The Aqueous Extract of Brassica oleracea L. Exerts Phytotoxicity by Modulating H2O2 and O2− Levels, Antioxidant Enzyme Activity and Phytohormone Levels
Abstract
:1. Introduction
2. Results
2.1. The Phytotoxicity of Aqueous Extract on P. miliaceum
2.2. The Effect of Aqueous Extract on H2O2 and O2− Content in P. miliaceum Seedlings
2.3. Effect of Aqueous Extract on Antioxidant Enzyme Activity
2.4. The Effect of Aqueous Extract on Phytohormone Levels in P. miliaceum Seedlings
2.5. The Effects of Auxins on the Growth of P. miliaceum
2.6. Composition Analysis of B. oleracea Extract
3. Discussion
4. Materials and Methods
4.1. Preparation of the Aqueous Extract of B. oleracea
4.2. Germination and Growth Conditions of P. miliaceum
4.3. Determination of H2O2 and O2− Levels
4.4. Assay of Antioxidant Enzyme Activity through Native-PAGE Profiling
4.5. The Detection of Phytohormone Levels in P. miliaceum
4.6. Bioassay of Auxin Analogs on P. miliaceum Germination and Growth
4.7. Identification of Secondary Metabolites in Aqueous Extract of B. oleracea
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Samarai, G.F.; Mahdi, W.M.; Al-Hilali, B.M. Reducing environmental pollution by chemical herbicides using natural plant derivatives—Allelopathy effect. Ann. Agric. Environ. Med. 2018, 25, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Bashyal, M.; Kanissery, R. Weed Management Strategies for Tomato Plasticulture Production in Florida. Plants 2022, 11, 3292. [Google Scholar] [CrossRef] [PubMed]
- Abouziena, H.; Haggag, W.M. Weed Control in Clean Agriculture: A Review. Planta Daninha 2016, 34, 377–392. [Google Scholar] [CrossRef]
- Sánchez-Moreiras, A.M.; de la Peña, T.C.; Reigosa, M.J. The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 2008, 69, 2172–2179. [Google Scholar] [CrossRef]
- Devanna, B.N.; Jain, P.; Solanke, A.U.; Das, A.; Thakur, S.; Singh, P.K.; Kumari, M.; Dubey, H.; Jaswal, R.; Pawar, D.; et al. Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J. Fungi 2022, 8, 584. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef] [PubMed]
- Hickman, D.T.; Comont, D.; Rasmussen, A.; Birkett, M.A. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol. Evol. 2023, 13, e10018. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Khamare, Y.; Chen, J.; Marble, S.C. Allelopathy and its application as a weed management tool: A review. Front. Plant Sci. 2022, 13, 1034649. [Google Scholar] [CrossRef]
- Ain, Q.; Mushtaq, W.; Shadab, M.; Siddiqui, M.B. Allelopathy: An alternative tool for sustainable agriculture. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2023, 29, 495–511. [Google Scholar] [CrossRef]
- Haramoto, E.; Gallandt, E. Brassica cover cropping for weed management: A review. Renew. Agric. Food Syst. 2004, 19, 187–198. [Google Scholar] [CrossRef]
- Liu, W.; Dong, B.Z.; Hu, J.; Xu, Z.; Zheng, C.; Nian, Y.; Zhou, H. Indole-3-acetonitrile Is a Critical Molecule with Weed Allopathic Suppression Function in Broccoli (Brassica oleracea var. italica). Chem. Biodivers. 2023, 20, e202300444. [Google Scholar] [CrossRef] [PubMed]
- Orman-Ligeza, B.; Parizot, B.; de Rycke, R.; Fernandez, A.; Himschoot, E.; Van Breusegem, F.; Bennett, M.J.; Périlleux, C.; Beeckman, T.; Draye, X. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 2016, 143, 3328–3339. [Google Scholar] [CrossRef]
- Lu, S.; Ji, X.; Zhang, X.; Wu, H.; Sun, Y.; Zhu, Y.; Su, S.; Wei, S.; Liu, X. A Cationic Amino Acid Transporter NtCAT1 Promotes Leaf Senescence by the Accumulation of ABA in Nicotiana tabacum. Agronomy 2023, 13, 1691. [Google Scholar] [CrossRef]
- Palma, J.M.; Rodríguez-Ruiz, M.; Foyer, C.H.; Corpas, F.J. Editorial: Subcellular compartmentalization of plant antioxidants and ROS generating systems, volume II. Front. Plant Sci. 2023, 14, 1224289. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.J.; Loake, G.J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 2000, 124, 21–29. [Google Scholar] [CrossRef]
- Ren, D.; Yang, H.; Zhang, S. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 2002, 277, 559–565. [Google Scholar] [CrossRef]
- Bindschedler, L.V.; Dewdney, J.; Blee, K.A.; Stone, J.M.; Asai, T.; Plotnikov, J.; Denoux, C.; Hayes, T.; Gerrish, C.; Davies, D.R.; et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006, 47, 851–863. [Google Scholar] [CrossRef]
- García-Caparrós, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Khan, A.; Ali, S.; Khan, M.; Hamayun, M.; Moon, Y.S. Parthenium hysterophorus’s Endophytes: The Second Layer of Defense against Biotic and Abiotic Stresses. Microorganisms 2022, 10, 2217. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z.; Meng, H.; Tang, X. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression. Front. Plant Sci. 2016, 7, 1199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lu, L.Y.; Hu, L.Y.; Cao, W.; Sun, K.; Sun, Q.B.; Siddikee, A.; Shi, R.H.; Dai, C.C. Evidence for the Involvement of Auxin, Ethylene and ROS Signaling During Primary Root Inhibition of Arabidopsis by the Allelochemical Benzoic Acid. Plant Cell Physiol. 2018, 59, 1889–1904. [Google Scholar] [CrossRef] [PubMed]
- Chaki, M.; Begara Morales, J.; Barroso, J. Oxidative Stress in Plants. Antioxidants 2020, 9, 481. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Ballinger, T.; Li, D.; Zhang, S.; Feldman, L. A Role for Mitochondria in the Establishment and Maintenance of the Maize Root Quiescent Center. Plant Physiol. 2006, 140, 1118–1125. [Google Scholar] [CrossRef]
- Salah, A.; Nwafor, C.; Han, Y.; Liu, L.; Rashid, M.; Batool, M.; Mahmoud Ali El-Badri, A.; Cao, C.; Zhan, M. Spermidine and brassinosteroid regulate root anatomical structure, photosynthetic traits and antioxidant defense systems to alleviate waterlogging stress in maize seedlings. S. Afr. J. Bot. 2021, 144, 389–402. [Google Scholar] [CrossRef]
- Yuan, H.M.; Xu, H.H.; Liu, W.C.; Lu, Y.T. Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol. 2013, 54, 766–778. [Google Scholar] [CrossRef]
- Bashar, H.M.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Rahaman, F.; Karim, S.M.R.; Haque, M.A.; Berahim, Z.; et al. Determination and Quantification of Phytochemicals from the Leaf Extract of Parthenium hysterophorus L. and Their Physio-Biochemical Responses to Several Crop and Weed Species. Plants 2022, 11, 3209. [Google Scholar] [CrossRef]
- Kapoor, D.; Rinzim; Tiwari, A.; Sehgal, A.; Landi, M.; Brestic, M.; Sharma, A. Exploiting the Allelopathic Potential of Aqueous Leaf Extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a Widespread Weed in India. Plants 2019, 8, 552. [Google Scholar] [CrossRef]
- Ljung, K. Auxin metabolism and homeostasis during plant development. Development 2013, 140, 943–950. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, R.; Ma, C.J.; Vlot, A.C.; Klessig, D.F.; Pichersky, E. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol. 2008, 147, 1034–1045. [Google Scholar] [CrossRef]
- Abbas, M.; Hernández-García, J.; Pollmann, S.; Samodelov, S.L.; Kolb, M.; Friml, J.; Hammes, U.Z.; Zurbriggen, M.D.; Blázquez, M.A.; Alabadí, D. Auxin methylation is required for differential growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2018, 115, 6864–6869. [Google Scholar] [CrossRef] [PubMed]
- Kepinski, S.; Leyser, O. Plant development: Auxin in loops. Curr. Biol. CB 2005, 15, R208–R210. [Google Scholar] [CrossRef] [PubMed]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, E.; Nakano, H.; Yamada, K.; Shigemori, H.; Hasegawa, K. Isolation and identification of lateral bud growth inhibitor, indole-3-aldehyde, involved in apical dominance of pea seedlings. Phytochemistry 2002, 61, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, M.J.; Wang, Y.X.; Han, W.Q.; Miu, J.X.; Luo, X.P.; Zhang, A.D.; Kuang, Y. Design, synthesis, and herbicidal activity of indole-3-carboxylic acid derivatives as potential transport inhibitor response 1 antagonists. Front. Chem. 2022, 10, 975267. [Google Scholar] [CrossRef]
- Bogatek, R.; Oracz, K.; Gniazdowska, A.; Harper, J.D.I.; An, M.; Wu, H.; Kent, J.H. Ethylene and ABA production in germinating seeds during allelopathy stress. In Proceedings of the Fourth World Congress in Allelopathy, Wagga Wagga, Australia, 21–26 August 2005. [Google Scholar]
- Finkelstein, R.R.; Gampala, S.S.L.; Rock, C.D. Abscisic Acid Signaling in Seeds and Seedlings. Plant Cell 2002, 14, S15–S45. [Google Scholar] [CrossRef]
- Luo, X.; Dai, Y.; Zheng, C.; Yang, Y.; Chen, W.; Wang, Q.; Chandrasekaran, U.; Du, J.; Liu, W.; Shu, K. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 2021, 229, 950–962. [Google Scholar] [CrossRef]
- Kakan, X.; Yu, Y.; Li, S.; Li, X.; Huang, R.; Wang, J. Ascorbic acid modulation by ABI4 transcriptional repression of VTC2 in the salt tolerance of Arabidopsis. BMC Plant Biol. 2021, 21, 112. [Google Scholar] [CrossRef]
- López-Carbonell, M.; Gabasa, M.; Jáuregui, O. Enhanced determination of abscisic acid (ABA) and abscisic acid glucose ester (ABA-GE) in Cistus albidus plants by liquid chromatography-mass spectrometry in tandem mode. Plant Physiol. Biochem. 2009, 47, 256–261. [Google Scholar] [CrossRef]
- Prado, M.J.; Largo, A.; Domínguez, C.; González, M.V.; Rey, M.; Centeno, M.L. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method. J. Plant Physiol. 2014, 171, 852–859. [Google Scholar] [CrossRef]
- Bhadoria, P.B.S. Allelopathy: A natural way towards weed management. Am. J. Exp. Agric. 2010, 1, 7–20. [Google Scholar] [CrossRef]
- Weston, L.A. History and Current Trends in the Use of Allelopathy for Weed Management. Horttechnology 2005, 15, 529–534. [Google Scholar] [CrossRef]
- Mersie, W.; Singh, M. Allelopathic effect of parthenium (Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds. J. Chem. Ecol. 1987, 13, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Liu, Q.; Zang, X.; Yuan, S.; Bat-Erdene, U.; Nguyen, C.; Gan, J.; Zhou, J.; Jacobsen, S.E.; Tang, Y. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 2018, 559, 415–418. [Google Scholar] [CrossRef]
- Kaur, N. Detection of Reactive Oxygen Species in Oryza sativa L. (Rice). Bio-Protocol 2016, 6, e2061. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Zaheer Akbar, M.; Shakoor, M.B.; Mahmood, A.; Ishaque, W.; Hussain, A. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environ. Sci. Pollut. Res. 2017, 24, 21938–21947. [Google Scholar] [CrossRef]
- Kataria, S.; Jain, K.; Guruprasad, K.N. UV-B induced changes in antioxidant enzymes and their isoforms in cucumber (Cucumis sativus L.) cotyledons. Indian J. Biochem. Biophys. 2007, 44, 31–37. [Google Scholar]
- Hu, D.; Li, X.; Yang, Z.; Liu, S.; Hao, D.; Chao, M.; Zhang, J.; Yang, H.; Su, X.; Jiang, M.; et al. Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol. 2022, 235, 502–517. [Google Scholar] [CrossRef]
- Mei, S.; He, Z.; Zhang, J. Identification and analysis of major flavor compounds in radish taproots by widely targeted metabolomics. Front. Nutr. 2022, 9, 889407. [Google Scholar] [CrossRef]
Formula | Ionization Model | Compounds |
---|---|---|
C8H8N2 | [M+H]+ | 4-aminoindole |
C9H7NO | [M+H]+ | indole-3-carboxaldehyde |
C10H8N2 | [M+H]+ | 3-indoleacetonitrile |
C9H7NO2 | [M−H]− | indole-3-carboxylic acid |
C10H10N2O | [M+H]+ | 3-indole acetamide |
C10H9NO2 | [M+H]+ | 1-methoxyindole-3-carbaldehyde |
C11H9NO2 | [M+H]+ | 3-indoleacrylic acid |
C11H11NO2 | [M+H]+ | 3-indolepropionic acid |
C11H12N2O2 | [M+H]+ | 1-methoxy-indole-3-acetamide |
C11H11NO3 | [M+H]+ | methoxyindoleacetic acid |
C11H11NO3 | [M+H]+ | 3-hydroxy-3-acetonyloxindole |
C16H18N2O6 | [M−H]− | indole-3-cyano-6-o-glucoside |
C16H18N2O5S | [M−H]− | indole-3-cyano-2-o-glucoside |
C10H8N2 | [M+H]+ | 3-indoleacetonitrile |
C10H10N2O | [M+H]+ | 3-indole acetamide |
C10H9NO2 | [M+H]+ | 1-methoxyindole-3-carbaldehyde |
C11H9NO2 | [M+H]+ | 3-indoleacrylic acid |
C11H11NO2 | [M+H]+ | 3-indolepropionic acid |
C11H12N2O2 | [M+H]+ | 1-methoxy-indole-3-acetamide |
C11H11NO3 | [M+H]+ | methoxyindoleacetic acid |
C11H11NO3 | [M+H]+ | 3-hydroxy-3-acetonyloxindole |
C16H18N2O6 | [M−H]− | indole-3-cyano-6-o-glucoside |
C16H18N2O5S | [M−H]− | indole-3-cyano-2-o-glucoside |
C10H8N2 | [M+H]+ | 3-indoleacetonitrile |
C9H7NO2 | [M−H]− | indole-3-carboxylic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, Y.; Dong, B.; Wang, D.; Hao, J.; Jia, X.; Zhao, Y.; Nian, Y.; Zhou, H. The Aqueous Extract of Brassica oleracea L. Exerts Phytotoxicity by Modulating H2O2 and O2− Levels, Antioxidant Enzyme Activity and Phytohormone Levels. Plants 2023, 12, 3086. https://doi.org/10.3390/plants12173086
Wang Y, Zhao Y, Dong B, Wang D, Hao J, Jia X, Zhao Y, Nian Y, Zhou H. The Aqueous Extract of Brassica oleracea L. Exerts Phytotoxicity by Modulating H2O2 and O2− Levels, Antioxidant Enzyme Activity and Phytohormone Levels. Plants. 2023; 12(17):3086. https://doi.org/10.3390/plants12173086
Chicago/Turabian StyleWang, Yu, Yuanzheng Zhao, Baozhu Dong, Dong Wang, Jianxiu Hao, Xinyu Jia, Yuxi Zhao, Yin Nian, and Hongyou Zhou. 2023. "The Aqueous Extract of Brassica oleracea L. Exerts Phytotoxicity by Modulating H2O2 and O2− Levels, Antioxidant Enzyme Activity and Phytohormone Levels" Plants 12, no. 17: 3086. https://doi.org/10.3390/plants12173086
APA StyleWang, Y., Zhao, Y., Dong, B., Wang, D., Hao, J., Jia, X., Zhao, Y., Nian, Y., & Zhou, H. (2023). The Aqueous Extract of Brassica oleracea L. Exerts Phytotoxicity by Modulating H2O2 and O2− Levels, Antioxidant Enzyme Activity and Phytohormone Levels. Plants, 12(17), 3086. https://doi.org/10.3390/plants12173086