Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results of Chemical Composition of Snack Pellets
2.2. Antioxidant Activity, Content of Polyphenols and Phenolic Acids of Snack Pellets
2.3. Content of Anthocyanins
2.4. Physical Properties of Snack Pellets
2.5. Color Profile of Snack Pellets
2.6. PCA Analysis
3. Materials and Methods
3.1. Raw Materials
- –
- potato starch SUPERIOR STANDARD (Przedsiębiorstwo Przemysłu Ziemniaczanego Bronisław S.A., Bronisław, Poland); proximate composition (dry weight): moisture 12.87%, protein 0.39%, fat 0.0%, ash 0.34%, fiber 4.94%,
- –
- potato flakes (Zakłady Przemysłu Ziemniaczanego w Lublinie, Lublin, Poland); proximate composition (dry weight): moisture 9.26%, protein 8.22%, fat 0.02%, ash 3.82%, fiber 15.38%,
- –
- potato grits (Zakłady Przemysłu Ziemniaczanego w Lublinie, Lublin, Poland); proximate composition (dry weight): moisture 7.51%, protein 8.27%, fat 0.33%, ash 3.98%, fiber 11.28%,
- –
- vegetable oil (Zakłady Tłuszczowe “Kruszwica”, Kruszwica, Poland),
- –
- sugar purchased at a Lidl store (Lublin, Poland),
- –
- salt purchased at a Lidl store (Lublin, Poland).
3.2. Extrusion-Cooking of Snack Pellets
3.3. Chemical Composition and Fatty Acids
3.4. Extraction Procedure
3.5. Phenolic Acids Content
3.6. Anthocyanins Extraction, Samples Preparation and Quantitative Analysis
3.7. Antioxidant Activity by DPPH Method
3.8. Water Absorption Index (WAI)
3.9. Water Solubility Index (WSI)
3.10. Fat Absorption Index (FAI)
3.11. Color Profile
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kasprzak-Drozd, K.; Oniszczuk, T.; Soja, J.; Gancarz, M.; Wojtunik-Kulesza, K.; Markut-Miotła, E.; Oniszczuk, A. The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 6541. [Google Scholar] [CrossRef]
- Witczak, T.; Stępień, A.; Gumul, D.; Witczak, M.; Fiutak, G.; Zięba, T. The Influence of the Extrusion Process on the Nutritional Composition, Physical Properties and Storage Stability of Black Chokeberry Pomaces. Food Chem. 2021, 334, 127548. [Google Scholar] [CrossRef]
- Ricceri, F.; Giraudo, M.T.; Fasanelli, F.; Milanese, D.; Sciannameo, V.; Fiorini, L.; Sacerdote, C. Diet and Endometrial Cancer: A Focus on the Role of Fruit and Vegetable Intake, Mediterranean Diet and Dietary Inflammatory Index in the Endometrial Cancer Risk. BMC Cancer 2017, 17, 757. [Google Scholar] [CrossRef] [PubMed]
- Schmid, V.; Mayer-Miebach, E.; Behsnilian, D.; Briviba, K.; Karbstein, H.P.; Emin, M.A. Enrichment of Starch-Based Extruded Cereals with Chokeberry (Aronia melanocarpa) Pomace: Influence of Processing Conditions on Techno-Functional and Sensory Related Properties, Dietary Fibre and Polyphenol Content as Well as in Vitro Digestibility. LWT 2022, 154, 112610. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: In vitro and in vivo evidences and possible mechanisms of action: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- King, E.S.; Bolling, B.W. Composition, Polyphenol Bioavailability, and Health Benefits of Aronia Berry: A Review. J. Food Bioactiv. 2020, 11, 13–30. [Google Scholar] [CrossRef]
- Chiorean, A.M.; Buta, E.; Mitre, V. The Effects of some Compounds Found in Aronia and Goji Berries on Human Health. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 2023, 79, 1. [Google Scholar] [CrossRef]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative phytochemical analysis of Aronia melanocarpa L. fruit juices on Bulgarian market. Plants 2022, 11, 1655. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.M.; Craciunescu, O.; Popoviciu, D.R. Health Benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia Melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black Chokeberry (Aronia melanocarpa) Polyphenols Reveal Different Antioxidant, Antimicrobial and Neutrophil-Modulating Activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A Review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Frank, T.; Meyer, G.; Lei, J.; Grebenc, J.R.; Slaughter, R.; Kinghorn, A.D. Potential benefits of black chokeberry (Aronia melanocarpa) fruits and their constituents in improving human health. Molecules 2022, 27, 7823. [Google Scholar] [CrossRef]
- Pavlović, A.N.; Branović, J.M.; Veljković, J.N.; Mitić, S.S.; Tošić, S.B.; Kaličanin, B.M.; Kostić, D.A.; Ðorđević, M.S.; Velimirović, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef]
- Kaličanin, B.; Velimirović, D.; Nešić, I. A study on mineral composition of Aronia melanocarpa as a functional food with potential therapeutic properties. J. Food Nutr. Res. 2022, 61, 53–60. [Google Scholar]
- Zhang, Y.; Zhao, Y.; Liu, X.; Chen, X.; Ding, C.; Dong, L.; Xiao, F. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. J. Future Food. 2021, 1, 168–178. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Landeka Jurčević, I.; Panjkota Krbavčić, I.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E. Comparative analysis of the antioxidant capacity of selected fruit juices and nectars: Chokeberry juice as a rich source of polyphenols. Int. J. Food Prop. 2016, 19, 1317–1324. [Google Scholar] [CrossRef]
- Combrzyński, M.; Wójtowicz, A.; Mitrus, M.; Oniszczuk, T.; Matwijczuk, A.; Pawelczyk, P.; Mościcki, L. Effect of starch type and screw speed on mechanical properties of extrusion-cooked starch-based foams. Int. Agrophys. 2019, 33, 233–240. [Google Scholar] [CrossRef]
- Cotacallapa-Sucapuca, M.; Vega, E.N.; Maieves, H.A.; Berrios, J.D.J.; Morales, P.; Fernández-Ruiz, V.; Cámara, M. Extrusion process as an alternative to improve pulses products consumption. A Review. Foods 2021, 10, 1096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Liu, H.; Yoon, A.; Rizvi, S.S.H.; Wang, Q. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit. Rev. Food Sci. Nutr. 2019, 59, 3267–3280. [Google Scholar] [CrossRef]
- Sharma, P.; Ramchiary, M.; Samyor, D.; Das, A.B. Study on the phytochemical properties of pineapple fruit leather processed by extrusion cooking. LWT Food Sci. Technol. 2016, 72, 534–543. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. Int. J. Food Sci. Technol. 2009, 44, 1263–1271. [Google Scholar] [CrossRef]
- Anton, A.A.; Gary Fulcher, R.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, E.; İbanoğlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 2008, 87, 554–563. [Google Scholar] [CrossRef]
- Moscicki, L. (Ed.) Extrusion-Cooking Techniques. Application, Theory and Sustainability; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Potter, R.; Stojceska, V.; Plunkett, A. The use of fruit powders in extruded snacks suitable for children’s diets. LWT Food Sci. Technol. 2013, 51, 537–544. [Google Scholar] [CrossRef]
- Hirth, M.; Preiß, R.; Mayer-Miebach, E.; Schuchmann, H.P. Influence of HTST extrusion cooking process parameters on the stability of anthocyanins, procyanidins and hydroxycinnamic acids as the main bioactive chokeberry polyphenols. LWT Food Sci. Technol. 2015, 62, 511–516. [Google Scholar] [CrossRef]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Extrusion processing of pure chokeberry (Aronia melanocarpa) pomace: Impact on dietary fiber profile and bioactive compounds. Foods 2021, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, T.; Widelska, G.; Oniszczuk, A.; Kasprzak, K.; Wójtowicz, A.; Olech, M.; Nowak, R.; Kulesza, K.W.; Jóźwiak, G.; Hajnos, M.W. Influence of production parameters on the content of polyphenolic compounds in extruded porridge enriched with chokeberry fruit (Aronia melanocarpa (Michx.) Elliott). Open Chem. 2019, 17, 166–176. [Google Scholar] [CrossRef]
- Drożdż, W.; Boruczkowska, H.; Boruczkowski, T.; Tomaszewska-Ciosk, E.; Zdybel, E. Use of blackcurrant and chokeberry press residue in snack products. Pol. J. Chem. Technol. 2019, 21, 13–19. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Lisiecka, K.; Mitrus, M.; Nowak, G.; Golian, M.; Oniszczuk, A.; Kasprzak, K.; Widelska, G.; Oniszczuk, T.; Combrzyński, M. Physical properties and texture of gluten-free snacks supplemented with selected fruit additions. Int. Agrophys. 2019, 33, 407–416. [Google Scholar] [CrossRef]
- Zia-ur-Rehman, Z.; Islam, M.; Shah, W.H. Effect of microwave and conventional cooking on insoluble dietary fibre components of vegetables. Food Chem. 2003, 80, 237–240. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Ma, Y.-S. The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chem. 2016, 192, 363–369. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Bajramova, A.; Spégel, P. A Comparative study of the fatty acid profile of common fruits and fruits claimed to confer health benefits. J. Food Compos. Anal. 2022, 112, 104657. [Google Scholar] [CrossRef]
- Yaneva, T.; Dinkova, R.; Gotcheva, V.; Angelov, A. Modulation of the antioxidant activity of a functional oat beverage by enrichment with chokeberry juice. J. Food Process. Preserv. 2022, 46, e16012. [Google Scholar] [CrossRef]
- Wen, H.; Cui, H.; Tian, H.; Zhang, X.; Ma, L.; Ramassamy, C.; Li, J. Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 2021, 10, 63. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, e9574587. [Google Scholar] [CrossRef]
- Nadeesha Dilrukshi, H.N.; Torrico, D.D.; Brennan, M.A.; Brennan, C.S. Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chem. 2022, 389, 133107. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, A.; Oniszczuk, T.; Wójtowicz, A.; Wojtunik, K.; Kwaśniewska, A.; Waksmundzka-Hajnos, M. Radical scavenging activity of extruded corn gruels with addition of linden inflorescence. Open Chem. 2015, 13, 000010151520150118. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Oniszczuk, A.; Oniszczuk, T.; Kocira, S.; Wojtunik, K.; Mitrus, M.; Kocira, A.; Widelski, J.; Skalicka-Woźniak, K. Application of Moldavian dragonhead (Dracocephalum moldavica L.) leaves addition as a functional component of nutritionally valuable corn snacks. J. Food Sci. Technol. 2017, 54, 3218–3229. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, T.; Kasprzak-Drozd, K.; Olech, M.; Wójtowicz, A.; Nowak, R.; Rusinek, R.; Szponar, J.; Combrzyński, M.; Oniszczuk, A. The impact of formulation on the content of phenolic compounds in snacks enriched with Dracocephalum moldavica L. seeds: Introduction to receiving a new functional food product. Molecules 2021, 26, 1245. [Google Scholar] [CrossRef]
- Sosnowska, D.; Kajszczak, D.; Podsędek, A. The Effect of different growth stages of black chokeberry fruits on phytonutrients, anti-lipase activity, and antioxidant capacity. Molecules 2022, 27, 8031. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A.; Mitrus, M.; Oniszczuk, T.; Combrzyński, M. New type of potato-based snack-pellets supplemented with fresh vegetables from the Allium genus and its selected properties. LWT Food Sci. Technol. 2021, 145, 111233. [Google Scholar] [CrossRef]
- Reyniers, S.; Ooms, N.; Delcour, J.A. Transformations and functional role of starch during potato crisp making: A Review. J. Food Sci. 2020, 85, 4118–4129. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A.; Samborska, K.; Mitrus, M.; Oniszczuk, T.; Combrzyński, M.; Soja, J.; Lewko, P.; Kasprzak Drozd, K.; Oniszczuk, A. Structure and texture characteristics of novel snacks expanded by various methods. Materials 2023, 16, 1541. [Google Scholar] [CrossRef]
- Taskin, O. Evaluation of freeze drying for whole, half cut and puree black chokeberry (Aronia melanocarpa L.). Heat Mass Transf. 2020, 56, 2503–2513. [Google Scholar] [CrossRef]
- Wang, H.; van der Berg, F.W.J.; Zhang, W.; Czaja, T.P.; Zhang, L.; Jespersen, B.P.M.; Lametsch, R. Differences in physicochemical properties of high-moisture extrudates prepared from soy and pea protein isolates. Food Hydrocoll. 2022, 128, 107540. [Google Scholar] [CrossRef]
- Saldanha do Carmo, C.; Varela, P.; Poudroux, C.; Dessev, T.; Myhrer, K.; Rieder, A.; Zobel, H.; Sahlstrøm, S.; Knutsen, S.H. The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. LWT 2019, 112, 108252. [Google Scholar] [CrossRef]
- Zahari, I.; Ferawati, F.; Helstad, A.; Ahlström, C.; Östbring, K.; Rayner, M.; Purhagen, J.K. Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Tiwari, B.K.; Butler, F. Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food Bioprocess Technol. 2011, 4, 1245–1252. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Dede, S.; Alpas, H.; Bayındırlı, A. High hydrostatic pressure treatment and storage of carrot and tomato juices: Antioxidant activity and microbial safety. J. Sci. Food Agric. 2007, 87, 773–782. [Google Scholar] [CrossRef]
- AACC. Approved Method of the AACC, 9th ed.; American Association of Cereal Chemists: St. Paul, IL, USA, 1995; Available online: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1316335 (accessed on 2 August 2023).
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; Revision 3; AOAC International: Gaithersburg, MD, USA, 2010; ISBN 978-0-935584-80-6. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC, 13th ed.; Method 969.33, Fatty Acids in Oils and Fats, Preparation of Methyl Esters, Boron Trifluoride Method/AOAC-IUPAC Method; Helrich, K., Ed.; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- Kasprzak, K.; Oniszczuk, T.; Wójtowicz, A.; Waksmundzka-Hajnos, M.; Olech, M.; Nowak, R.; Polak, R.; Oniszczuk, A. Phenolic acid content and antioxidant properties of extruded corn snacks enriched with kale. J. Anal. Methods Chem. 2018, 2018, e7830546. [Google Scholar] [CrossRef]
- Czaban, J.; Sułek, A.; Pecio, Ł.; Zuchowski, J.; Podolska, G. Effect of Genotype and crop management systems on phenolic acid content in winter wheat grain. J. Food Agric. Environ. 2013, 11, 1201–1206. [Google Scholar]
- Ramić, M.; Vidović, S.; Zeković, Z.; Vladić, J.; Cvejin, A.; Pavlić, B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason. Sonochem. 2015, 23, 360–368. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Attenborough, E.; Creado, J.; Tiong, A.; Michalski, P.; Dhital, S.; Desai, K.; van ‘t Hag, L. Feed composition and particle size affect the physicochemical properties of jackfruit-corn extrudates. LWT-Food Sci. Technol. 2023, 185, 115148. [Google Scholar] [CrossRef]
- Nascimento, E.M.G.C.; Carvalho, C.W.P.; Takeiti, C.Y.; Freitas, D.D.G.C.; Ascheri, J.L.R. Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates. Food Res. Int. 2012, 45, 434–443. [Google Scholar] [CrossRef]
Additive Content [%] | Moisture Level [%] | Screw Speed [rpm] | Component Content [g 100 g−1] | |||||
---|---|---|---|---|---|---|---|---|
DM | CA | CP | CF | CFB | C | |||
0 | 32 | 60 | 89.94 d ± 0.08 | 3.76 a ± 0.03 | 3.64 b ± 0.02 | 0.07 a ± 0.01 | 0.31 d ± 0.05 | 82.16 |
100 | 89.21 a ± 0.07 | 3.76 a ± 0.04 | 3.57 b ± 0.04 | 0.09 ab ± 0.02 | 0.12 b ± 0.02 | 81.67 | ||
36 | 60 | 89.98 d ± 0.08 | 3.76 a ± 0.06 | 3.56 b ± 0.03 | 0.11 b ± 0.01 | nd | 82.55 | |
100 | 89.14 a ± 0.09 | 3.70 a ± 0.05 | 3.46 a ± 0.03 | 0.11 b ± 0.02 | 0.04 a ± 0.01 | 81.84 | ||
10 | 32 | 60 | 89.68 c ± 0.08 | 4.06 c ± 0.04 | 4.13 d ± 0.04 | 0.16 c ± 0.03 | nd | 81.34 |
100 | 89.50 b ± 0.08 | 4.04 c ± 0.03 | 4.06 c ± 0.05 | 0.10 b ± 0.02 | nd | 81.31 | ||
36 | 60 | 89.51 b ± 0.10 | 4.15 d ± 0.02 | 4.05 c ± 0.02 | 0.06 a ± 0.01 | nd | 81.26 | |
100 | 89.36 b ± 0.08 | 3.99 b ± 0.03 | 4.05 c ± 0.03 | 0.16 c ± 0.03 | nd | 81.15 | ||
30 | 32 | 60 | 90.07 e ± 0.07 | 4.88 e ± 0.06 | 4.75 d ± 0.04 | 0.15 c ± 0.03 | 0.09 b ± 0.01 | 80.21 |
100 | 89.95 d ± 0.09 | 5.07 f ± 0.05 | 4.82 d ± 0.03 | 0.16 c ± 0.02 | 0.17 c ± 0.02 | 79.74 | ||
36 | 60 | 90.31 f ± 0.09 | 4.97 e ± 0.04 | 4.84 d ± 0.04 | 0.21 d ± 0.02 | 0.16 bc ± 0.03 | 80.13 | |
100 | 89.73 c ± 0.08 | 4.92 e ± 0.03 | 4.87 d ± 0.04 | 0.18 cd ± 0.03 | 0.14 bc ± 0.02 | 79.63 |
Additive Content [%] | Moisture Level [%] | Screw Speed [rpm] | Fatty Acids [Content in 100%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C 16:0 | C 18:0 | C 18:1 n-9 | C 18:2 n-6 | C 18:3 n-3 | C 20:0 | Sum | Σ SFA | Σ MUFA | Σ PUFA | |||
0 | 32 | 60 | 21.37 e ± 0.16 | 8.43 i ± 0.04 | 51.22 d ± 0.15 | 17.60 e ± 0.12 | 0.79 d ± 0.07 | 0.00 | 100 | 30.38 | 51.23 | 18.39 |
100 | 21.94 e ± 0.12 | 8.98 k ± 0.05 | 51.38 d ± 0.12 | 16.55 d ± 0.16 | 0.53 b ± 0.05 | 0.00 | 100 | 31.55 | 51.38 | 17.08 | ||
36 | 60 | 22.02 e ± 0.09 | 8.25 h ± 0.03 | 52.69 e ± 0.11 | 15.89 c ± 0.11 | 0.53 b ± 0.04 | 0.00 | 100 | 30.88 | 52.69 | 16.42 | |
100 | 21.20 e ± 0.11 | 8.75 j ± 0.06 | 54.82 g ± 0.17 | 14.01 b ± 0.13 | 0.61 c ± 0.03 | 0.00 | 100 | 30.56 | 54.82 | 14.62 | ||
10 | 32 | 60 | 17.14 d ± 0.12 | 3.15 b ± 0.02 | 57.57 h ± 0.18 | 19.72 f ± 0.11 | 1.20 e ± 0.02 | 1.22 a ± 0.02 | 100 | 21.50 | 57.57 | 20.92 |
100 | 21.08 e ± 0.16 | 7.74 g ± 0.05 | 58.55 i ± 0.21 | 12.63 a ± 0.08 | nd | nd | 100 | 28.82 | 58.55 | 12.63 | ||
36 | 60 | 11.84 d ± 0.08 | 4.00 e ± 0.02 | 59.01 i ± 0.22 | 21.97 g ± 0.14 | 3.18 g ± 0.03 | nd | 100 | 25.84 | 59.01 | 15.16 | |
100 | 20.24 e ± 0.14 | 8.55 i ± 0.08 | 53.25 f ± 0.18 | 17.75 e ± 0.11 | 0.21 a ± 0.01 | nd | 100 | 28.79 | 53.25 | 17.96 | ||
30 | 32 | 60 | 11.88 b ± 0.09 | 3.28 c ± 0.04 | 34.79 c ± 0.12 | 45.11 h ± 0.14 | 3.70 h ± 0.03 | 1.23 a ± 0.01 | 100 | 16.39 | 34.79 | 48.81 |
100 | 14.48 c ± 0.10 | 3.47 d ± 0.04 | 31.26 a ± 0.12 | 45.53 i ± 0.18 | 5.25 j ± 0.05 | nd | 100 | 17.96 | 31.26 | 50.78 | ||
36 | 60 | 11.74 b ± 0.09 | 4.59 f ± 0.05 | 31.88 b ± 0.13 | 44.86 h ± 0.16 | 4.88 i ± 0.05 | 2.05 b ± 0.02 | 100 | 18.38 | 31.89 | 49.73 | |
100 | 9.29 a ± 0.07 | 2.17 a ± 0.02 | 35.03 c ± 0.14 | 51.66 j ± 0.20 | 1.84 f ± 0.02 | nd | 100 | 11.46 | 35.03 | 53.50 |
Additive Content [%] | Moisture Level [%] | Screw Speed [rpm] | TPC [μg GAE g−1] | TEAC [µg g−1 Product] |
---|---|---|---|---|
0 | 32 | 60 | 19.10 a ± 0.12 | 73.83 a ± 5.67 |
100 | 23.10 c ± 0.06 | 74.77 a ± 2.89 | ||
36 | 60 | 21.70 b ± 0.07 | 75.12 a ± 4.02 | |
100 | 21.80 b ± 0.05 | 75.35 a ± 3.99 | ||
10 | 32 | 60 | 64.70 d ± 0.11 | 148.95 b ± 7.23 |
100 | 75.50 g ± 0.99 | 160.16 b ± 7.12 | ||
36 | 60 | 71.50 f ± 1.11 | 151.17 b ± 6.94 | |
100 | 68.70 e ± 0.89 | 151.18 b ± 8.01 | ||
30 | 32 | 60 | 231.20 h ± 10.12 | 163.67 b ± 8.11 |
100 | 230.20 h ± 7.77 | 152.80 b ± 6.87 | ||
36 | 60 | 252.20 i ± 9.71 | 154.91 b ± 6.23 | |
100 | 223.20 h ± 5.65 | 160.16 b ± 8.32 |
Samples | Cyanidin-3-Galactoside | Cyanidin-3-Glucoside | Cyanidin-3-Arabinoside | Cyanidin-3-Xyloside | Control | |
---|---|---|---|---|---|---|
Production parameters | Results | Content in µg/g of dry weight | ||||
30%, 36 sm, 60 RPM | Mean | 276.52 a | LOD | 138.26 a | LOD | ND |
SD | 2.12 | 1.06 | ||||
% RSD | 0.77 | 0.77 | ||||
30%, 36 sm, 100 RPM | Mean | 284.49 b | LOD | 142.24 b | LOD | ND |
SD | 4.30 | 2.15 | ||||
% RSD | 1.51 | 1.51 | ||||
30%, 32 sm, 100 RPM | Mean | 289.51 c | LOD | 144.76 c | LOD | ND |
SD | 1.29 | 0.64 | ||||
% RSD | 0.45 | 0.45 |
Additive Content [%] | Screw Speed [rpm] | Moisture Level [%] | WAI [g g −1] | WSI [%] | FAI [%] |
---|---|---|---|---|---|
0 | 60 | 32 | 2.78 b–d ± 0.58 | 4.46 a ± 0.49 | 39.01 e ± 7.33 |
36 | 2.73 b ± 0.15 | 6.57 b ± 0.63 | 40.20 e ± 4.14 | ||
100 | 32 | 3.04 d ± 0.24 | 5.36 a ± 0.56 | 22.03 d ± 6.42 | |
36 | 2.88 c ± 0.07 | 6.18 b ± 0.69 | 26.40 d ± 2.72 | ||
10 | 60 | 32 | 3.03 d ± 0.55 | 7.27 bc ± 0.18 | 22.17 d ± 2.23 |
36 | 2.51 a ± 0.11 | 10.37 e ± 0.53 | 20.11 d ± 3.40 | ||
100 | 32 | 2.72 b ± 0.01 | 8.15 c ± 0.23 | 17.84 d ± 2.24 | |
36 | 2.59 a ± 0.04 | 9.25 d ± 0.31 | 19.73 d ± 3.17 | ||
30 | 60 | 32 | 2.94 c ± 0.11 | 11.56 ef ± 0.72 | 3.23 a ± 0.66 |
36 | 2.75 b ± 0.07 | 12.72 fg ± 0.79 | 7.68 c ± 1.56 | ||
100 | 32 | 2.93 c ± 0.04 | 9.92 e ± 0.58 | 5.73 b ± 1.34 | |
36 | 2.70 b ± 0.12 | 11.27 f ± 0.33 | 5.03 b ± 1.03 |
Additive Content [%] | Screw Speed [rpm] | Moisture Level [%] | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|
0 | 60 | 32 | 57.94 d ± 2.41 | 2.67 a ± 0.49 | 12.18 e ± 0.28 | ref |
36 | 60.77 e ± 0.75 | 2.39 a ± 0.07 | 11.46 d ± 0.08 | ref | ||
100 | 32 | 56.64 d ± 0.47 | 3.10 ab ± 0.20 | 13.42 f ± 0.35 | ref | |
36 | 55.44 d ± 2.75 | 2.73 a ± 0.44 | 10.81 d ± 0.54 | ref | ||
10 | 60 | 32 | 33.67 b ± 0.31 | 6.77 c ± 0.21 | 1.26 b ± 0.23 | 26.94 a ± 2.41 |
36 | 35.87 c ± 0.61 | 8.62 d ± 1.07 | 1.98 b ± 0.30 | 27.38 a ± 0.64 | ||
100 | 32 | 33.41 b ± 0.55 | 6.85 c ± 1.15 | 1.79 b ± 0.39 | 24.26 a ± 2.56 | |
36 | 35.55 c ± 0.37 | 9.48 d ± 0.08 | 2.29 c ± 0.04 | 24.69 a ± 0.48 | ||
30 | 60 | 32 | 29.25 a ± 0.46 | 3.30 b ± 0.68 | 0.65 a ± 0.13 | 30.94 b ± 2.51 |
36 | 29.59 a ± 0.67 | 3.64 b ± 0.26 | 0.84 a ± 0.05 | 32.96 b ± 0.95 | ||
100 | 32 | 29.14 a ± 0.93 | 2.58 a ± 0.22 | 0.64 a ± 0.11 | 30.33 b ± 0.85 | |
36 | 29.69 a ± 0.81 | 2.97 ab ± 0.41 | 0.78 a ± 0.07 | 27.69 a ± 2.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójtowicz, A.; Combrzyński, M.; Biernacka, B.; Różyło, R.; Bąkowski, M.; Wojtunik-Kulesza, K.; Mołdoch, J.; Kowalska, I. Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties. Plants 2023, 12, 3276. https://doi.org/10.3390/plants12183276
Wójtowicz A, Combrzyński M, Biernacka B, Różyło R, Bąkowski M, Wojtunik-Kulesza K, Mołdoch J, Kowalska I. Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties. Plants. 2023; 12(18):3276. https://doi.org/10.3390/plants12183276
Chicago/Turabian StyleWójtowicz, Agnieszka, Maciej Combrzyński, Beata Biernacka, Renata Różyło, Maciej Bąkowski, Karolina Wojtunik-Kulesza, Jarosław Mołdoch, and Iwona Kowalska. 2023. "Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties" Plants 12, no. 18: 3276. https://doi.org/10.3390/plants12183276
APA StyleWójtowicz, A., Combrzyński, M., Biernacka, B., Różyło, R., Bąkowski, M., Wojtunik-Kulesza, K., Mołdoch, J., & Kowalska, I. (2023). Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties. Plants, 12(18), 3276. https://doi.org/10.3390/plants12183276