Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
No. | Classification of Volatile Compounds | Compounds | Tr (min) | RI | RI (Literature) [28,29] | HS a | HO b | HC c |
---|---|---|---|---|---|---|---|---|
1 | Monoterpene Hydrocarbons | α-thujene | 5.08 | 953 | 919 | - | 1.06 | - |
2 | α-pinene | 5.21 | 957 | 927 | 1.4 | 0.95 | - | |
3 | camphene | 5.47 | 966 | 945 | 0.2 | 0.02 | - | |
4 | β-pinene | 5.94 | 981 | 980 | 0.27 | 0.2 | - | |
5 | β-myrcene | 6.11 | 986 | 991 | 0.31 | 1.73 | - | |
6 | α-terpinene | 6.59 | 1022 | 1015 | 0.52 | 0.7 | - | |
7 | p-cymene | 6.74 | 1025 | 1026 | 17.77 | 13.33 | 0.12 | |
8 | γ-terpinene | 7.3 | 1036 | 1062 | - | 9.98 | - | |
9 | Oxygenated Monoterpenes | 1,8-cineole | 8.29 | 1053 | 1028 | 0.41 | 0.09 | - |
10 | camphor | 8.79 | 1061 | 1137 | 0.61 | 2.89 | - | |
11 | α-terpineol | 9.34 | 1069 | 1189 | - | 0.55 | - | |
12 | geranyl acetate | 9.57 | 1073 | - | 0.03 | 2.25 | - | |
13 | α-thujone | 10.84 | 1089 | - | 78.04 | 0.65 | - | |
14 | thymol | 11.19 | 1092 | 1291 | 0.26 | 12.73 | - | |
15 | carvacrol | 11.36 | 1174 | - | 0.18 | 37.68 | - | |
16 | Phenylpropanoid | eugenol | 12.08 | 1281 | - | - | 11.22 | 72.66 |
17 | Sesquiterpene Hydrocarbons | α-copaene | 12.31 | 1457 | - | - | - | 0.02 |
18 | β-caryophyllene | 12.99 | 1485 | - | - | 2.28 | 17.41 | |
19 | cis-calamenene | 14.37 | 1537 | - | - | 0.06 | 4.83 | |
20 | Oxygenated Sesquiterpenes | caryophyllene oxide | 15.23 | 1566 | 1581 | - | 1.63 | 4.5 |
2.2. Antioxidant Activity
2.3. Antibacterial Activity
2.4. In Silico Prediction
3. Materials and Methods
3.1. Plant Materials
3.2. Hydrodistillation Protocol
3.3. GC-MS Analysis
3.4. DPPH Scavenging Assay
3.5. Total Antioxidant Capacity
3.6. Choice of Strains and Agar Diffusion Method
3.7. Determination of MIC in Liquid Medium
3.8. Determination of the MFC on Solid Media
3.9. Molecular Docking Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci. Hortic. 2020, 271, 109465. [Google Scholar] [CrossRef]
- Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
- Haddou, M.; Taibi, M.; Elbouzidi, A.; Loukili, E.H.; Yahyaoui, M.I.; Ou-Yahia, D.; Mehane, L.; Addi, M.; Asehraou, A.; Chaabane, K. Investigating the Impact of Irrigation Water Quality on Secondary Metabolites and Chemical Profile of Mentha piperita Essential Oil: Analytical Profiling, Characterization, and Potential Pharmacological Applications. Int. J. Plant Biol. 2023, 14, 638–657. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Tmušić, N.; Stanojević, L.; Stanojević, J.; Cvetković, D. Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. LWT 2022, 153, 112210. [Google Scholar] [CrossRef]
- Waller, S.B.; Cleff, M.B.; Serra, E.F.; Silva, A.L.; dos Reis Gomes, A.; de Mello, J.R.B.; de Faria, R.O.; Meireles, M.C.A. Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microb. Pathog. 2017, 104, 232–237. [Google Scholar] [CrossRef]
- Lee, C.-J.; Chen, L.-G.; Chang, T.-L.; Ke, W.-M.; Lo, Y.-F.; Wang, C.-C. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 2011, 124, 833–841. [Google Scholar] [CrossRef]
- Celaj, O.; Duran, A.G.; Cennamo, P.; Scognamiglio, M.; Fiorentino, A.; Esposito, A.; D’Abrosca, B. Phloroglucinols from Myrtaceae: Attractive targets for structural characterization, biological properties and synthetic procedures. Phytochem. Rev. 2021, 20, 259–299. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Galvão, L.; Furletti, V.; Bersan, S.; Da Cunha, M.; Ruiz, A.; Carvalho, J.; Sartoratto, A.; Rehder, V.; Figueira, G.; Teixeira Duarte, M. Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects. Evid. Based Complement Altern. Med. 2012, 2012, 751435. [Google Scholar] [CrossRef]
- Valerio, F.; Mezzapesa, G.N.; Ghannouchi, A.; Mondelli, D.; Logrieco, A.F.; Perrino, E.V. Characterization and antimicrobial properties of essential oils from four wild taxa of Lamiaceae family growing in Apulia. Agronomy 2021, 11, 1431. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Salah, K.B.H.; Aouni, M.; Khouja, M.L.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation between chemical composition and antibacterial activity of essential oils from fifteen Eucalyptus species growing in the Korbous and Jbel Abderrahman arboreta (North East Tunisia). Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef]
- Prakash, P.; Selvam, K.; Gayathiri, E.; Pratheep, T.; Manivasagaperumal, R.; Kumaravel, P.; Balameena, S. Plant-Based Natural Bioactive Compounds 2,4-Ditert-Butylphenolas: A Potential Candidates against SARS-Cov-2019. Energy Nexus 2022, 6, 100080. [Google Scholar] [CrossRef]
- Jažo, Z.; Glumac, M.; Paštar, V.; Bektić, S.; Radan, M.; Carev, I. Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. Plants 2023, 12, 1794. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017, 16, 160. [Google Scholar]
- Grdiša, M.; Jug-Dujaković, M.; Lončarić, M.; Carović-Stanko, K.; Ninčević, T.; Liber, Z.; Radosavljević, I.; Šatović, Z. Dalmatian sage (Salvia officinalis L.): A review of biochemical contents, medical properties and genetic diversity. Agric. Conspec. Sci. 2015, 80, 69–78. [Google Scholar]
- Van Den Broucke, C.; Lemli, J. Chemical investigation of the essential oil of Origanum compactum. Planta Med. 1980, 38, 264–266. [Google Scholar] [CrossRef]
- Tasdemir, D.; Kaiser, M.; Demirci, B.; Demirci, F.; Baser, K.H.C. Antiprotozoal activity of Turkish Origanum onites essential oil and its components. Molecules 2019, 24, 4421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, Y.-H.; Ye, M.; Wang, K.-B.; Fan, L.-M.; Su, F.-W. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chem. 2021, 365, 130506. [Google Scholar] [CrossRef] [PubMed]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Selles, S.M.A.; Kouidri, M.; Belhamiti, B.T.; Ait Amrane, A. Chemical composition, in-vitro antibacterial and antioxidant activities of Syzygium aromaticum essential oil. J. Food Meas. 2020, 14, 2352–2358. [Google Scholar] [CrossRef]
- Bogdan, M.A.; Bungau, S.; Tit, D.M.; Zaha, D.C.; Nechifor, A.C.; Behl, T.; Chambre, D.; Lupitu, A.I.; Copolovici, L.; Copolovici, D.M. Chemical profile, antioxidant capacity, and antimicrobial activity of essential oils extracted from three different varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia. Molecules 2021, 26, 4381. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Jamal, A.; Edaoudi, F.; Et-Touys, A.; Bakri, Y.; Dakka, N. Origanum compactum Benth: A review on phytochemistry and pharmacological properties. Med. Aromat. Plants 2016, 5, 2167-0412.1000252. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Tešević, V.; Čabarkapa, I.; Todosijević, M. QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. ex Heuff. essential oil composition. Ind. Crops Prod. 2020, 154, 112752. [Google Scholar] [CrossRef]
- Shatar, S.; Adams, R.P.; Koenig, W. Comparative study of the essential oil of Rhodiola rosea L. from Mongolia. J. Essent. Oil Res. 2007, 19, 215–217. [Google Scholar] [CrossRef]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- de Carvalho, F.O.; Silva, É.R.; Gomes, I.A.; Santana, H.S.R.; do Nascimento Santos, D.; de Oliveira Souza, G.P.; de Jesus Silva, D.; Monteiro, J.C.M.; de Albuquerque Júnior, R.L.C.; de Souza Araújo, A.A. Anti-inflammatory and antioxidant activity of carvacrol in the respiratory system: A systematic review and meta-analysis. Phytother. Res. 2020, 34, 2214–2229. [Google Scholar] [CrossRef] [PubMed]
- Taibi, M.; Elbouzidi, A.; Ou-Yahia, D.; Dalli, M.; Bellaouchi, R.; Tikent, A.; Roubi, M.; Gseyra, N.; Asehraou, A.; Hano, C. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics 2023, 12, 655. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, J.; Amraoui, B.; El-Wahidi, M.; Bamhaoud, T. Chemical composition, antioxidant and antimicrobial activities of Moroccan species of Psidium guajava extracts. Rocz. Państwowego Zakładu Hig. 2022, 73, 65–77. [Google Scholar]
- Hosseini, S.; Yadegari, M.; Rajabibazl, M.; Ghaemi, E. Inhibitory effects of carvacrol on the expression of secreted aspartyl proteinases 1–3 in fluconazole-resistant Candida albicans isolates. Iran. J. Microbiol. 2016, 8, 401–409. [Google Scholar] [PubMed]
- Ripphausen, P.; Nisius, B.; Peltason, L.; Bajorath, J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J. Med. Chem. 2010, 53, 8461–8467. [Google Scholar] [CrossRef]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem. 2021, 60, 273–343. [Google Scholar]
- Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269–288. [Google Scholar] [CrossRef]
- Kandsi, F.; Lafdil, F.Z.; Elbouzidi, A.; Bouknana, S.; Miry, A.; Addi, M.; Conte, R.; Hano, C.; Gseyra, N. Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of Dysphania ambrosioides (L.) Mosyakin and Clemants Flowers. Toxins 2022, 14, 475. [Google Scholar] [CrossRef]
- Rolta, R.; Salaria, D.; Kumar, V.; Patel, C.N.; Sourirajan, A.; Baumler, D.J.; Dev, K. Molecular docking studies of phytocompounds of Rheum emodi Wall with proteins responsible for antibiotic resistance in bacterial and fungal pathogens: In silico approach to enhance the bio-availability of antibiotics. J. Biomol. Struct. Dyn. 2022, 40, 3789–3803. [Google Scholar] [CrossRef]
- Salaria, D.; Rolta, R.; Patel, C.N.; Dev, K.; Sourirajan, A.; Kumar, V. In vitro and in silico analysis of Thymus serpyllum essential oil as bioactivity enhancer of antibacterial and antifungal agents. J. Biomol. Struct. Dyn. 2022, 40, 10383–10402. [Google Scholar] [CrossRef]
- Trevisan, D.A.C.; da Silva, P.; Farias, A.; Campanerut-Sá, P.; Ribeiro, T.; Faria, D.; de Mendonça, P.; de Mello, J.; Seixas, F.; Mikcha, J. Antibacterial activity of Barbatimão (Stryphnodendron adstringens) against Staphylococcus aureus: In vitro and in silico studies. Lett. Appl. Microbiol. 2020, 71, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, A.; Kim, E.E.; Hwang, K.Y. Structural insights into Staphylococcus aureus enoyl-ACP reductase (FabI), in complex with NADP and triclosan. Proteins Struct. Funct. Genet. 2010, 78, 480–486. [Google Scholar] [CrossRef]
- Ouahabi, S.; Loukili, E.H.; Elbouzidi, A.; Taibi, M.; Bouslamti, M.; Nafidi, H.-A.; Salamatullah, A.M.; Saidi, N.; Bellaouchi, R.; Addi, M. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life 2023, 13, 1393. [Google Scholar] [CrossRef] [PubMed]
- Rashdan, H.R.; Shehadi, I.A.; Abdelrahman, M.T.; Hemdan, B.A. Antibacterial activities and molecular docking of novel sulfone biscompound containing bioactive 1,2,3-triazole moiety. Molecules 2021, 26, 4817. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Lü, X. New strategy on antimicrobial-resistance: Inhibitors of DNA replication enzymes. Curr. Med. Chem. 2019, 26, 1761–1787. [Google Scholar] [CrossRef] [PubMed]
- Janakiramudu, D.B.; Subba Rao, D.; Srikanth, C.; Madhusudhana, S.; Sreenivasa Murthy, P.; Nagalakshmidevamma, M.; Chalapathi, P.V.; Naga Raju, C. Sulfonamides and carbamates of 3-fluoro-4-morpholinoaniline (linezolid intermediate): Synthesis, antimicrobial activity and molecular docking study. Res. Chem. Intermed. 2018, 44, 469–489. [Google Scholar] [CrossRef]
- Kim, O.K.; Barrett, J.F.; Ohemeng, K. Advances in DNA gyrase inhibitors. Expert Opin. Investig. Drugs 2001, 10, 199–212. [Google Scholar] [CrossRef]
- Patil, M.; Poyil, A.N.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. Design, synthesis, and molecular docking study of new piperazine derivative as potential antimicrobial agents. Bioorg. Chem. 2019, 92, 103217. [Google Scholar] [CrossRef]
- Payne, D.J.; Miller, W.H.; Berry, V.; Brosky, J.; Burgess, W.J.; Chen, E.; DeWolf, W.E., Jr.; Fosberry, A.P.; Greenwood, R.; Head, M.S. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 2002, 46, 3118–3124. [Google Scholar] [CrossRef]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) mosyakin and clemants essential oils: Experimental and computational approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef]
- Sweilam, S.H.; Abdel Bar, F.M.; Foudah, A.I.; Alqarni, M.H.; Elattal, N.A.; El-Gindi, O.D.; El-Sherei, M.M.; Abdel-Sattar, E. Phytochemical, antimicrobial, antioxidant, and in vitro cytotoxicity evaluation of Echinops erinaceus Kit Tan. Separations 2022, 9, 447. [Google Scholar] [CrossRef]
- Heath, R.J.; Rock, C.O. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J. Biol. Chem. 1995, 270, 26538–26542. [Google Scholar] [CrossRef] [PubMed]
- Trzaskos, J.M.; Fischer, R.T.; Favata, M.F. Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process. J. Biol. Chem. 1986, 261, 16937–16942. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 1999, 12, 40–79. [Google Scholar] [CrossRef]
- Raju, R.V.; Datla, R.S.; Moyana, T.N.; Kakkar, R.; Carlsen, S.A.; Sharma, R.K. N-myristoyltransferase. Mol. Cell. Biochem. 2000, 204, 135–155. [Google Scholar] [CrossRef]
- Wright, M.H.; Heal, W.P.; Mann, D.J.; Tate, E.W. Protein myristoylation in health and disease. J. Chem. Biol. 2010, 3, 19–35. [Google Scholar] [CrossRef]
- Spiteller, G. On the chemistry of oxidative stress. J. Lipid Mediat. 1993, 7, 199–221. [Google Scholar]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C. LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical composition, in vitro and in silico antioxidant potential of Melissa officinalis subsp. officinalis essential oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef]
- Azghar, A.; Dalli, M.; El Hassania Loukili, Y.B.; Tahri, M.; Benaissa, E. Evaluation of the antibacterial activity of essential oil of. Asian J. Plant Sci. 2023, 22, 75–81. [Google Scholar] [CrossRef]
- Kadda, S.; Belabed, A.; Loukili, E.H.; Hammouti, B.; Fadlaoui, S. Temperature and extraction methods effects on yields, fatty acids, and tocopherols of prickly pear (Opuntia ficus-indica L.) seed oil of eastern region of Morocco. Environ. Sci. Pollut. Res. 2022, 29, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Haddou, S.; Loukili, E.H.; Hbika, A.; Chahine, A.; Hammouti, B. Phytochemical study using HPLC-UV/GC–MS of different of Cannabis sativa L. seeds extracts from Morocco. Mater. Today Proc. 2023, 72, 3896–3903. [Google Scholar] [CrossRef]
- Loukili, E.H.; Abrigach, F.; Bouhrim, M.; Bnouham, M.; Fauconnier, M.-l.; Ramdani, M. Chemical composition and physicochemical analysis of Opuntia dillenii extracts grown in Morocco. J. Chem. 2021, 2021, 8858929. [Google Scholar] [CrossRef]
- Laaroussi, H.; Aouniti, A.; Hafez, B.; Mokhtari, O.; Sheikh, R.; Hamdani, I.; Rahhou, I.; Loukili, E.H.; Belbachir, C.; Hammouti, B. Argan leaves aqueous extract’s antioxidant activity and mild steel corrosion inhibition ability. Int. J. Corros. Scale Inhib. 2022, 11, 1539–1556. [Google Scholar]
- Hbika, A.; Daoudi, N.E.; Bouyanzer, A.; Bouhrim, M.; Mohti, H.; Loukili, E.H.; Mechchate, H.; Al-Salahi, R.; Nasr, F.A.; Bnouham, M. Artemisia absinthium L. Aqueous and ethyl acetate extracts: Antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics 2022, 14, 481. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; Ouahhoud, S.; Loukili, E.H.; Ou-Yahya, D.; Ouahabi, S.; Alqahtani, A.S.; Noman, O.M.; Addi, M.; Bellaouchi, R. Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics. Life 2023, 13, 1586. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef]
- Loukili, E.; Bouchal, B.; Bouhrim, M.; Abrigach, F.; Genva, M.; Zidi, K.; Bnouham, M.; Bellaoui, M.; Hammouti, B.; Addi, M. Chemical Composition, Antibacterial, Antifungal and Antidiabetic Activities of Ethanolic Extracts of Opuntia dillenii Fruits Collected from Morocco. J. Food Qual. 2022, 2022, 9471239. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, H.N.; El Hachlafi, N.; El Kamili, T.; Elbouzidi, A.; Abdallah, E.M.; Flouchi, R.; Assaggaf, H.; Qasem, A.; Zengin, G. Integrated analysis of antimicrobial, antioxidant, and phytochemical properties of Cinnamomum verum: A comprehensive In vitro and In silico study. Biochem. Syst. Ecol. 2023, 110, 104700. [Google Scholar] [CrossRef]
- Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 2012, 55, 623–638. [Google Scholar] [CrossRef]
- Tittal, R.K.; Yadav, P.; Lal, K.; Kumar, A. Synthesis, molecular docking and DFT studies on biologically active 1,4-disubstituted-1, 2, 3-triazole-semicarbazone hybrid molecules. New J. Chem. 2019, 43, 8052–8058. [Google Scholar]
- Lountos, G.T.; Jiang, R.; Wellborn, W.B.; Thaler, T.L.; Bommarius, A.S.; Orville, A.M. The crystal structure of NAD (P) H oxidase from Lactobacillus sanfranciscensis: Insights into the conversion of O2 into two water molecules by the flavoenzyme. Biochem 2006, 45, 9648–9659. [Google Scholar] [CrossRef] [PubMed]
- Lafitte, D.; Lamour, V.; Tsvetkov, P.O.; Makarov, A.A.; Klich, M.; Deprez, P.; Moras, D.; Briand, C.; Gilli, R. DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry 2002, 41, 7217–7223. [Google Scholar] [CrossRef] [PubMed]
- Podust, L.M.; Poulos, T.L.; Waterman, M.R. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 2001, 98, 3068–3073. [Google Scholar] [CrossRef] [PubMed]
- Sogabe, S.; Masubuchi, M.; Sakata, K.; Fukami, T.A.; Morikami, K.; Shiratori, Y.; Ebiike, H.; Kawasaki, K.; Aoki, Y.; Shimma, N. Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors. Chem. Biol. 2002, 9, 1119–1128. [Google Scholar] [CrossRef]
- Williams, P.A.; Cosme, J.; Ward, A.; Angove, H.C.; Matak Vinković, D.; Jhoti, H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003, 424, 464–468. [Google Scholar] [CrossRef]
- Borbulevych, O.Y.; Jankun, J.; Selman, S.H.; Skrzypczak-Jankun, E. Lipoxygenase interactions with natural flavonoid, quercetin, reveal a complex with protocatechuic acid in its X-ray structure at 2.1 Å resolution. Proteins Struct. Funct. Genet 2004, 54, 13–19. [Google Scholar] [CrossRef]
Oils/Standard | DPPH Scavenging Capacity IC50 (mg/mL) | Total Antioxidant Capacity * |
---|---|---|
HO | 0.12 ± 0.02 | 1086.81 ± 0.32 |
HC | 0.42 ± 0.76 | 942.58 ± 0.24 |
HS | 0.46 ± 0.23 | 250.27 ± 0.47 |
IC50 (Ascorbic acid (AA)) | 0.26 ± 0.24 | - |
Oils/Antibiotic | IZ (mm) a | |||
---|---|---|---|---|
E. coli | L. innocua | S. aureus | P. aeruginosa | |
HS b | 9.00 ± 0.31 | 8.00 ± 0.22 | 10.00 ± 0.26 | 10.00 ± 0.10 |
HO c | 8.00 ± 0.12 | 8.00 ± 0.43 | 10.00 ± 0.25 | 10.00 ± 0.22 |
HC d | 10.00± 0.23 | 10.00 ± 0.14 | 11.00 ± 0.22 | 13.00 ± 0.23 |
Gentamycine e | 29.50 ± 0.60 | 29.90 ± 0.20 | 30.10 ± 0.40 | 21.30 ± 0.11 |
Oils/Antibiotic | IZ (mm) a | ||||
---|---|---|---|---|---|
C. albicans | C. glabrata | S. cerevisiae | A. niger | G. candidum | |
HS b | 8.00 ± 0.21 | 7.00 ± 0.20 | - | - | - |
HO c | 9.00 ± 0.27 | 10.00 ± 0.35 | 7.00 ± 0.23 | 13.50 ± 0.28 | 11.00 ± 0.12 |
HC d | 14.50 ± 0.23 | 21.50 ± 0.17 | 16.00 ± 0.13 | 22.50 ± 0.14 | 18.00 ± 0.20 |
Gentamycine e | 21.40 ± 0.13 | 41.32 ± 0.03 | 67.50 ± 0.29 | 48.12 ± 0.01 | 23.00 ± 0.28 |
Oils/Antibiotic | C. albicans | C. glabrata | S. cerevisiae | A. niger | G. candidum |
---|---|---|---|---|---|
MIC (%) | 2 | 0.25 | 1 | 0.125 | 0.5 |
MFC (%) | 8 | 1 | 8 | 0.25 | 4 |
MFC/MIC | 4 | 4 | 8 | 2 | 8 |
No. | Compounds | Compound Abundance in | Antibacterial Proteins (PDB IDs) | Antifungal Proteins (PDB IDs) | Antioxidant Proteins (PDB IDs) | |||||
---|---|---|---|---|---|---|---|---|---|---|
HS | HO | HG | 1KZN | 3GNS | 1EA1 | 1IYL | 1N8Q | 1OG5 | ||
Free Binding Energy (Kcal/mol) * | ||||||||||
- | native ligand | − | − | − | −9.6 | −6.2 | −5.8 | −5.8 | −6 | −6.6 |
1 | α-thujene | − | + | − | −5.3 | −4.7 | −4.4 | −4.5 | −6.5 | −5.6 |
2 | α-pinene | + | + | − | −4.7 | −5 | −4.2 | −4.9 | −5.6 | −5.6 |
3 | camphene | + | + | − | −6.3 | −5.1 | −4.7 | −4.8 | −6.1 | −6 |
4 | β-pinene | + | + | − | −4.7 | −4.9 | −4.1 | −4.8 | −5.5 | −5.6 |
5 | β-myrcene | + | + | − | −4.9 | −4.3 | −3.2 | −4.6 | −4.1 | −5.3 |
6 | α-terpinene | + | + | − | −5.8 | −4.9 | −4.2 | −4.7 | −5.1 | −6.1 |
7 | p-cymene | + | + | + | −6 | −4.9 | −4.2 | −4.8 | −4.1 | −5.9 |
8 | γ-terpinene | − | + | − | −5.8 | −4.7 | −4.3 | −4.7 | −5.1 | −6.1 |
9 | 1.8-cineole | + | + | − | −5.3 | −5.4 | −4.3 | −4.8 | −5.4 | −5.6 |
10 | camphor | + | + | − | −5.5 | −5.5 | −4.4 | −4.7 | −5.5 | −5.9 |
11 | α-terpineol | + | + | − | −5.9 | −5 | −4.4 | −5.1 | −5.5 | −5.7 |
12 | geranyl acetate | + | + | − | −5.4 | −4.8 | −4.3 | −4.8 | −5 | −6 |
13 | α-thujone | + | − | − | −5.9 | −4.9 | −4.2 | −4.6 | −5.6 | −6.1 |
14 | thymol | + | + | − | −6.2 | −5.1 | −4.7 | −4.7 | −6.2 | −6 |
15 | carvacrol | + | + | − | −6 | −5.4 | −4.7 | −5.3 | −6.2 | −6.3 |
16 | eugenyl | − | + | + | −5.8 | −5.3 | −4.1 | −4.8 | −5.5 | −5.5 |
17 | α-copaene | − | − | + | −6.7 | −5.6 | −5.2 | −6.6 | −6.3 | −5.6 |
18 | β-caryophyllene | − | + | + | −5.3 | −6.2 | −5.5 | −5.8 | −6.1 | −7.4 |
19 | cis-calamenene | − | − | + | −6.1 | −5.9 | −5.4 | −6.5 | −6.2 | −7.3 |
20 | caryophyllene oxide | − | + | + | −5.6 | −6.2 | −5.2 | −6.4 | −6.6 | −7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loukili, E.H.; Ouahabi, S.; Elbouzidi, A.; Taibi, M.; Yahyaoui, M.I.; Asehraou, A.; Azougay, A.; Saleh, A.; Al Kamaly, O.; Parvez, M.K.; et al. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. Plants 2023, 12, 3376. https://doi.org/10.3390/plants12193376
Loukili EH, Ouahabi S, Elbouzidi A, Taibi M, Yahyaoui MI, Asehraou A, Azougay A, Saleh A, Al Kamaly O, Parvez MK, et al. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. Plants. 2023; 12(19):3376. https://doi.org/10.3390/plants12193376
Chicago/Turabian StyleLoukili, El Hassania, Safae Ouahabi, Amine Elbouzidi, Mohamed Taibi, Meryem Idrissi Yahyaoui, Abdeslam Asehraou, Abdellah Azougay, Asmaa Saleh, Omkulthom Al Kamaly, Mohammad Khalid Parvez, and et al. 2023. "Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study" Plants 12, no. 19: 3376. https://doi.org/10.3390/plants12193376
APA StyleLoukili, E. H., Ouahabi, S., Elbouzidi, A., Taibi, M., Yahyaoui, M. I., Asehraou, A., Azougay, A., Saleh, A., Al Kamaly, O., Parvez, M. K., El Guerrouj, B., Touzani, R., & Ramdani, M. (2023). Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. Plants, 12(19), 3376. https://doi.org/10.3390/plants12193376