Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Tree Analysis of R. delavayi RR Family Members
2.2. Analysis of Physical and Chemical Properties of R. delavayi RR Family Genes
2.3. Gene Structure and Conserved Motif Analysis of RdRR Family Members
2.4. Chromosome Distribution of RdRR Family Genes
2.5. Gene Replication and Collinearity Analysis of RdRR Genes
2.6. Promoter Cis-Regulatory Element Analysis of the RdRR Genes
2.7. Expression Patterns of the RdRR Genes
2.8. Morphological Differences of Three Rhododendron Genotypes Response to Exogenous TDZ
2.9. Expression Analysis of Candidate RdRR Genes in Three Rhododendron Genotypes Differing in Their Regeneration Ability
3. Discussion
4. Materials and Methods
4.1. Identification of RR Family Genes in R. delavayi
4.2. Analysis of Physical and Chemical Properties of R. delavayi’s RR Family Genes
4.3. Analysis of Phylogenetic, Conserved Motifs, and Gene Structure of R. delavayi RR Family Members
4.4. Chromosomal Localization and Collinearity Analysis of R. delavayi RR Family Genes
4.5. Promoter Analysis of R. delavayi RR Family Genes
4.6. Expression Analysis of R. delavayi RR Family Genes
4.7. Response of In Vitro Leaves of Three Rhododendron Genotypes Induced by Exogenous TDZ
4.7.1. Plant Materials and Treatments
4.7.2. Response of Candidate RdRR Genes When Induced by Exogenous TDZ
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sakakibara, H. Cytokinins activity, biosynthesis, and transloca-tion. Annu. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.; Motyka, V.; Laucou, V.; Smets, R.; Onckelen, H.; Schmulling, T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15, 2532–2550. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.L.; Sawhney, V.K.; Bonham-Smith, P.C. Cytokinin-induced changes in CLAV ATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Sci. 2006, 170, 1111–1117. [Google Scholar] [CrossRef]
- Gordon, S.P.; Chickarmane, V.S.; Ohno, C.; Meyerowitz, E.M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl. Acad. Sci. USA 2009, 106, 16529–16534. [Google Scholar] [CrossRef]
- Aloni, R. Role of cytokinin in differentiation of secondary xylem fibers. Plant Phyisol. 1982, 70, 1631–1633. [Google Scholar] [CrossRef]
- Lara, M.E.B.; Garcia, M.C.G.; Fatima, T.; Ehness, R.; Lee, T.K.; Proels, R.; Tanner, W.; Roitsch, T. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 2004, 16, 1276–1287. [Google Scholar] [CrossRef]
- Bishopp, A.; Help, H.; El-Showk, S.; Weijers, D.; Scheres, B.; Friml, J.; Benkova, E.; Mahonen, A.P.; Helariutta, Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 2011, 21, 917–926. [Google Scholar] [CrossRef]
- Peleg, Z.; Reguera, M.; Tumimbang, E.; Walia, H.; Blumwald, E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 2011, 9, 747–758. [Google Scholar] [CrossRef]
- Ramireddy, E.; Chang, L.; Schmulling, T. Cytokinin as a mediator for regulating root system architecture in response to environmental cues. Plant Signal. Behav. 2014, 9, e27771. [Google Scholar] [CrossRef]
- Roman, H.; Girault, T.; Barbier, F.; Péron, T.; Brouard, N.; Pencik, A.; Novák, O.; Vian, A.; Sakr, S.; Lothier, J. Cytokinins are initial targets of light in the control of bud outgrowth. Plant Physiol. 2016, 172, 489–509. [Google Scholar] [CrossRef]
- Hwang, I.; Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 2001, 413, 383–389. [Google Scholar] [CrossRef]
- Müller, B.; Sheen, J. Advances in cytokinin signaling. Science 2007, 318, 68–69. [Google Scholar] [CrossRef]
- Brenner, W.G.; Ramireddy, E.; Heyl, A.; Schmülling, T. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Clabaugh, I.; To, J.P.; Maxwell, B.B.; Chang, Y.H.; Schaller, G.E.; Loraine, A.; Kieber, J.J. Identification of cytokinin-responsive genes using microarray meta-analysis and RNASeq in Arabidopsis. Plant Physiol. 2013, 162, 272–294. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Sun, S.Y.; Chen, Y.R.; Wang, Y.H.; Zhang, Y.; Ju, Z.G.; Yi, Y. Cloning and function analysis of chalcone isomerase gene rdchii in Rhododendron delavayi. Acta Hortic. Sin. 2022, 49, 2407–2418. [Google Scholar] [CrossRef]
- Tian, G.; Peng, L.C.; Qu, S.P.; Wang, J.H.; Zhao, Z.X.; Li, S.F.; Song, J.; Guan, W.L. Studied on the adventitious buds induction from in vitro leaves of Rhododendron delavayi var delavayi and histocytological observation on the buds formation. Acta Hortic. Sin. 2020, 10, 2019–2026. [Google Scholar] [CrossRef]
- Lee, K.; Park, O.S.; Go, J.Y.; Yu, J.; Han, J.H.; Kim, J.; Bae, S.; Jung, Y.J.; Seo, P.J. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep. 2021, 37, 109980. [Google Scholar] [CrossRef]
- Lv, J.; Dai, C.B.; Wang, W.F.; Sun, Y.H. Genome-wide identification of the ARRs gene family in tobacco (Nicotiana tabacum). Genes Genom 2021, 6, 601–612. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, C.; Wei, L.; Lin, K.; Xu, Z.F. Genome-Wide Identification and Expression Analysis of Cytokinin Response Regulator (RR) Genes in the Woody Plant Jatropha curcas and Functional Analysis of JcRR12 in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 11388. [Google Scholar] [CrossRef]
- Ramírez-Carvajal, G.A.; Morse, A.M.; Davis, J.M. Transcript profiles of the cytokinin response regulator gene family in Populus imply diverse roles in plant development. New Phytol. 2008, 177, 77–89. [Google Scholar] [CrossRef]
- Ramireddy, E.; Brenner, W.G.; Pfeifer, A.; Heyl, A.; Schmülling, T. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. Plant Cell Physiol. 2013, 54, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, E.; Tavor-Deslex, D.; Lituiev, D.; Enkerli, K.; Tarr, P.T.; Müller, B. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 2013, 161, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, I.B.; Deruere, J.; Kieber, J.J. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000, 124, 1706–1717. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhu, X.; Haider, M.S.; Wang, X.; Zhang, C.; Wang, C. Genome-wide identification and analysis of the type-B authentic response regulator gene family in peach (Prunus persica). Cytogenet. Genome Res. 2017, 151, 41–49. [Google Scholar] [CrossRef]
- Chen, C.; Liu, A.; Ren, H.; Yu, Y.; Duanmu, H.; Duan, X.; Sun, X.; Liu, B.; Zhu, Y. Genome-wide analysis of Glycine soja response regulator GsRR genes under alkali and salt stresses. Front. Plant Sci. 2018, 9, 1306. [Google Scholar] [CrossRef]
- Li, H.; Chen, R.; Chen, Z.; Lin, J.; Jin, X.; Ren, C.; Chen, Q.; Chen, F.; Yu, G.; Zhang, Y. The molecular characteristics of soybean ARR-B transcription factors. Biocell 2022, 46, 1575–1592. [Google Scholar] [CrossRef]
- Kurepa, J.; Li, Y.; Smalle, J.A. Cytokinin signaling stabilizes the response activator ARR1. Plant J. 2014, 78, 157–168. [Google Scholar] [CrossRef]
- Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef]
- Ramirez-Carvajal, G.A.; Morse, A.M.; Dervinis, C.; Davis, J.M. The cytokinin type-B response regulator PtRR13 Is a negative regulator of adventitious root development in Populus. Plant Physiol. 2009, 150, 759–771. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, X.; Li, J.; Liu, N.; Liu, X.; Li, S.; Xiang, F. The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis. Plant Cell 2020, 32, 2271–2291. [Google Scholar] [CrossRef]
- Waldie, T.; Leyser, O. Cytokinin targets auxin transport to promote shoot branching. Plant Phyisol. 2018, 177, 803–818. [Google Scholar] [CrossRef]
- Xia, X.; Dong, H.; Yin, Y.; Song, X.; Gu, X.; Sang, K.; Zhou, J.; Shi, K.; Zhou, Y.; Foyer, C.H. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proc. Natl. Acad. Sci. USA 2021, 118, e2004384118. [Google Scholar] [CrossRef] [PubMed]
- Yamburenko, M.V.; Worthen, J.M.; Zeenat, A.; Azhar, B.J.; Swain, S.; Couitt, A.R.; Shakeel, S.N.; Kieber, J.J.; Schaller, G.E. Functional analysis of the rice type-B response regulator RR22. Front. Plant Sci. 2020, 11, 577676. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Wang, M.; An, Y. Overexpression of a B-type cytokinin response regulator (OsORR2) reduces plant height in rice. Plant Signal. Behav. 2020, 15, 1780405. [Google Scholar] [CrossRef] [PubMed]
- McClung, C.R. Plant circadian rhythms. Plant Cell 2006, 18, 792–803. [Google Scholar] [CrossRef]
- Buechel, S.; Leibfried, A.; To, J.; Zhao, Z.; Andersen, S.U.; Kieber, J.J.; Lohmann, J.U. Role of A-type Arabidopsis Response Regulators in meristem maintenance and regeneration. Eur. J. Cell Biol. 2009, 89, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Liang, Y.; Deng, Y.; Chen, Q.G.; Zhang, J.; Yang, X.H.; Zuo, J.R. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res. 2009, 19, 1178–1190. [Google Scholar] [CrossRef]
- Kumar, M.; Kherawat, B.S.; Dey, P.; Saha, D.; Singh, A.; Bhatia, S.K.; Ghodake, G.S.; Kadam, A.A.; Kim, H.-U.; Manorama; et al. Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int. J. Mol. Sci. 2021, 22, 7396. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Kherawat, B.S.; Ram, C.; Singh, A.; Dey, P.; Gora, J.S.; Misra, N.; Chung, S.-M.; Kumar, M. Genome-Wide Identification and Expression Profiling of Aconitase Gene Family Members Reveals Their Roles in Plant Development and Adaptation to Diverse Stress in Triticum aestivum L. Plants 2022, 11, 3475. [Google Scholar] [CrossRef]
- Peng, L.C.; Li, H.M.; Song, J.; Jie, W.J.; Zhang, L.; Li, S.F.; Cai, Y.F.; Zhao, Z.X. Morphological and transcriptome analyses reveal mechanism for efcient regeneration of adventitious buds from in vitro leaves of Rhododendron delavayi regulated by exogenous TDZ. In Vitro Cell. Dev. Biol. Plant 2022, 58, 1025–1037. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Type | Number of Amino Acids (aa) | MW (kD) | pI | Instability Index | Aliphatic Index | GRAVY | PSORT II Prediction | Alpha Helix | Extended Strand | Beta Turn | Random Coil |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RdRR01 | Rhdel01G0042000.1 | Type-B | 641 | 69.91 | 6.18 | 52.73 | 69.50 | −0.589 | nuclear | 19.97 | 10.61 | 4.68 | 64.74 |
RdRR02 | Rhdel01G0241400.1 | Pseudo | 718 | 79.53 | 5.70 | 50.62 | 71.85 | −0.498 | nuclear | 23.82 | 10.17 | 2.79 | 63.23 |
RdRR03 | Rhdel02G0007300.1 | Type-B | 642 | 71.55 | 6.75 | 51.06 | 82.73 | −0.488 | nuclear | 26.64 | 11.68 | 4.83 | 56.85 |
RdRR04 | Rhdel03G0038500.1 | Type-A | 248 | 28.30 | 4.91 | 57.45 | 82.50 | −0.697 | nuclear | 25.00 | 14.52 | 5.24 | 55.24 |
RdRR05 | Rhdel03G0190600.1 | Pseudo | 300 | 33.73 | 6.41 | 56.28 | 87.00 | −0.355 | nuclear | 23.67 | 22.67 | 10.67 | 43.00 |
RdRR06 | Rhdel03G0190600.3 | Pseudo | 300 | 33.73 | 6.41 | 56.28 | 87.00 | −0.355 | nuclear | 23.67 | 22.67 | 10.67 | 43.00 |
RdRR07 | Rhdel03G0224400.1 | Type-A | 152 | 16.86 | 6.59 | 44.00 | 85.26 | −0.374 | nuclear | 40.79 | 14.47 | 12.50 | 32.24 |
RdRR08 | Rhdel03G0253000.1 | Type-B | 867 | 94.59 | 4.85 | 43.14 | 82.70 | −0.318 | endoplasmic reticulum | 25.03 | 16.84 | 6.00 | 52.13 |
RdRR09 | Rhdel03G0286200.1 | Pseudo | 654 | 72.84 | 6.18 | 49.85 | 67.06 | −0.717 | nuclear | 29.82 | 8.10 | 3.06 | 59.02 |
RdRR10 | Rhdel03G0329300.1 | Type-B | 721 | 80.08 | 5.59 | 42.13 | 79.72 | −0.481 | nuclear | 23.30 | 11.93 | 4.16 | 60.61 |
RdRR11 | Rhdel03G0337700.1 | Pseudo | 516 | 58.19 | 6.59 | 40.08 | 75.39 | −0.508 | cytoplasmic | 26.74 | 11.82 | 5.43 | 56.01 |
RdRR12 | Rhdel04G0061400.1 | Type-A | 181 | 20.47 | 8.34 | 55.53 | 82.43 | −0.276 | mitochondrial | 48.62 | 9.94 | 7.73 | 33.70 |
RdRR13 | Rhdel04G0061700.3 | Type-A | 262 | 29.80 | 8.55 | 57.18 | 88.17 | −0.227 | cytoplasmic | 43.51 | 14.89 | 8.40 | 33.21 |
RdRR14 | Rhdel04G0164500.1 | Type-A | 202 | 22.87 | 5.67 | 56.46 | 77.13 | −0.704 | nuclear | 29.70 | 15.84 | 6.93 | 47.52 |
RdRR15 | Rhdel04G0379000.1 | Type-B | 666 | 73.42 | 5.83 | 48.75 | 74.01 | −0.524 | nuclear | 23.87 | 9.01 | 5.26 | 61.86 |
RdRR16 | Rhdel07G0022900.1 | Pseudo | 587 | 65.44 | 6.17 | 41.24 | 73.27 | −0.520 | nuclear | 33.73 | 19.08 | 8.86 | 38.33 |
RdRR17 | Rhdel07G0078800.1 | Type-A | 159 | 17.88 | 6.29 | 47.56 | 90.06 | −0.389 | nuclear | 28.93 | 18.87 | 8.81 | 43.40 |
RdRR18 | Rhdel07G0201100.1 | Type-B | 668 | 73.20 | 6.68 | 35.84 | 75.28 | −0.509 | nuclear | 19.76 | 10.93 | 4.94 | 64.37 |
RdRR19 | Rhdel08G0149200.1 | Pseudo | 530 | 58.88 | 6.09 | 32.24 | 69.75 | −0.548 | nuclear | 30.38 | 12.83 | 4.53 | 52.26 |
RdRR20 | Rhdel08G0211800.1 | Type-A | 215 | 23.98 | 6.90 | 62.44 | 82.88 | −0.499 | nuclear | 26.05 | 12.56 | 7.44 | 53.95 |
RdRR21 | Rhdel09G0148100.1 | Type-B | 320 | 36.31 | 5.39 | 47.86 | 99.50 | −0.176 | endoplasmic reticulum | 42.19 | 12.19 | 4.06 | 41.56 |
RdRR22 | Rhdel09G0233700.1 | Pseudo | 821 | 89.92 | 6.74 | 38.56 | 64.69 | −0.836 | nuclear | 22.05 | 10.84 | 3.41 | 63.70 |
RdRR23 | Rhdel09G0233700.2 | Pseudo | 747 | 81.51 | 6.30 | 37.48 | 60.03 | −0.945 | nuclear | 18.34 | 13.52 | 3.35 | 64.79 |
RdRR24 | Rhdel09G0262600.1 | Type-A | 150 | 16.69 | 5.90 | 30.84 | 100.67 | −0.239 | cytoplasmic | 35.33 | 16.00 | 4.67 | 44.00 |
RdRR25 | Rhdel09G0287600.1 | Pseudo | 666 | 73.38 | 8.25 | 45.77 | 65.60 | −0.677 | nuclear | 32.43 | 7.36 | 2.40 | 57.81 |
RdRR26 | Rhdel10G0266900.1 | Pseudo | 252 | 28.59 | 6.14 | 42.98 | 85.16 | −0.270 | endoplasmic reticulum | 54.37 | 11.90 | 6.35 | 27.38 |
RdRR27 | Rhdel10G0282900.1 | Pseudo | 1096 | 123.56 | 7.90 | 38.66 | 91.33 | −0.233 | plasma membrane | 41.70 | 13.96 | 4.56 | 39.78 |
RdRR28 | Rhdel12G0100600.1 | Type-B | 698 | 77.49 | 6.38 | 46.32 | 71.05 | −0.599 | nuclear | 32.23 | 15.04 | 6.45 | 46.28 |
RdRR29 | Rhdel12G0133700.1 | Type-B | 595 | 67.32 | 5.85 | 40.68 | 75.66 | −0.502 | nuclear | 21.18 | 13.78 | 3.53 | 61.51 |
RdRR30 | Rhdel12G0195700.1 | Pseudo | 602 | 67.59 | 5.59 | 50.05 | 63.62 | −0.674 | nuclear | 22.76 | 13.95 | 5.15 | 58.14 |
RdRR31 | Rhdel12G0203900.1 | Type-A | 128 | 14.43 | 5.65 | 87.52 | 79.22 | −0.855 | mitochondrial | 27.34 | 15.63 | 7.81 | 49.22 |
RdRR32 | Rhdel12G0234000.1 | Type-B | 177 | 20.39 | 5.95 | 37.97 | 92.99 | −0.216 | cytoplasmic | 49.15 | 20.34 | 5.08 | 25.42 |
RdRR33 | Rhdel13G0133600.1 | Type-A | 154 | 17.00 | 9.04 | 30.74 | 70.84 | −0.297 | mitochondrial | 36.36 | 21.43 | 10.39 | 31.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Li, X.; Gao, Y.; Xie, W.; Zhang, L.; Song, J.; Li, S.; Zhao, Z. Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi. Plants 2023, 12, 3250. https://doi.org/10.3390/plants12183250
Peng L, Li X, Gao Y, Xie W, Zhang L, Song J, Li S, Zhao Z. Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi. Plants. 2023; 12(18):3250. https://doi.org/10.3390/plants12183250
Chicago/Turabian StylePeng, Lvchun, Xuejiao Li, Yan Gao, Weijia Xie, Lu Zhang, Jie Song, Shifeng Li, and Zhengxiong Zhao. 2023. "Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi" Plants 12, no. 18: 3250. https://doi.org/10.3390/plants12183250
APA StylePeng, L., Li, X., Gao, Y., Xie, W., Zhang, L., Song, J., Li, S., & Zhao, Z. (2023). Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi. Plants, 12(18), 3250. https://doi.org/10.3390/plants12183250