; Liu, X.; Yang, N. Global investigation of cytochrome P450 genes in the chicken genome. Genes 2019, 10, 617. [Google Scholar] [CrossRef]
- Sun, K.; Fang, H.; Chen, Y.; Zhuang, Z.; Chen, Q.; Shan, T.; Khan, M.K.R.; Zhang, J.; Wang, B. Genome-wide analysis of the cytochrome P450 gene family involved in salt tolerance in Gossypium hirsutum. Front. Plant Sci. 2021, 12, 685054. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Song, M.; Tang, X.; Huang, S.; Linhu, B.; Jin, P.; Guo, W.; Li, F.; Xing, L. Genome-Wide Identification of the Cytochrome P450 Superfamily Genes and Targeted Editing of BnCYP704B1 Confers Male Sterility in Rapeseed. Plants 2023, 12, 365. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, J.; Ma, L.; Yan, S.; Pang, Y. Genome-wide identification and analyses of drought/salt-responsive cytochrome P450 genes in Medicago truncatula. Int. J. Mol. Sci. 2021, 22, 9957. [Google Scholar] [CrossRef]
- Qin, P.; Zheng, H.; Tao, Y.; Zhang, Y.; Chu, D. Genome-Wide Identification and Expression Analysis of the Cytochrome P450 Gene Family in Bemisiatabaci MED and Their Roles in the Insecticide Resistance. Int. J. Mol. Sci. 2023, 24, 5899. [Google Scholar] [CrossRef]
- Durst, F.; Nelson, D.R. Diversity and evolution of plant P450 and P450-reductases. Drug Metab. Durg Interat. 1995, 12, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Paquette, S.M.; Bak, S.; Feyereisen, R. Intron–exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol. 2000, 19, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R.; Schuler, M.A.; Paquette, S.M.; Werck-Reichhart, D.; Bak, S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 2004, 135, 756–772. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R. Cytochrome P450 Nomenclature, 2004. Methods Mol Biol. 2006, 320, 1–10. [Google Scholar]
- Bak, S.; Beisson, F.; Bishop, G.; Hamberger, B.; Höfer, R.; Paquette, S.; Werck-Reichhart, D. Cytochromes P450. Arab. Book/Am. Soc. Plant Biol. 2011, 9, e0144. [Google Scholar] [CrossRef]
- Du, H.; Huang, Y.; Tang, Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl. Microbiol. Biotechnol. 2010, 86, 1293–1312. [Google Scholar] [CrossRef]
- Du, Y.; Chu, H.; Chu, I.K.; Lo, C. CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. Plant Physiol. 2010, 154, 324–333. [Google Scholar] [CrossRef]
- Sawada, Y.; Kinoshita, K.; Akashi, T.; Aoki, T.; Ayabe, S.i. Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J. 2002, 31, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.; Doss, R.; Price, R.; Peterson, K.; Oliver, J. Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J. Exp. Bot. 2005, 56, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Waki, T.; Yoo, D.; Fujino, N.; Mameda, R.; Denessiouk, K.; Yamashita, S.; Motohashi, R.; Akashi, T.; Aoki, T.; Ayabe, S.-i. Identification of protein–protein interactions of isoflavonoid biosynthetic enzymes with 2-hydroxyisoflavanone synthase in soybean (Glycine max (L.) Merr.). Biochem. Biophys. Res. Commun. 2016, 469, 546–551. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, X.; Wei, R.; Liu, Z.; Shan, H.; Fan, G.; Hu, H. Functional expression and purification of CYP93C20, a plant membrane-associated cytochrome P450 from Medicago truncatula. Protein Expr. Purif. 2018, 150, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.; Turi, C.E.; Saxena, P.K. Serotonin in plants: Origin, functions, and implications. Serotonin 2019, 23–46. [Google Scholar] [CrossRef]
- Lu, H.-P.; Luo, T.; Fu, H.-W.; Wang, L.; Tan, Y.-Y.; Huang, J.-Z.; Wang, Q.; Ye, G.-Y.; Gatehouse, A.M.; Lou, Y.-G. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nat. Plants 2018, 4, 338–344. [Google Scholar] [CrossRef]
- Khush, G.S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Das, B.K.; Bhaganagare, G.R.; Manorama. Genome-wide identification, evolutionary and expression analyses of putative Fe–S biogenesis genes in rice (Oryza sativa). Genome 2012, 55, 571–583. [Google Scholar] [CrossRef]
- Sakamoto, T.; Matsuoka, M. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 2008, 11, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Z.; Zhang, G.; Lu, H.; Qin, P.; Qi, M.; Yu, Y.; Jiao, B.; Zhao, X.; Gao, Q. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China Life Sci. 2020, 63, 1688–1702. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wang, Y.; Xue, D.; Wang, J.; Yan, M.; Liu, G.; Dong, G.; Zeng, D.; Lu, Z.; Zhu, X. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 2010, 42, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chern, M.; Yin, J.; Wang, J.; Chen, X. Recent advances in broad-spectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 2019, 50, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-Y.; Li, X.-X.; Zhang, Y.-B.; Fahad, S.; Fei, W. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation. J. Integr. Agric. 2022, 21, 3185–3198. [Google Scholar] [CrossRef]
- Han, B.; Xue, Y. Genome-wide intraspecific DNA-sequence variations in rice. Curr. Opin. Plant Biol. 2003, 6, 134–138. [Google Scholar] [CrossRef]
- Miyashita, N.T.; Yoshida, K.; Ishii, T. DNA variation in the metallothionein genes in wild rice Oryza rufipogon: Relationship between DNA sequence polymorphism, codon bias and gene expression. Genes Genet. Syst. 2005, 80, 173–183. [Google Scholar] [CrossRef]
- Alexandrov, N.; Tai, S.; Wang, W.; Mansueto, L.; Palis, K.; Fuentes, R.R.; Ulat, V.J.; Chebotarov, D.; Zhang, G.; Li, Z. SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res. 2015, 43, D1023–D1027. [Google Scholar] [CrossRef]
- Chidambaranathan, P.; Sabarinathan, S.; Sanghamitra, P.; Dash, G.K.; Lenka, D.; Balasubramania, C.; KJ, P.; Sahoo, R.K.; Samantaray, S.; BN, D. Haplogenic Quantitative Effects Regulate Flooded Germination, Subsequent Water Deficit Stress, and Recovery in Direct Seeded Rice. Authorea 2022. [Google Scholar] [CrossRef]
- Xu, W.; Bak, S.; Decker, A.; Paquette, S.M.; Feyereisen, R.; Galbraith, D.W. Microarray-based analysis of gene expression in very large gene families: The cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 2001, 272, 61–74. [Google Scholar] [CrossRef]
- Xie, M.-M.; Gong, D.-P.; Li, F.-X.; Liu, G.-S.; Sun, Y.-H. Genome-wide analysis of cytochrome P450 monooxygenase genes in the tobacco. Yi Chuan Hered. 2013, 35, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.R.; Rao, K.V.; Reddy, V.D. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 2013, 513, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, S.; Wang, J.; Wong, G.K.-S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Kesawat, M.S.; Kherawat, B.S.; Katara, J.L.; Parameswaran, C.; Misra, N.; Kumar, M.; Chung, S.-M.; Alamri, S.; Siddiqui, M.H. Genome-wide analysis of proline-rich extensin-like receptor kinases (PERKs) gene family reveals their roles in plant development and stress conditions in Oryza sativa L. Plant Sci. 2023, 334, 111749. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Maisonneuve, S.; Isshiki, M.; Mizutani, M.; Chen, L.; Wong, H.L.; Kawasaki, T.; Shimamoto, K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J. Biol. Chem. 2010, 285, 11308–11313. [Google Scholar] [CrossRef]
- Fang, Y.; Jiang, J.; Du, Q.; Luo, L.; Li, X.; Xie, X. Cytochrome P450 superfamily: Evolutionary and functional divergence in sorghum (Sorghum bicolor) stress resistance. J. Agric. Food Chem. 2021, 69, 10952–10961. [Google Scholar] [CrossRef]
- Khatri, P.; Wally, O.; Rajcan, I.; Dhaubhadel, S. Comprehensive analysis of cytochrome P450 monooxygenases reveals insight into their role in partial resistance against Phytophthora sojae in soybean. Front. Plant Sci. 2022, 13, 862314. [Google Scholar] [CrossRef]
- Hughes, A.L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. B Biol. Sci. 1994, 256, 119–124. [Google Scholar]
- Lin, H.; Zhu, W.; Silva, J.C.; Gu, X.; Buell, C.R. Intron gain and loss in segmentally duplicated genes in rice. Genome Biol. 2006, 7, R41. [Google Scholar] [CrossRef]
- Vasav, A.; Barvkar, V. Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genom. 2019, 20, 116. [Google Scholar] [CrossRef]
- Du, H.; Ran, F.; Dong, H.-L.; Wen, J.; Li, J.-N.; Liang, Z. Genome-wide analysis, classification, evolution, and expression analysis of the cytochrome P450 93 family in land plants. PLoS ONE 2016, 11, e0165020. [Google Scholar] [CrossRef] [PubMed]
- Kesawat, M.S.; Kherawat, B.S.; Ram, C.; Singh, A.; Dey, P.; Gora, J.S.; Misra, N.; Chung, S.-M.; Kumar, M. Genome-Wide Identification and Expression Profiling of Aconitase Gene Family Members Reveals Their Roles in Plant Development and Adaptation to Diverse Stress in Triticum aestivum L. Plants 2022, 11, 3475. [Google Scholar] [CrossRef] [PubMed]
- Kesawat, M.S.; Kherawat, B.S.; Singh, A.; Dey, P.; Routray, S.; Mohapatra, C.; Saha, D.; Ram, C.; Siddique, K.H.; Kumar, A. Genome-wide analysis and characterization of the proline-rich extensin-like receptor kinases (PERKs) gene family reveals their role in different developmental stages and stress conditions in wheat (Triticum aestivum L.). Plants 2022, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Hapgood, J.P.; Riedemann, J.; Scherer, S.D. Regulation of gene expression by GC-rich DNA Cis-elements. Cell Biol. Int. 2001, 25, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Freeling, M. Bias in plant gene content following different sorts of duplication: Tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 2009, 60, 433–453. [Google Scholar] [CrossRef] [PubMed]
- Heidari, P.; Abdullah; Faraji, S.; Poczai, P. Magnesium transporter gene family: Genome-wide identification and characterization in Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum of family Malvaceae. Agronomy 2021, 11, 1651. [Google Scholar] [CrossRef]
- Heidari, P.; Puresmaeli, F.; Mora-Poblete, F. Genome-wide identification and molecular evolution of the magnesium transporter (MGT) gene family in Citrullus lanatus and Cucumis sativus. Agronomy 2022, 12, 2253. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kherawat, B.S.; Singh, A.; Dey, P.; Kabi, M.; Debnath, D.; Saha, D.; Khandual, A.; Rout, S.; Manorama; et al. Genome-wide identification and characterization of the brassinazole-resistant (BZR) gene family and its expression in the various developmental stage and stress conditions in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2021, 22, 8743. [Google Scholar] [CrossRef]
- Kumar, M.; Kherawat, B.S.; Dey, P.; Saha, D.; Singh, A.; Bhatia, S.K.; Ghodake, G.S.; Kadam, A.A.; Kim, H.-U.; Manorama; et al. Genome-wide identification and characterization of PIN-FORMED (PIN) gene family reveals role in developmental and various stress conditions in Triticum aestivum L. Int. J. Mol. Sci. 2021, 22, 7396. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Hu, T.; Zhang, F.; Wang, B.; Li, C.; Yang, T.; Li, H.; Lu, Y.; Giovannoni, J.J. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. Plant Cell 2017, 29, 2249–2268. [Google Scholar] [CrossRef]
- Pracharoenwattana, I.; Zhou, W.; Keech, O.; Francisco, P.B.; Udomchalothorn, T.; Tschoep, H.; Stitt, M.; Gibon, Y.; Smith, S.M. Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J. 2010, 62, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, H.; Wang, Y.; Wang, L.; Chang, X.; Jing, R.; Hao, C.; Zhang, X. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). J. Exp. Bot. 2014, 65, 5351–5365. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; He, H.; Chen, L.-B.; Li, L.; Liang, M.-Z.; Wang, X.-F.; Liu, X.-G.; He, G.-M.; Chen, R.-S.; Ma, L.-G. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol. Plant 2008, 1, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Kanjanaphachoat, P.; Wei, B.-Y.; Lo, S.-F.; Wang, I.-W.; Wang, C.-S.; Yu, S.-M.; Yen, M.-L.; Chiu, S.-H.; Lai, C.-C.; Chen, L.-J. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxlyase results in a dark brown phenotype and stunted growth. Plant Mol. Biol. 2012, 78, 525–543. [Google Scholar] [CrossRef]
- Lee, K.; Back, K. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J. Pineal Res. 2017, 62, e12392. [Google Scholar] [CrossRef] [PubMed]
- Eveland, A.L.; McCarty, D.R.; Koch, K.E. Transcript profiling by 3′-untranslated region sequencing resolves expression of gene families. Plant Physiol. 2008, 146, 32–44. [Google Scholar] [CrossRef]
- Vignesh, M.; Nepolean, T.; Hossain, F.; Singh, A.; Gupta, H. Sequence variation in 3′ UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel. J. Plant Biochem. Biotechnol. 2013, 22, 401–408. [Google Scholar] [CrossRef]
- Kim, S.-R.; Ramos, J.; Ashikari, M.; Virk, P.S.; Torres, E.A.; Nissila, E.; Hechanova, S.L.; Mauleon, R.; Jena, K.K. Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice 2016, 9, 12. [Google Scholar] [CrossRef]
- Brignac-Huber, L.M.; Park, J.W.; Reed, J.R.; Backes, W.L. Cytochrome P450 organization and function are modulated by endoplasmic reticulum phospholipid heterogeneity. Drug Metab. Dispos. 2016, 44, 1859–1866. [Google Scholar] [CrossRef]
- Mustafa, G.; Nandekar, P.P.; Camp, T.J.; Bruce, N.J.; Gregory, M.C.; Sligar, S.G.; Wade, R.C. Influence of transmembrane helix mutations on cytochrome P450-membrane interactions and function. Biophys. J. 2019, 116, 419–432. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, J.; Xiao, Z.; Cheng, F.; Xu, H.; Tang, L.; Chen, W.; Xu, Z.; Xu, Q. Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China. Breed. Sci. 2016, 66, 599–605. [Google Scholar] [CrossRef]
- Dan, L.; WANG, J.-y.; WANG, X.-x.; YANG, X.-l.; Jian, S.; CHEN, W.-f. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. J. Integr. Agric. 2015, 14, 811–822. [Google Scholar]
- Vemireddy, L.R.; Kadambari, G.; Reddy, G.E.; Kola, V.S.R.; Ramireddy, E.; Puram, V.R.R.; Badri, J.; Eslavath, S.N.; Bollineni, S.N.; Naik, B.J. Uncovering of natural allelic variants of key yield contributing genes by targeted resequencing in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 8192. [Google Scholar] [CrossRef]
- Abbai, R.; Singh, V.K.; Nachimuthu, V.V.; Sinha, P.; Selvaraj, R.; Vipparla, A.K.; Singh, A.K.; Singh, U.M.; Varshney, R.K.; Kumar, A. Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. Plant Biotechnol. J. 2019, 17, 1612–1622. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.-J.; Yan, S.; Yang, Y.-C.; Zeng, X.-H.; Fang, Y.-W.; Zeng, S.-Y.; Tian, C.-Y.; Sun, Y.-W.; Tang, S.-Z.; Gu, M.-H. Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica 2009, 169, 215–226. [Google Scholar] [CrossRef]
- Finn, R.; Griffiths-Jones, S.; Bateman, A. Identifying protein domains with the Pfam database. CurrProtoc Bioinform. 2003, 1, 2.5.1–2.5.19. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef]
- Letunic, I.; Doerks, T.; Bork, P. SMART 6: Recent updates and new developments. Nucleic Acids Res. 2009, 37, D229–D232. [Google Scholar] [CrossRef]
- Kozlowski, L.P. IPC–isoelectric point calculator. Biol. Direct 2016, 11, 55. [Google Scholar] [CrossRef]
- Nakai, K.; Horton, P. PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999, 24, 34–60. [Google Scholar] [CrossRef] [PubMed]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Wolfe, D.; Dudek, S.; Ritchie, M.D.; Pendergrass, S.A. Visualizing genomic information across chromosomes with PhenoGram. BioData Min. 2013, 6, 18. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38, W64–W70. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Yau, S. Efficiency of alpha-lattice designs in international variety yield trials of barley and wheat. J. Agric. Sci. 1997, 128, 5–9. [Google Scholar] [CrossRef]
- Murray, M.; Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed]
- Chidambaranathan, P.; Balasubramaniasai, C.; Behura, N.; Purty, M.; Samantaray, S.; Subudhi, H.; Ngangkham, U.; Devanna, B.; Katara, J.L.; Kumar, A. Effects of high temperature on spikelet sterility in rice (Oryza sativa L.): Association between molecular markers and allelic phenotypic effect in field condition. Genet. Resour. Crop Evol. 2021, 68, 1923–1935. [Google Scholar] [CrossRef]
- Chambers, J.M. Linear models. In Statistical Models in S; Routledge: Oxfordshire, UK, 2017; pp. 95–144. Available online: https://www.routledge.com/Statistical-Models-in-S/Chambers-Hastie/p/book/9780412830402 (accessed on 13 July 2023).
- Babu, B.K.; Meena, V.; Agarwal, V.; Agrawal, P. Population structure and genetic diversity analysis of Indian and exotic rice (Oryza sativa L.) accessions using SSR markers. Mol. Biol. Rep. 2014, 41, 4329–4339. [Google Scholar] [CrossRef]
- Singh, N.; Choudhury, D.R.; Singh, A.K.; Kumar, S.; Srinivasan, K.; Tyagi, R.; Singh, N.; Singh, R. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE 2013, 8, e84136. [Google Scholar] [CrossRef]
- Nachimuthu, V.V.; Muthurajan, R.; Duraialaguraja, S.; Sivakami, R.; Pandian, B.A.; Ponniah, G.; Gunasekaran, K.; Swaminathan, M.; KK, S.; Sabariappan, R. Analysis of population structure and genetic diversity in rice germplasm using SSR markers: An initiative towards association mapping of agronomic traits in Oryza sativa. Rice 2015, 8, 30. [Google Scholar] [CrossRef]
Proposed Gene Name | Gene ID | Chromosome | Genomic Location | Orientation | CDS Length (bp) | Protein Length (aa) | Molecular Weight (KDa) | Isoelectric Point (pI) | GRAVY | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|---|
OsCYP71K1 | BGIOSGA001610 | 1 | 1:17410528-17412154 | Reverse | 1557 | 518 | 57.41 | 7.73 | 0.0144 | endomembrane system |
OsCYP71C1 | BGIOSGA003715 | 1 | 1:22500639-22503588 | Forward | 1413 | 470 | 53 | 5.85 | −0.172 | plasma membrane |
OsCYP71U1 | BGIOSGA004274 | 1 | 1:32296506-32298186 | Forward | 1584 | 527 | 58.27 | 8.09 | −0.092 | endomembrane system |
OsCYP71AA1 | BGIOSGA005209 | 1 | 1:46261115-46263199 | Forward | 1572 | 523 | 58.12 | 8.31 | 0.007 | endomembrane system |
OsCYP71AA2 | BGIOSGA005210 | 1 | 1:46266756-46268515 | Forward | 1605 | 534 | 59.45 | 8.35 | −0.029 | endomembrane system |
OsCYP71T1 | BGIOSGA003049 | 1 | 1:7516842-7519131 | Forward | 1689 | 562 | 60.51 | 5.64 | 0.051 | endomembrane system |
OsCYP71T2 | BGIOSGA003050 | 1 | 1:7524389-7527482 | Forward | 1692 | 563 | 60.53 | 6.62 | 0.019 | endomembrane system |
OsCYP71T3 | BGIOSGA003054 | 1 | 1:7558245-7560317 | Forward | 1614 | 537 | 59.18 | 7.42 | −0.018 | endomembrane system |
OsCYP71U4 | BGIOSGA007962 | 2 | 2:11083073-11087397 | Forward | 1503 | 500 | 54.15 | 6.47 | −0.027 | endomembrane system |
OsCYP71AB6 | BGIOSGA008255 | 2 | 2:18910371-18913246 | Forward | 1518 | 505 | 56.15 | 8.88 | −0.098 | endomembrane system |
OsCYP71W1 | BGIOSGA008261 | 2 | 2:19021940-19025270 | Forward | 1614 | 537 | 60.1 | 8.70 | −0.063 | endomembrane system |
OsCYP71U5 | BGIOSGA008265 | 2 | 2:19083433-19088060 | Forward | 1590 | 529 | 59.11 | 8.17 | −0.146 | endomembrane system |
OsCYP71U6 | BGIOSGA008266 | 2 | 2:19089067-19092362 | Forward | 1578 | 525 | 58.86 | 8.43 | −0.168 | endomembrane system |
OsCYP71Z4 | BGIOSGA006339 | 2 | 2:20885281-20889418 | Reverse | 1542 | 513 | 56.9 | 7.98 | −0.02 | plasma membrane |
OsCYP71T4 | BGIOSGA008463 | 2 | 2:23403404-23404909 | Forward | 1506 | 501 | 55.31 | 8.00 | 0.032 | endomembrane system |
OsCYP71Z5 | BGIOSGA008468 | 2 | 2:23502957-23505833 | Forward | 1566 | 521 | 57.34 | 8.22 | −0.004 | endomembrane system |
OsCYP71Z6 | BGIOSGA006215 | 2 | 2:23525585-23528377 | Reverse | 1557 | 518 | 57.46 | 7.51 | −0.028 | endomembrane system |
OsCYP71T5 | BGIOSGA006210 | 2 | 2:23642185-23643714 | Reverse | 1530 | 509 | 56.07 | 7.03 | −0.009 | endomembrane system |
OsCYP71X1 | BGIOSGA007002 | 2 | 2:5495789-5497484 | Reverse | 1560 | 519 | 57.57 | 7.63 | −0.07 | endomembrane system |
OsCYP71K2 | BGIOSGA007683 | 2 | 2:5517065-5518619 | Forward | 966 | 321 | 36.35 | 5.45 | −0.089 | endomembrane system |
OsCYP71X2 | BGIOSGA007686 | 2 | 2:5560619-5562432 | Forward | 1566 | 521 | 57.65 | 6.82 | −0.031 | endomembrane system |
OsCYP71X3 | BGIOSGA007688 | 2 | 2:5569750-5571671 | Forward | 1548 | 515 | 58.05 | 7.74 | −0.131 | endomembrane system |
OsCYP71X4 | BGIOSGA007691 | 2 | 2:5604868-5606669 | Forward | 1566 | 521 | 57.49 | 6.78 | −0.042 | endomembrane system |
OsCYP71K3 | BGIOSGA007694 | 2 | 2:5642839-5644448 | Forward | 1530 | 509 | 56.32 | 8.60 | 0.057 | endomembrane system |
OsCYP71AC1 | BGIOSGA007695 | 2 | 2:5644996-5646510 | Forward | 1422 | 473 | 52.17 | 8.18 | −0.055 | endomembrane system |
OsCYP71K4 | BGIOSGA007696 | 2 | 2:5647245-5648907 | Forward | 1572 | 523 | 57.78 | 7.54 | −0.052 | endomembrane system |
OsCYP71V1 | BGIOSGA007791 | 2 | 2:7497274-7499270 | Forward | 1536 | 511 | 56.6 | 8.06 | 0.006 | plasma membrane |
OsCYP71V2 | BGIOSGA007792 | 2 | 2:7500786-7503251 | Forward | 1527 | 508 | 56.49 | 7.97 | 0.057 | endomembrane system |
OsCYP71P4 | BGIOSGA011508 | 3 | 3:2163933-2165882 | Reverse | 1644 | 547 | 59.2 | 6.95 | 0.047 | endomembrane system |
OsCYP71T6 | BGIOSGA010447 | 3 | 3:21911994-21913514 | Reverse | 1521 | 506 | 55.75 | 6.45 | 0.009 | endomembrane system |
OsCYP71E2 | BGIOSGA012992 | 3 | 3:23090126-23097523 | Forward | 1554 | 517 | 57.42 | 7.58 | −0.409 | plasma membrane |
OsCYP71W2 | BGIOSGA013057 | 3 | 3:25210900-25212580 | Forward | 1536 | 511 | 57.5 | 7.69 | −0.096 | endomembrane system |
OsCYP71W3 | BGIOSGA013059 | 3 | 3:25254727-25257057 | Forward | 1614 | 537 | 60.76 | 7.42 | −0.094 | endomembrane system |
OsCYP71W4 | BGIOSGA013063 | 3 | 3:25338238-25340280 | Forward | 1542 | 513 | 57.48 | 7.67 | −0.063 | endomembrane system |
OsCYP71AB7 | BGIOSGA010140 | 3 | 3:29073720-29075333 | Reverse | 1614 | 537 | 57.39 | 7.98 | 0.06 | endomembrane system |
OsCYP71V3 | BGIOSGA013536 | 3 | 3:34645395-34647054 | Forward | 1506 | 501 | 55.22 | 9.30 | 0.034 | endomembrane system |
OsCYP71U7 | BGIOSGA013602 | 3 | 3:35634216-35637043 | Forward | 1425 | 474 | 52.31 | 7.62 | −0.047 | endomembrane system |
OsCYP71U8 | BGIOSGA013604 | 3 | 3:35641266-35643533 | Forward | 1542 | 513 | 56.61 | 7.74 | −0.012 | endomembrane system |
OsCYP71U9 | BGIOSGA013605 | 3 | 3:35649465-35651890 | Forward | 1584 | 527 | 58.39 | 7.46 | −0.07 | endomembrane system |
OsCYP71U10 | BGIOSGA013606 | 3 | 3:35654380-35656113 | Forward | 1557 | 518 | 57.89 | 8.64 | −0.033 | endomembrane system |
OsCYP71E3 | BGIOSGA013948 | 3 | 3:40194199-40200533 | Forward | 1584 | 527 | 58.42 | 9.44 | −0.028 | endomembrane system |
OsCYP71AB8 | BGIOSGA011112 | 3 | 3:8385202-8386836 | Reverse | 1506 | 501 | 55.39 | 8.28 | −0.033 | endomembrane system |
OsCYP71AB9 | BGIOSGA011111 | 3 | 3:8394147-8396376 | Reverse | 1503 | 500 | 56.22 | 8.12 | −0.15 | endomembrane system |
OsCYP71AB10 | BGIOSGA011586 | 3 | 3:954097-955621 | Reverse | 1446 | 481 | 52.38 | 7.52 | 0.105 | endomembrane system |
OsCYP71Z7 | BGIOSGA016146 | 4 | 4:13300800-13303842 | Forward | 1536 | 511 | 56.74 | 8.24 | 0.0001 | endomembrane system |
OsCYP71S2 | BGIOSGA014867 | 4 | 4:22441383-22445458 | Reverse | 2301 | 766 | 84.89 | 8.42 | −0.324 | endomembrane system |
OsCYP71S3 | BGIOSGA014866 | 4 | 4:22450395-22452270 | Reverse | 1536 | 511 | 55.88 | 8.52 | −0.074 | endomembrane system |
OsCYP71Z8 | BGIOSGA015504 | 4 | 4:6445565-6447178 | Reverse | 1524 | 507 | 56.65 | 6.89 | −0.014 | endomembrane system |
OsCYP71Z9 | BGIOSGA015981 | 4 | 4:6553171-6555010 | Forward | 1506 | 501 | 55.76 | 6.04 | 0.011 | endomembrane system |
OsCYP71S4 | BGIOSGA015743 | 4 | 4:89164-90761 | Reverse | 1500 | 499 | 55.32 | 7.46 | −0.05 | endomembrane system |
OsCYP71AF2 | BGIOSGA019698 | 5 | 5:18144104-18145713 | Forward | 1536 | 511 | 55.4 | 9.54 | −0.096 | endomembrane system |
OsCYP71AD | BGIOSGA018026 | 5 | 5:22038254-22039816 | Reverse | 1563 | 520 | 57.1 | 6.35 | −0.087 | endomembrane system |
OsCYP71P5 | BGIOSGA020098 | 5 | 5:25741450-25745152 | Forward | 1539 | 512 | 58.36 | 8.73 | −0.237 | endomembrane system |
OsCYP71R1 | BGIOSGA020185 | 5 | 5:27004831-27006483 | Forward | 1569 | 522 | 56.66 | 6.64 | −0.083 | endomembrane system |
OsCYP71P6 | BGIOSGA018523 | 5 | 5:8791390-8793045 | Reverse | 1560 | 519 | 57.32 | 7.62 | −0.067 | mitochondrial membrane |
OsCYP71C2 | BGIOSGA022809 | 6 | 6:13456419-13457960 | Forward | 1416 | 471 | 53.44 | 8.78 | 0.002 | endomembrane system |
OsCYP71T7 | BGIOSGA021189 | 6 | 6:18739993-18741510 | Reverse | 1518 | 505 | 55.67 | 7.52 | 0.049 | endomembrane system |
OsCYP71S1 | BGIOSGA022122 | 6 | 6:190381-192067 | Forward | 1557 | 518 | 56.41 | 8.18 | 0.007 | endomembrane system |
OsCYP71AB11 | BGIOSGA020890 | 6 | 6:25633293-25634951 | Reverse | 1584 | 527 | 57.95 | 8.12 | −0.085 | endomembrane system |
OsCYP71K5 | BGIOSGA023340 | 6 | 6:27270045-27274299 | Forward | 1560 | 519 | 57.07 | 8.65 | −0.042 | endomembrane system |
OsCYP71Y1 | BGIOSGA023341 | 6 | 6:27281079-27282759 | Forward | 1539 | 512 | 55.46 | 7.93 | 0.089 | endomembrane system |
OsCYP71Y2 | BGIOSGA023345 | 6 | 6:27304346-27305982 | Forward | 1569 | 522 | 57.41 | 7.70 | −0.039 | endomembrane system |
OsCYP71Y3 | BGIOSGA023346 | 6 | 6:27308296-27309910 | Forward | 1545 | 514 | 56.39 | 7.86 | −0.008 | endomembrane system |
OsCYP71K6 | BGIOSGA023350 | 6 | 6:27362563-27367339 | Forward | 1503 | 500 | 56.9 | 9.67 | −0.053 | endomembrane system |
OsCYP71AC2 | BGIOSGA023351 | 6 | 6:27374980-27377638 | Forward | 1632 | 543 | 60.63 | 7.55 | −0.133 | endomembrane system |
OsCYP71AF1 | BGIOSGA020805 | 6 | 6:27378645-27380259 | Reverse | 1515 | 504 | 55.24 | 6.38 | −0.001 | endomembrane system |
OsCYP71X5 | BGIOSGA020704 | 6 | 6:29562437-29565945 | Reverse | 1641 | 546 | 60.56 | 8.19 | −0.125 | endomembrane system |
OsCYP71Q1 | BGIOSGA024456 | 7 | 7:11074316-11076970 | Reverse | 1113 | 370 | 42.15 | 5.61 | −0.053 | endomembrane system |
OsCYP71AB12 | BGIOSGA027933 | 8 | 8:1799581-1805006 | Forward | 3498 | 1165 | 130.4 | 7.42 | −0.086 | mitochondrial membrane |
OsCYP71W5 | BGIOSGA026880 | 8 | 8:23757559-23759121 | Reverse | 1563 | 520 | 58.35 | 7.73 | −0.038 | endomembrane system |
OsCYP71T8 | BGIOSGA028809 | 8 | 8:24254355-24255857 | Forward | 1503 | 500 | 55.99 | 8.22 | 0.037 | endomembrane system |
OsCYP71T9 | BGIOSGA026711 | 8 | 8:26774318-26775838 | Reverse | 1521 | 506 | 56.35 | 7.19 | −0.012 | endomembrane system |
OsCYP71U11 | BGIOSGA026530 | 8 | 8:29302265-29303901 | Reverse | 1554 | 517 | 56.33 | 6.26 | −0.008 | endomembrane system |
OsCYP71C3 | BGIOSGA027793 | 8 | 8:327857-329461 | Reverse | 1605 | 534 | 59.94 | 6.63 | −0.003 | plasma membrane |
OsCYP71C4 | BGIOSGA027791 | 8 | 8:335792-337318 | Reverse | 1527 | 508 | 57.55 | 6.70 | −0.012 | endomembrane system |
OsCYP71C5 | BGIOSGA027790 | 8 | 8:341090-342922 | Reverse | 1650 | 549 | 62.01 | 6.04 | −0.192 | endomembrane system |
OsCYP71C6 | BGIOSGA027840 | 8 | 8:347325-348858 | Forward | 1389 | 462 | 52.15 | 7.86 | −0.084 | endomembrane system |
OsCYP71C7 | BGIOSGA027841 | 8 | 8:358473-360517 | Forward | 1575 | 524 | 59.22 | 8.46 | −0.0001 | endomembrane system |
OsCYP71AB13 | BGIOSGA027437 | 8 | 8:8239548-8245451 | Reverse | 1575 | 524 | 58.18 | 9.90 | −0.082 | endomembrane system |
OsCYP71W6 | BGIOSGA030841 | 9 | 9:14907658-14909929 | Forward | 1545 | 514 | 58.11 | 8.71 | −0.125 | endomembrane system |
OsCYP71W7 | BGIOSGA030842 | 9 | 9:14912617-14916216 | Forward | 1557 | 518 | 58.96 | 7.81 | −0.107 | endomembrane system |
OsCYP71W8 | BGIOSGA029682 | 9 | 9:14918713-14922927 | Reverse | 1569 | 522 | 59.65 | 8.50 | −0.208 | endomembrane system |
OsCYP71E4 | BGIOSGA029664 | 9 | 9:15258631-15261118 | Reverse | 1533 | 510 | 55.49 | 7.01 | 0.003 | endomembrane system |
OsCYP71T10 | BGIOSGA029663 | 9 | 9:15266334-15268285 | Reverse | 1518 | 505 | 54.62 | 7.39 | 0.031 | endomembrane system |
OsCYP71T11 | BGIOSGA031134 | 9 | 9:19550851-19553047 | Forward | 1446 | 481 | 52.45 | 6.58 | −0.002 | endomembrane system |
OsCYP71AK | BGIOSGA031135 | 9 | 9:19556511-19558129 | Forward | 1521 | 506 | 54.63 | 8.97 | −0.012 | endomembrane system |
OsCYP71C8 | BGIOSGA030097 | 9 | 9:5147576-5149433 | Reverse | 1530 | 509 | 56.53 | 8.78 | −0.032 | endomembrane system |
OsCYP71Z1 | BGIOSGA031844 | 10 | 10:14240993-14243733 | Reverse | 1572 | 523 | 58.4 | 7.21 | −0.019 | endomembrane system |
OsCYP71Z2 | BGIOSGA031843 | 10 | 10:14247493-14251099 | Reverse | 1575 | 524 | 58.4 | 7.80 | −0.098 | endomembrane system |
OsCYP71Z3 | BGIOSGA031842 | 10 | 10:14257972-14262017 | Reverse | 1560 | 519 | 57.9 | 8.56 | −0.119 | endomembrane system |
OsCYP71AB1 | BGIOSGA032580 | 10 | 10:3806982-3812472 | Forward | 1506 | 501 | 56.15 | 8.03 | −0.045 | endomembrane system |
OsCYP71AB2 | BGIOSGA032583 | 10 | 10:3912905-3915694 | Forward | 1485 | 494 | 55.26 | 8.18 | −0.047 | endomembrane system |
OsCYP71AB3 | BGIOSGA032584 | 10 | 10:3947165-3951250 | Forward | 1497 | 498 | 55.47 | 9.16 | −0.038 | endomembrane system |
OsCYP71AB4 | BGIOSGA032599 | 10 | 10:4268768-4270367 | Forward | 1512 | 503 | 57.9 | 6.60 | −0.168 | endomembrane system |
OsCYP71AB5 | BGIOSGA032634 | 10 | 10:5163945-5165932 | Forward | 1509 | 502 | 55.78 | 9.24 | 0.024 | endomembrane system |
OsCYP71P1 | BGIOSGA032653 | 10 | 10:5794451-5798343 | Forward | 1542 | 513 | 57.9 | 6.92 | −0.155 | endomembrane system |
OsCYP71P2 | BGIOSGA032680 | 10 | 10:6875415-6884974 | Forward | 1608 | 535 | 58.49 | 6.56 | 0.02 | endomembrane system |
OsCYP71P3 | BGIOSGA032683 | 10 | 10:7021038-7022711 | Forward | 1581 | 526 | 57.52 | 7.67 | −0.072 | endomembrane system |
OsCYP71E1 | BGIOSGA036106 | 12 | 12:16043912-16046285 | Reverse | 1569 | 522 | 58.42 | 8.83 | −0.166 | endomembrane system |
OsCYP71U2 | BGIOSGA035935 | 12 | 12:19695567-19697582 | Reverse | 1557 | 518 | 55.44 | 6.75 | 0.149 | endomembrane system |
OsCYP71U3 | BGIOSGA035934 | 12 | 12:19701585-19703297 | Reverse | 1713 | 570 | 60.72 | 7.15 | 0.197 | endomembrane system |
OsCYP71V4 | BGIOSGA037944 | Scaffold | AAAA02035682.1:5479-7227 | Forward | 1542 | 513 | 57.3 | 7.36 | −0.012 | endomembrane system |
OsCYP71W9 | BGIOSGA038041 | Scaffold | AAAA02036020.1:14706-17551 | Forward | 1530 | 509 | 57.07 | 8.21 | −0.305 | endomembrane system |
OsCYP71U12 | BGIOSGA038175 | Scaffold | AAAA02036741.1:10396-12075 | Reverse | 1566 | 521 | 57.9 | 8.24 | −0.071 | endomembrane system |
OsCYP71AB14 | BGIOSGA038318 | Scaffold | AAAA02037602.1:3877-5590 | Forward | 1509 | 502 | 56.24 | 9.26 | −0.25 | endomembrane system |
Marker | Major Allele Frequency | No. of Varieties | Allele No | Gene Diversity | Heterozygosity | PIC |
---|---|---|---|---|---|---|
CYP71P6-1 | 0.8626 | 131 | 2.0000 | 0.2370 | 0 | 0.2090 |
CYP71P6-4 | 0.8168 | 131 | 2.0000 | 0.2993 | 0 | 0.2545 |
Mean | 0.8397 | 131 | 2.0000 | 0.2682 | 0 | 0.2317 |
Source of Variation | df | SS | MS | Est. Var. | Percent Variation (%) |
---|---|---|---|---|---|
Among Populations | 1 | 39.256 | 39.256 | 0.498 | 81% |
Among Individual varieties | 129 | 31.003 | 0.240 | 0.120 | 19% |
Within Individual varieties | 131 | 0.000 | 0.000 | 0.000 | 0% |
Total | 261 | 70.260 | 0.618 | 100% |
Trait | Mean | Median | Mode | Kurtosis | Skewness | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Primer | OsCYP71P6-1 | OsCYP71 P6-4 | OsCYP71 P6-1 | OsCYP71 P6-4 | OsCYP71 P6-1 | OsCYP71 P6-4 | OsCYP71 P6-1 | OsCYP71 P6-4 | OsCYP71 P6-1 | OsCYP71 P6-4 | ||||||||||
OsCYP71P6 | ||||||||||||||||||||
Amplicon length (bp) | 320 | 350 | 380 | 400 | 320 | 350 | 380 | 400 | 320 | 350 | 380 | 400 | 320 | 350 | 380 | 400 | 320 | 350 | 380 | 400 |
No. of tillers (Nos.) | 10.29 | 11.98 a | 10.32 | 11.41 | 10 | 10.33 | 10 | 10.66 | 12 | 10.33 | 12 | 16.66 | −0.08 | 2.19 | 1.62 | −0.68 | 0.43 | 1.2 | 0.82 | 0.25 |
Panicle length (cm) | 26.15 | 26.24 | 25.89 | 27.36 b | 26.2 | 25.96 | 25.9 | 27.21 | 26.46 | _ | 26.46 | _ | 0.78 | −0.91 | 0.65 | −0.08 | −0.32 | 0.33 | −0.27 | 0.41 |
Single-plant yield (g) | 31.21 | 37.9 a | 30.71 | 38.48 b | 30.06 | 34.7 | 29.8 | 36.26 | 33.65 | _ | 33.65 | _ | 0.81 | 1.11 | 2.64 | −0.83 | 0.67 | 1.12 | 1.03 | 0.28 |
No. of spikelets (Nos.) | 168.26 | 171.81 | 163.99 | 189.93 b | 165.66 | 176.83 | 163.33 | 190.16 | 170.33 | _ | 170.3 | 165.66 | 0.29 | −0.02 | 0.48 | 0.45 | 0.27 | −0.18 | 0.27 | 0.12 |
Unfilled grain (Nos.) | 33.95 | 29.2 | 30.08 | 47.65 b | 31 | 26.83 | 27.66 | 44 | 27.66 | _ | 27.66 | 44 | 7.58 | 1.27 | 0.01 | 5.43 | 1.85 | 1.08 | 0.68 | 1.81 |
Filled grain (Nos.) | 134.3 | 142.61 | 133.91 | 142.27 | 134.66 | 150 | 134.66 | 150.5 | 133 | _ | 133 | 156 | 0.5 | −0.24 | 1.02 | −0.07 | 0.39 | −0.37 | 0.48 | −0.34 |
Panicle weight (g) | 3.32 | 3.52 | 3.29 | 3.61 | 3.23 | 3.55 | 3.23 | 3.67 | 3.06 | _ | 3.18 | 2.98 | 6.04 | −0.03 | 7.09 | 0.27 | 1.37 | 0.29 | 1.52 | 0.1 |
100 seed weight (g) | 2.3 | 2.27 | 2.27 | 2.4 | 2.35 | 2.26 | 2.32 | 2.39 | 2.38 | 2.2 | 2.38 | _ | 1.28 | 1.22 | 1.33 | 1.41 | −0.81 | 0.15 | −0.73 | −0.78 |
Primer Name | Traits a | Mean ± SD, AL320 b | Mean ± SD, AL350 b | p Value c | ||
---|---|---|---|---|---|---|
OsCYP71P6-1 (In varieties) | NT | 10.29 ± 3.09 | 11.98 ± 4.09 | 0.04, * | ||
SPY | 31.21 ± 11.42 | 37.90 ± 15.38 | 0.03, * | |||
OsCYP71P6-4 (In varieties) | Traits | Mean ± SD, AL380 b | Mean ± SD, AL400 b | p value | ||
SPY | 30.71 ± 11.38 | 38.48 ± 13.87 | 0.005, ** | |||
NS | 163.99 ± 54.16 | 189.93 ± 43.86 | 0.004, ** | |||
PW | 3.29 ± 0.95 | 3.61 ± 0.84 | 0.05, * | |||
PL | 25.89 ± 2.81 | 27.36 ± 2.26 | 0.002, ** | |||
UG | 30.08 ± 15.86 | 47.65 ± 28.66 | 0.001, ** | |||
OsCYP71P6-1 and OsCYP71P6-4 (In two subpopulations) | Traits | Mean ± SD, Sub-Pop1 | Mean ± SD, Sub-Pop2 | p value | ||
SPY | 37.06 ± 15.33 | 31.42 ± 10.48 | 0.03, * | |||
FG | 150.93 ± 28.71 | 135.32 ± 43.63 | 0.02, * | |||
OsCYP71P6-1 and OsCYP71P6-4 (In two subpopulations and admixtures) | Trait | Mean ± SD, Sub-Pop1 | Mean ± SD, Sub-Pop1 | Mean ± SD, Admix | p value | |
SPY | 37.06 ± 15.33 | 31.42 ± 10.48 | 29.74 ± 11.37 | 0.03, * | ||
NS | 180.12 ± 35.8 | 172.97 ± 49.09 | 154.85 ± 42.23 | 0.04, * | ||
FG | 150.93 ± 28.71 | 135.32 ± 43.63 | 124.92 ± 35.77 | 0.02, * | ||
OsCYP71P6-1 and OsCYP71P6-4 (In four haplotypes) | Traits | Mean ± SD, Hap1 | Mean ± SD, Hap2 | Mean ± SD, Hap3 | Mean ± SD, Hap4 | p value |
SPY | 29.81 ± 10.24 | 37.71 ± 14.41 | 36.64 ± 16.43 | 42.32 ± 11.73 | 0.005, ** |
Sl.No | SNP Position a | Gene Position | Amino Acid Substitution | p Value d |
---|---|---|---|---|
1 | Chr12:9581604 | First Exon (98C>T) b | Ser33Leu c | 0.005767 ** |
2 | Chr12: 9582455 | Promoter | - | 0.003087 ** |
3 | Chr12: 9582489 | Promoter | - | 0.019201 * |
4 | Chr12: 9582557 | Promoter | - | 0.047372 * |
5 | Chr12: 9582591 | Promoter | - | 0.004385 ** |
6 | Chr12: 9582869 | Promoter | - | 0.001087 ** |
7 | Chr12: 9583776 | Promoter | - | 0.020460 * |
8 | Chr12: 9583083 | Promoter | - | 0.027545 * |
9 | Chr12: 9582921 | Promoter | - | 0.003404 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, B.; Nayak, I.; Parameswaran, C.; Kesawat, M.S.; Sahoo, K.K.; Subudhi, H.N.; Balasubramaniasai, C.; Prabhukarthikeyan, S.R.; Katara, J.L.; Dash, S.K.; et al. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 (OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice (Oryza sativa L.). Plants 2023, 12, 3035. https://doi.org/10.3390/plants12173035
Sahoo B, Nayak I, Parameswaran C, Kesawat MS, Sahoo KK, Subudhi HN, Balasubramaniasai C, Prabhukarthikeyan SR, Katara JL, Dash SK, et al. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 (OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice (Oryza sativa L.). Plants. 2023; 12(17):3035. https://doi.org/10.3390/plants12173035
Chicago/Turabian StyleSahoo, Bijayalaxmi, Itishree Nayak, C. Parameswaran, Mahipal Singh Kesawat, Khirod Kumar Sahoo, H. N. Subudhi, Cayalvizhi Balasubramaniasai, S. R. Prabhukarthikeyan, Jawahar Lal Katara, Sushanta Kumar Dash, and et al. 2023. "A Comprehensive Genome-Wide Investigation of the Cytochrome 71 (OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice (Oryza sativa L.)" Plants 12, no. 17: 3035. https://doi.org/10.3390/plants12173035
APA StyleSahoo, B., Nayak, I., Parameswaran, C., Kesawat, M. S., Sahoo, K. K., Subudhi, H. N., Balasubramaniasai, C., Prabhukarthikeyan, S. R., Katara, J. L., Dash, S. K., Chung, S. -M., Siddiqui, M. H., Alamri, S., & Samantaray, S. (2023). A Comprehensive Genome-Wide Investigation of the Cytochrome 71 (OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice (Oryza sativa L.). Plants, 12(17), 3035. https://doi.org/10.3390/plants12173035