Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato
Abstract
:1. Introduction
2. Biosynthesis, Metabolism, and Transport of α-Tomatine
2.1. Biosynthesis of α-Tomatine
2.2. Metabolism and Transport of α-Tomatine
Gene ID | Gene Name | Other Name | Gene Function | References |
---|---|---|---|---|
Solyc07g062520 | GAME7 | PGA2/CYP72A188 | Cytochrome P450 monooxygenase | [3] |
Solyc06g061027 | GAME8 | PGA1/CYP72A208 | Cytochrome P450 monooxygenase | [3,14,15] |
Solyc07g043420 | GAME11 | Sl16DOX | 2-Oxoglutarate-dependent dioxygenase | [16] |
Solyc07g043460 | GAME6 | PGA2/CYP72A188 | Cytochrome P450 monooxygenase | [3] |
Solyc12g006460 | GAME4 | PGA3/CYP88D/SlCYP88B1 | Cytochrome P450 monooxygenase | [3] |
Solyc12g006470 | GAME12 | GABA-T2 | γ-Aminobutyrate aminotransferase 2 | [17] |
Solyc01g073640 | GAME25 | Sl3βHSD1 | 3β-Hydroxysteroid dehydrogenases (3βHSD), 3-ketosteroid isomerase (3KSI), 3-ketosteroid reductase (3KSR) | [21] |
Solyc10g086500 | SlS5αR2 | Steroid 5α-reductase | [20] | |
Solyc07g043490 | GAME1 | UDP-galactosyltransferase | [3] | |
Solyc07g043480 | GAME17 | UDP-glucosyltransferase | [3] | |
Solyc07g043500 | GAME18 | UDP-glucosyltransferase | [3] | |
Solyc07g043410 | GAME2 | UDP-xylosyltransferase | [3] | |
Solyc02g062460 | GAME31 | Sl23DOX | 2-Oxoglutarate-dependent dioxygenase | [23] |
Solyc08g075210 | GAME36 | BAHD acyltransferases | [24] | |
Solyc09g089580 | E8/Sl27DOX | 2-Oxoglutalate-dependent dioxygenase | [25] | |
Solyc08g006410 | GAME5 | UDP-glycosyltransferase | [26] |
3. Transcriptional Regulation of α-Tomatine Biosynthesis and Metabolism
4. Hormonal Regulation of α-Tomatine Biosynthesis and Metabolism
4.1. Regulation of α-Tomatine Biosynthesis and Metabolism by Jasmonic Acid
4.2. Regulation of α-Tomatine by Interaction between JA and Gibberellin
4.3. Ethylene Regulates the Conversion of α-Tomatine to Tomato Saponin A
Gene ID | Gene Name | Other Name | Related Regulatory Pathway | Gene Family | References |
---|---|---|---|---|---|
Solyc01g090340 | GAME9 | JRE4; Sl-ERF.B9 | Jasmonic acid, gibberellin | AP2/ERF | [28] |
Solyc08g005050 | SlMYC1 | JAMYC10 | Jasmonic acid, gibberellin | bHLH | [29] |
Solyc08g076930 | SlMYC2 | JA3; LEJA3; JAMYC2; LeMYC2; BHLH147 | Jasmonic acid, gibberellin | bHLH | [29] |
Solyc07g042170 | JAZ1 | TIFY10a | Jasmonic acid, gibberellin | Jasmonate zim domain | [30] |
Solyc12g009220 | JAZ2 | TIFY10B | Jasmonic acid, gibberellin | Jasmonate zim domain | [30] |
Solyc01g005440 | JAZ6 | TIFY11B | Jasmonic acid, gibberellin | Jasmonate zim domain | [30] |
Solyc11g011030 | JAZ7 | TIFY5B | Jasmonic acid, gibberellin | Jasmonate zim domain | [30] |
Solyc08g061130 | SlHY5 | thy5 | Light | bZIP | [36] |
Solyc01g102300 | SlPIF3 | Light | bHLH | [36] | |
Solyc07g055740 | STR-2 | Sly-miR1916 | Strictosidine synthetase | [38] | |
Solyc06g069430 | FUL1 | TDR4; TM4 | Ethylene | MADS box | [33] |
Solyc03g114830 | FUL2 | MBP7 | Ethylene | MADS box | [33] |
Solyc05g012020 | RIN | RIN-MC; MADS-RIN; LeMADS-RIN | Ethylene | MADS box | [32] |
Solyc07g055920 | TAGL1 | ALQ | Ethylene | MADS box | [31] |
Solyc06g063070 | SlERF.E2 | JERF1 | Ethylene | ERFs | [46] |
Solyc01g065980 | SlERF.E4 | SlERF6 | Ethylene | ERFs | [46] |
5. A Probable Regulatory Network of α-Tomatine Biosynthetic and Metabolic Pathway
6. Concluding Remarks and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedman, M. Tomato glycoalkaloids: Role in the plant and in the diet. J. Agric. Food Chem. 2002, 50, 5751–5780. [Google Scholar] [CrossRef]
- Friedman, M. Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. J. Agric. Food Chem. 2006, 54, 8655–8681. [Google Scholar] [CrossRef]
- Itkin, M.; Heinig, U.; Tzfadia, O.; Bhide, A.J.; Shinde, B.; Cardenas, P.D.; Bocobza, S.E.; Unger, T.; Malitsky, S.; Finkers, R.; et al. Biosynthesis of Antinutritional Alkaloids in Solanaceous Crops Is Mediated by Clustered Genes. Science 2013, 341, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, P.A.-O.; Sonawane, P.D.; Heinig, U.; Jozwiak, A.; Panda, S.; Abebie, B.A.-O.; Kazachkova, Y.A.-O.; Pliner, M.A.-O.X.; Unger, T.; Wolf, D.; et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat. Commun. 2019, 10, 5169. [Google Scholar] [CrossRef]
- Milner, S.E.; Brunton, N.P.; Jones, P.W.; O’Brien, N.M.; Collins, S.G.; Maguire, A.R. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J. Agric. Food Chem. 2011, 59, 3454–3484. [Google Scholar] [CrossRef]
- Iijima, Y.; Fujiwara, Y.; Tokita, T.; Ikeda, T.; Nohara, T.; Aoki, K.; Shibata, D. Involvement of ethylene in the accumulation of esculeoside A during fruit ripening of tomato (Solanum lycopersicum). J. Agric. Food Chem. 2009, 57, 3247–3252. [Google Scholar] [CrossRef]
- Roddick, J.G. The steroidal glycoalkaloid α-tomatine. Phytochemistry 1974, 13, 9–25. [Google Scholar] [CrossRef]
- Kalinowska, M.; Zimowski, J.; Pączkowski, C.; Wojciechowski, Z.A. The Formation of Sugar Chains in Triterpenoid Saponins and Glycoalkaloids. Phytochem. Rev. 2005, 4, 237–257. [Google Scholar] [CrossRef]
- Flores-Holguín, N.; Rodríguez-Valdez, L.M.; Glossman-Mitnik, D. Computational note on the calculation of the dipole moment, polarizability and hyperpolarizability of solanidine. J. Mol. Struct. THEOCHEM 2008, 849, 122–123. [Google Scholar] [CrossRef]
- Petersen, H.W.; Mølgaard, P.; Nyman, U.; Olsen, C.E. Chemotaxonomy of the tuber-bearing Solanum species, subsection Potatoe (Solanaceae). Biochem. Syst. Ecol. 1993, 21, 629–644. [Google Scholar] [CrossRef]
- Ginzberg, I.; Tokuhisa, J.G.; Veilleux, R.E. Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation. Potato Res. 2009, 52, 1–15. [Google Scholar] [CrossRef]
- Ohyama, K.; Okawa, A.; Moriuchi, Y.; Fujimoto, Y. Biosynthesis of steroidal alkaloids in Solanaceae plants: Involvement of an aldehyde intermediate during C-26 amination. Phytochemistry 2013, 89, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Sawai, S.; Ohyama, K.; Yasumoto, S.; Seki, H.; Sakuma, T.; Yamamoto, T.; Takebayashi, Y.; Kojima, M.; Sakakibara, H.; Aoki, T.; et al. Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato. Plant Cell 2014, 26, 3763–3774. [Google Scholar] [CrossRef]
- Yu, G.; Li, C.; Zhang, L.; Zhu, G.; Munir, S.; Shi, C.; Zhang, H.; Ai, G.; Gao, S.; Zhang, Y.; et al. An allelic variant of GAME9 determines its binding capacity with the GAME17 promoter in the regulation of steroidal glycoalkaloid biosynthesis in tomato. J. Exp. Bot. 2020, 71, 2527–2536. [Google Scholar] [CrossRef]
- Umemoto, N.; Nakayasu, M.; Ohyama, K.; Yotsu-Yamashita, M.; Mizutani, M.; Seki, H.; Saito, K.; Muranaka, T. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway. Plant Physiol. 2016, 171, 2458–2467. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, M.; Umemoto, N.; Ohyama, K.; Fujimoto, Y.; Lee, H.J.; Watanabe, B.; Muranaka, T.; Saito, K.; Sugimoto, Y.; Mizutani, M. A Dioxygenase Catalyzes Steroid 16alpha-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. Plant Physiol. 2017, 175, 120–133. [Google Scholar] [CrossRef]
- Clark, S.M.; Di Leo, R.; Van Cauwenberghe, O.R.; Mullen, R.T.; Shelp, B.J. Subcellular localization and expression of multiple tomato gamma-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J. Exp. Bot. 2009, 60, 3255–3267. [Google Scholar] [CrossRef]
- Cardenas, P.D.; Sonawane, P.D.; Pollier, J.; Vanden Bossche, R.; Dewangan, V.; Weithorn, E.; Tal, L.; Meir, S.; Rogachev, I.; Malitsky, S.; et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 2016, 7, 10654. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Heinig, U.; Panda, S.; Gilboa, N.S.; Yona, M.; Kumar, S.P.; Alkan, N.; Unger, T.; Bocobza, S.; Pliner, M.; et al. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc. Natl. Acad. Sci. USA 2018, 115, E5419–E5428. [Google Scholar] [CrossRef]
- Akiyama, R.; Lee, H.J.; Nakayasu, M.; Osakabe, K.; Osakabe, Y.; Umemoto, N.; Saito, K.; Muranaka, T.; Sugimoto, Y.; Mizutani, M. Characterization of steroid 5 alpha-reductase involved in alpha-tomatine biosynthesis in tomatoes. Plant Biotechnol. 2019, 36, 253–263. [Google Scholar] [CrossRef]
- Lee, H.J.; Nakayasu, M.; Akiyama, R.; Kobayashi, M.; Miyachi, H.; Sugimoto, Y.; Umemoto, N.; Saito, K.; Muranaka, T.; Mizutani, M. Identification of a 3 beta-Hydroxysteroid Dehydrogenase/ 3-Ketosteroid Reductase Involved in alpha-Tomatine Biosynthesis in Tomato. Plant Cell Physiol. 2019, 60, 1304–1315. [Google Scholar] [CrossRef]
- Itkin, M.; Rogachev, I.; Alkan, N.; Rosenberg, T.; Malitsky, S.; Masini, L.; Meir, S.; Iijima, Y.; Aoki, K.; de Vos, R.; et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 2011, 23, 4507–4525. [Google Scholar] [CrossRef]
- Nakayasu, M.; Akiyama, R.; Kobayashi, M.; Lee, H.J.; Kawasaki, T.; Watanabe, B.; Urakawa, S.; Kato, J.; Sugimoto, Y.; Iijima, Y.; et al. Identification of alpha-Tomatine 23-Hydroxylase Involved in the Detoxification of a Bitter Glycoalkaloid. Plant Cell Physiol. 2020, 61, 21–28. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Gharat, S.A.; Jozwiak, A.; Barbole, R.; Heinicke, S.; Almekias-Siegl, E.; Meir, S.; Rogachev, I.; Connor, S.E.O.; Giri, A.P.; et al. A BAHD-type acyltransferase concludes the biosynthetic pathway of non-bitter glycoalkaloids in ripe tomato fruit. Nat. Commun. 2023, 14, 4540. [Google Scholar] [CrossRef]
- Akiyama, R.; Nakayasu, M.; Umemoto, N.; Kato, J.; Kobayashi, M.; Lee, H.J.; Sugimoto, Y.; Iijima, Y.; Saito, K.; Muranaka, T.; et al. Tomato E8 Encodes a C-27 Hydroxylase in Metabolic Detoxification of alpha-Tomatine during Fruit Ripening. Plant Cell Physiol. 2021, 62, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, J.; Bocobza, S.; Panda, S.; Sonawane, P.; Cardenas, P.D.; Lashbrooke, J.; Kamble, A.; Shahaf, N.; Meir, S.; Bovy, A.; et al. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat. Genet. 2020, 52, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Kazachkova, Y.; Zemach, I.; Panda, S.; Bocobza, S.; Vainer, A.; Rogachev, I.; Dong, Y.H.; Ben-Dor, S.; Veres, D.; Kanstrup, C.; et al. The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nat. Plants 2021, 7, 468–480. [Google Scholar] [CrossRef]
- Nakayasu, M.; Shioya, N.; Shikata, M.; Thagun, C.; Abdelkareem, A.; Okabe, Y.; Ariizumi, T.; Arimura, G.; Mizutani, M.; Ezura, H.; et al. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J. 2018, 94, 975–990. [Google Scholar] [CrossRef]
- Swinnen, G.A.-O.; De Meyer, M.A.-O.; Pollier, J.A.-O.; Molina-Hidalgo, F.A.-O.; Ceulemans, E.A.-O.; Venegas-Molina, J.; De Milde, L.; Fernández-Calvo, P.A.-O.; Ron, M.A.-O.; Pauwels, L.A.-O.; et al. The basic helix-loop-helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive and stress-inducible specialized metabolism in tomato. New Phytol. 2022, 236, 911–928. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Jozwiak, A.; Sonawane, P.D.; Szymanski, J.; Kazachkova, Y.; Vainer, A.; Vasuki Kilambi, H.; Almekias-Siegl, E.; Dikaya, V.; Bocobza, S.; et al. Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling. New Phytol. 2022, 233, 1220–1237. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, X.; Chen, S.; Meng, L.; Fu, D. Role of the tomato TAGL1 gene in regulating fruit metabolites elucidated using RNA sequence and metabolomics analyses. PLoS ONE 2018, 13, e0199083. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Shima, Y.; Nakagawa, H.; Kitagawa, M.; Kimbara, J.; Nakano, T.; Kasumi, T.; Ito, Y. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 2014, 26, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.D.; Yuan, X.Y.; Chen, S.; Fu, D.Q.; Jiang, C.Z. Metabolomic and Transcriptomic Analyses Reveal That a MADS-Box Transcription Factor TDR4 Regulates Tomato Fruit Quality. Front. Plant Sci. 2019, 10, 792. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. The 1-deoxy-d-xylulose-5-phosphate Pathway of Isoprenoid Biosynthesis in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Fores, O.; Martinez-Garcia, J.F.; Gonzalez, V.; Phillips, M.A.; Ferrer, A.; Boronat, A. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 2004, 16, 144–156. [Google Scholar] [CrossRef]
- Wang, C.C.; Meng, L.H.; Gao, Y.; Grierson, D.; Fu, D.Q. Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves. Front. Plant Sci. 2018, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Tepperman, J.M.; Quail, P.H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 1998, 95, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Meng, J.; He, X.L.; Zhang, M.; Luan, Y.S. Solanum lycopersicum microRNA1916 targets multiple target genes and negatively regulates the immune response in tomato. Plant Cell Environ. 2019, 42, 1393–1407. [Google Scholar] [CrossRef] [PubMed]
- Abdelkareem, A.; Thagun, C.; Nakayasu, M.; Mizutani, M.; Hashimoto, T.; Shoji, T. Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem. Biophys. Res. Commun. 2017, 489, 206–210. [Google Scholar] [CrossRef]
- Lincoln, J.E.; Cordes, S.; Read, E.; Fischer, R.L. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc. Natl. Acad. Sci. USA 1987, 84, 2793–2797. [Google Scholar] [CrossRef]
- Lincoln, J.E.; Fischer, R.L. Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol. Gen. Genet. 1988, 212, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Martel, C.; Vrebalov, J.; Tafelmeyer, P.; Giovannoni, J.J. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 2011, 157, 1568–1579. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Nakano, T.; Ito, Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol. 2011, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Wang, Y.; Cao, B.; Wang, W.; Tian, S. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J. 2012, 70, 243–255. [Google Scholar] [CrossRef]
- Fujisawa, M.; Nakano, T.; Shima, Y.; Ito, Y. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 2013, 25, 371–386. [Google Scholar] [CrossRef]
- Liu, M.C.; Gomes, B.L.; Mila, I.; Purgatto, E.; Peres, L.E.P.; Frasse, P.; Maza, E.; Zouine, M.; Roustan, J.P.; Bouzayen, M.; et al. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato. Plant Physiol. 2016, 170, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Hu, H.; Yang, R.; Zhu, Z.; Cheng, K. Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato. Plants 2023, 12, 3289. https://doi.org/10.3390/plants12183289
Liu Y, Hu H, Yang R, Zhu Z, Cheng K. Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato. Plants. 2023; 12(18):3289. https://doi.org/10.3390/plants12183289
Chicago/Turabian StyleLiu, Yuanyuan, Hanru Hu, Rujia Yang, Zhujun Zhu, and Kejun Cheng. 2023. "Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato" Plants 12, no. 18: 3289. https://doi.org/10.3390/plants12183289
APA StyleLiu, Y., Hu, H., Yang, R., Zhu, Z., & Cheng, K. (2023). Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato. Plants, 12(18), 3289. https://doi.org/10.3390/plants12183289