Oogamochlamys kurilensis sp. nov. (Chlorophyta, Volvocales) from the Soils of Iturup Island (Sakhalin Region, Russia)
Abstract
:1. Introduction
2. Results
2.1. Taxonomic Treatment
2.2. Phylogenetic Analyses
3. Discussion
4. Materials and Methods
4.1. Study Site, Culture Conditions and Light Microscopy
4.2. DNA Extraction, Amplification, and Sequencing
4.3. Alignment, Secondary Structure Modeling, and Datasets
4.4. Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ettl, H. Die Gattung Chlamydomonas Ehrenberg (Chlamydomonas und die nächstverwandten Gattungen II). Beih. Nova. Hedwigia. 1976, 49, 1–1122. [Google Scholar]
- Leliaert, F.; Smith, D.R.; Moreau, H.; Herron, M.D.; Verbruggen, H.; Delwiche, C.F.; De Clerck, O. Phylogeny and Molecular Evolution of the Green Algae. Crit. Rev. Plant Sci. 2012, 31, 1–46. [Google Scholar] [CrossRef]
- Pröschold, T.; Marin, B.; Schlösser, U.G.; Melkonian, M. Molecular Phylogeny and Taxonomic Revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and Description of Oogamochlamys Gen. Nov. and Lobochlamys Gen. Nov. In Memory of Hanus Ettl (19311997), Promoter of the Systematics of Thegenus. Protist 2001, 152, 265–300. [Google Scholar] [CrossRef] [PubMed]
- Boldina, O.N. Hlamidomonady (Chlamydomonadaceae) Sankt-Peterburga i Leningradskoj oblasti: Sostoyanie izuchennosti i novye nahodki [Chlamydomonads (Chlamydomonadaceae) of St. Petersburg and the Leningrad region: State of research and new findings] Novosti Sist. Nov. Sist. Nizsh. Rast. 2016, 50, 5–22. (In Russian) [Google Scholar] [CrossRef]
- Pröschold, T.; Leliaert, F. Systematics of the green algae: Conflict of classic and modern approaches. In Unravelling the Algae: The Past, Present, and Future of Algal Systematics; Brodie, J., Lewis, J., Eds.; Taylor and Francis: London, UK, 2007; pp. 123–153. ISBN 978-0-8493-7989-5. [Google Scholar]
- Manoylov, K.M. Taxonomic identification of algae (morphological and molecular): Species concepts, methodologies, and their implications for ecological bioassessment. J. Phycol. 2014, 50, 409–424. [Google Scholar] [CrossRef]
- Buchheim, M.A.; Lemieux, C.; Otis, C.; Gutell, R.R.; Chapman, R.L.; Turmel, M. Phylogeny of the Chlamydomonadales (Chlorophyceae) a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Mol. Phylogenet. Evol. 1996, 5, 391–402. [Google Scholar] [CrossRef]
- Nozaki, H.; Misumi, O.; Kuroiwa, T. Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Mol. Phylogenet. Evol. 2003, 29, 58–66. [Google Scholar] [CrossRef]
- Nakada, T.; Misawa, K.; Nozaki, H. Molecular Systematics of Volvocales (Chlorophyceae, Chlorophyta) Based on Exhaustive 18S RRNA Phylogenetic Analyses. Mol. Phylogenet. Evol. 2008, 48, 281–291. [Google Scholar] [CrossRef]
- Fučíková, K.; Lewis, P.O.; Neupane, S.; Karol, K.G.; Lewis, L.A. Order, Please! Uncertainty in the Ordinal-Level Classification of Chlorophyceae. PeerJ 2019, 7, e6899. [Google Scholar] [CrossRef]
- Nakada, T.; Tomita, M. Morphology and Phylogeny of a New Wall-Less Freshwater Volvocalean Flagellate, Hapalochloris Nozakii Gen. et Sp. Nov. (Volvocales, Chlorophyceae). J. Phycol. 2017, 53, 108–117. [Google Scholar] [CrossRef]
- Nakada, T.; Tomita, M.; Wu, J.-T.; Nozaki, H. Taxonomic Revision of Chlamydomonas Subg. Amphichloris (Volvocales, Chlorophyceae), with Resurrection of the Genus Dangeardinia and Descriptions of Ixipapillifera Gen. Nov. and Rhysamphichloris Gen. Nov. J. Phycol. 2016, 52, 283–304. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Nakada, T. Gymnomonas nepalensis gen. et sp. nov. for the naked flagellate strain ‘Nepal’, formerly identified as Dunaliella lateralis (Volvocales, Chlorophyceae). Phycol. Res. 2018, 66, 167–172. [Google Scholar] [CrossRef]
- Watanabe, S.; Mitsui, K.; Nakayama, T.; Inouye, I. Phylogenetic Relationships and Taxonomy of Sarcinoid Green Algae: Chlorosarcinopsis, Desmotetra, Sarcinochlamys Gen. Nov., Neochlorosarcina, and Chlorosphaeropsis (Chlorophyceae, Chlorophyta)1. J. Phycol. 2006, 42, 679–695. [Google Scholar] [CrossRef]
- Shtina, E.A.; Andreyeva, V.M.; Kuzyakina, T.I. Zaseleniye vodoroslyami vulkanicheskikh substratov [Algae settlement of volcanic substrates]. Bot. Zhurnal 1992, 8, 33–42. (In Russian) [Google Scholar]
- Ilchibaeva, K.V.; Kunsbaeva, D.F.; Allaguvatova, R.Z.; Fazlutdinova, A.I.; Polokhin, O.V.; Sibirina, L.A.; Gontcharov, A.A.; Singh, P.; Gaysina, L.A. Preliminary data about algae and cyanobacteria of volcanic soils on Kuril islands. Theor. Appl. Ecol. 2018, 4, 119–126. [Google Scholar] [CrossRef]
- Nozaki, H.; Ohta, N.; Morita, E.; Watanabe, M.M. Toward a natural system of species in Chlorogonium (Volvocales, Chlorophyta): A combined analysis of morphological and rbcL gene sequence data. J. Phycol. 1998, 34, 1024–1037. [Google Scholar] [CrossRef]
- Starr, R.C.; Marner, F.J.; Jaenicke, L. Chemoattraction of Male Gametes by a Pheromone Produced by Female Gametes of Chlamydomonas. Proc. Natl. Acad. Sci. USA 1995, 92, 641–645. [Google Scholar] [CrossRef]
- Coleman, A.W.; Jaenicke, L.; Starr, R.C. Genetics and sexual behavior of the pheromone producer Chlamydomonas allensworthii (Chlorophyceae). J. Phycol. 2001, 37, 345–349. [Google Scholar] [CrossRef]
- Alisov, B.P. Klimaticheskie Oblasti i Rajony` SSSR [Climatic Regions and Provinces of the USSR]; Geografgiz: Moscow, Russia, 1947; 212p. (In Russian) [Google Scholar]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie Bd. 1: Teil C; Köppen, W., Geiger, R., Eds.; Verlag von Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Kostenkov, N.M.; Oznobikhin, V.I. Pochvenno-geograficheskoye rayonirovanie Kuril’skikh ostrovov [Soil-geographical zoning of the Kuril Islands]. Vestnik SVNTS DVO RAN 2011, 1, 77–83. (In Russian) [Google Scholar]
- Polokhin, O.V.; Sibirina, L.A. Pochvenniy i rastitel’nyy pokrov ostrova Iturup (Kuril’skiye ostrova) [Soil and Vegetation Cover of Iturup Island (Kuril Islands)]. Sovr. Probl. Nauki. i Obr. 2014, 5, 618. (In Russian) [Google Scholar]
- Kuzyakhmetov, G.G.; Dubovik, I.E. Metody Izucheniya Pochvennyh Vodorosley [Methods for Studying Soil Algae]; Izdatelstvo RIO BashGU: Ufa, Russia, 2001. (In Russian) [Google Scholar]
- Andersen, R.A. Algal Culturing Techniques; Elsevier Academic Press: Burlington, MA, USA, 2005; ISBN 0-12-088426-7. [Google Scholar]
- McFadden, G.I.; Melkonian, M. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 1986, 25, 551–557. [Google Scholar] [CrossRef]
- Abdullin, S.R.; Nikulin, A.Y.; Bagmet, V.B.; Nikulin, V.Y.; Gontcharov, A.A. New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia). Phytotaxa 2021, 527, 221–233. [Google Scholar] [CrossRef]
- López-García, P.; Philippe, H.; Gail, F.; Moreira, D. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. USA 2003, 100, 697–702. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols—A Guide to Methods and Application; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Mikhailyuk, T.; Lukešová, A.; Glaser, K.; Holzinger, A.; Obwegeser, S.; Nyporko, S.; Friedl, T.; Karsten, U. New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach. Protist 2018, 169, 406–431. [Google Scholar] [CrossRef] [PubMed]
- Hoef-Emden, K.; Melkonian, M. Revision of the Genus Cryptomonas (Cryptophyceae): A Combination of Molecular Phylogeny and Morphology Provides Insights into a Long-Hidden Dimorphism. Protist 2003, 154, 371–409. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.; Klingberg, M.; Melkonian, M. Phylogenetic Relationships among the Cryptophyta: Analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 1998, 149, 265–276. [Google Scholar] [CrossRef]
- Marin, B.; Palm, A.; Klingberg, M.; Melkonian, M. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 2003, 154, 99–145. [Google Scholar] [CrossRef]
- Goka, K.; Yokoyama, J.; Une, Y.; Kuroki, T.; Suzuki, K.; Nakahara, M.; Kobayashi, A.; Inaba, S.; Mizutani, T.; Hyatt, A.D. Amphibian chytridiomycosis in Japan: Distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 2009, 18, 4757–4774. [Google Scholar] [CrossRef]
- Bonfield, J.K.; Smith, K.F.; Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 1995, 23, 4992–4999. [Google Scholar] [CrossRef]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics 1996, 12, 543–548. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Darty, K.; Denise, A.; Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25, 1974–1975. [Google Scholar] [CrossRef] [PubMed]
- Pröschold, T.; Darienko, T.; Krienitz, L.; Coleman, A.W. Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa 2018, 362, 21–38. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. A New look at the statistical model identification. IEEE Trans. Autom. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
Character | O. gigantea | O. ettlii | O. zimbabwiensis | O. kurilensis sp. nov. | C. allensworthii |
---|---|---|---|---|---|
Mature vegetative cells | |||||
shape | broadly rounded–cylindrical–oviform | oval–cylindrical–oviform | ellipsoidal to almost spherical | ||
size, μm | 30–50 × 25–35 | 16–27 × 18–22 | 15–22 × 15–20 | 6.1–17.1 × 4.5–9.5 | 15 × 11 |
Cell wall | thin | ||||
Cell wall papilla | small, rounded | broad, rounded, two humped or absent | broad, rounded | absent | |
Flagellar length | about as long as the cell | about half of the cell | about as long as the cell | ||
Chloroplast shape | cup-shaped parietal, massive, surface with coarse ridges | cup-shaped, parietal, massive, surface with fine ridges | cup-shaped, parietal, massive, surface with very fine ridges | cup-shaped, parietal, massive, surface with fine ridges | cup-shaped |
Pyrenoids | 10–16 (–20) | 3–8 | 2–6 | 1 | 1–3 |
shape | discontinuous, matrix multipartite | nd | |||
Eyespot color | pale red | nd | |||
shape | elliptic to narrowly elongated | elliptic to narrowly elongated or punctiform | elliptic to narrowly elongated | elliptic | |
position in the chloroplast | anterior | ||||
Contractile vacuoles | 2 apical + many (>20), distributed over the whole cell surface | 2 apical | 2 apical | 4 apical | |
Nucleus position | central or slightly anterior | anterior | nd | ||
Zoospores | 4 (2–8) | 2–4 | 2–8 | ||
shape | nearly spherical | nearly spherical–oviform | nd | ||
pyrenoids | 4–8 | 3–6 | 2–4 | 1 | nd |
size, μm | 10–15 | 10–12 | 5.7–12.4 × 4.0–8.4 | nd | |
Sexual reproduction | oogamy, homothallic, proterandric | anisogamy | |||
Spermatozoids | 32–64 (rarely 128) | 16 | 32–128 | nd | |
shape | teardrop-shaped, without cell wall, with two flagella nearly 1.5 times as long as the cell, with two apical contractile vacuoles, chloroplast reduced, pale green, with a distinct eyespot, without pyrenoid | round-shaped, without cell wall, with two flagella nearly 1.5 times as long as the cell, chloroplast reduced, pale green, with a distinct eyespot, without pyrenoid | teardrop-shaped | ||
size, μm | 6–10 × 4–6 | 4–6 × 3–5 | 4.0–4.5 × 3.4–4.0 | 6 × 4 and larger | |
Zygote | ornamented with regular, flat-stopped projections, green to brownish-red | not ornamented, green | not ornamented, green to brownish-red, diameter 13.7–22.4 μm | with a broad, hyaline wall at first, with crenulations forming on the surface later | |
References | [3] | This study | [18] |
Species | Geography | Climate Conditions (Köppen 1936) | Habitat | Strain |
---|---|---|---|---|
O. gigantea | Africa (South Africa) | Warm—summer, Mediterranean (Csb) | soil | SAG 44.91 |
Africa (Zimbabwe) | nd | soil | SAG 22.98 | |
North America (USA, California) | Warm—summer, Mediterranean (Csb) | pond soil | SAG 21.72 | |
North America (USA, Texas) | humid subtropical (Cfa) | soil | SAG 9.84 | |
O. zimbabwiensis | Africa (South Africa) | Warm—summer, Mediterranean (Csb) | soil | SAG 45.91 |
Africa (Zimbabwe) | nd | soil | UTEX LB 2214 | |
Africa (Zimbabwe) | nd | soil | SAG 2316 | |
Oogamochlamys sp. (putative, O. zimbabwiensis) | Asia (Republic of Korea) | Humid, continental (Dwa) | bottom sediment | ZL-2012 |
O. ettlii | Africa (Zimbabwe) | nd | soil | UTEX 2218 |
O. kurilensis | Asia (Russia, Sakhalin Region, Iturup Island) | Warm—summer, humid, continental (Dfb) | soil | VCA-206 |
Chlamydomonas sp. | Asia (Japan, Saitama) | Humid, subtropical (Cfa) | freshwater (paddy soil) | NIES-2317, NIES-2318 |
Chlamydomonas sp. | North America (USA, Minnesota) | Warm—summer, humid, continental (Dfb) | freshwater | CCAP 11/161 |
C. allensworthii | North America (USA, California) | warm—summer, Mediterranean (Csb) | soil | LCH-15, LCN-9, LCA-74 |
North America (USA, Texas) | Humid, subtropical (Cfa) | nd | 21A, 266 | |
Europe (Germany, Koln) | temperate—oceanic (Cfb) | nd | Flamingo | |
North America (USA, Nebraska) | Humid, continental (Dfa) | nd | isolate 1 (Neb) | |
North America (USA, Texas) | Hot, semi-arid (BSh) | soil | isolate 2 (Cat) | |
Africa (South Africa) | Hot, semi-arid (BSh) | nd | isolate 3 (Krueger) | |
Australia (Lismore) | Humid, subtropical (Cfa) | nd | isolate 4 (88-10) | |
South America (Chile, Lago Cisne) | subpolar variety of the oceanic (Cfc) | nd | isolate 5 (Chile) | |
Oceania (USA, Hawaii) | Hot, semi-arid (BSh) | nd | isolate 6 (Hon2), isolate 7 (Hon9) | |
North America (USA, California) | warm—summer, Mediterranean (Csb) | soil | UTEX 2718 | |
North America (USA, Texas) | Hot, semi-arid (BSh) | soil | UTEX 2719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikulin, V.Y.; Nikulin, A.Y.; Gontcharov, A.A.; Bagmet, V.B.; Abdullin, S.R. Oogamochlamys kurilensis sp. nov. (Chlorophyta, Volvocales) from the Soils of Iturup Island (Sakhalin Region, Russia). Plants 2023, 12, 3350. https://doi.org/10.3390/plants12193350
Nikulin VY, Nikulin AY, Gontcharov AA, Bagmet VB, Abdullin SR. Oogamochlamys kurilensis sp. nov. (Chlorophyta, Volvocales) from the Soils of Iturup Island (Sakhalin Region, Russia). Plants. 2023; 12(19):3350. https://doi.org/10.3390/plants12193350
Chicago/Turabian StyleNikulin, Vyacheslav Yu., Arthur Yu. Nikulin, Andrey A. Gontcharov, Veronika B. Bagmet, and Shamil R. Abdullin. 2023. "Oogamochlamys kurilensis sp. nov. (Chlorophyta, Volvocales) from the Soils of Iturup Island (Sakhalin Region, Russia)" Plants 12, no. 19: 3350. https://doi.org/10.3390/plants12193350
APA StyleNikulin, V. Y., Nikulin, A. Y., Gontcharov, A. A., Bagmet, V. B., & Abdullin, S. R. (2023). Oogamochlamys kurilensis sp. nov. (Chlorophyta, Volvocales) from the Soils of Iturup Island (Sakhalin Region, Russia). Plants, 12(19), 3350. https://doi.org/10.3390/plants12193350