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Abstract: Throughout history, essential oils have been employed for their pleasing scents and poten-
tial therapeutic benefits. These oils have shown promise in various areas, including aromatherapy,
personal care products, natural remedies, and even as alternatives to traditional cleaning agents or
pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacte-
rial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr.
et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS),
and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in
the identified compounds. α-thujone emerged as the predominant volatile component in the oils,
making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of
the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging
capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through
the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil
displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50

of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM
AAE/mg. Additionally, the oils’ effectiveness against four bacterial strains, namely Escherichia coli,
Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum
candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested
in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the excep-
tion of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order
to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds,
we employed computational methods, specifically molecular docking. This technique involved
studying the interactions between these compounds and established protein targets associated with
antioxidant, antibacterial, and antifungal activities.
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1. Introduction

Aromatic plants, also known as aromatic herbs, possess a distinct fragrance due to
volatile aromatic compounds, such as essential oils, in their leaves, flowers, stems, or other
plant parts [1]. These compounds are responsible for these plants’ characteristic scents
and flavors [1]. Due to their bioactive characteristics and therapeutic potential, medicinal
and aromatic plants have attracted significant interest in the pharmaceutical industry [2,3].
They are abundant in natural chemical compounds, including volatile organic compounds,
flavonoids, terpenoids, and other chemicals that give rise to various pharmacological ef-
fects [4,5]. Aromatic plants produce essential oils, which are highly fragrant and contain the
plant’s distinctive aroma. These plants are commonly used in various industries, including
perfumery, cosmetics, culinary arts, and traditional medicine [6,7]. Many aromatic plants
also possess medicinal properties and have been used for centuries in herbal medicine
worldwide [8]. Many aromatic and medicinal plants have antibacterial properties [9],
inhibiting the growth of bacteria, fungi, and viruses. These plants can potentially be em-
ployed in disease prevention and as a source of novel antibacterial chemicals [10,11]. The
volatile organic compounds have been investigated for their potential antioxidant proper-
ties due to the presence of various bioactive compounds such as phenols, terpenes, and
flavonoids [12]. Antioxidants help protect cells from damage caused by harmful molecules
called free radicals, associated with oxidative stress and various chronic diseases [13]. Their
effectiveness as antioxidant agents in the human body is still being researched. The efficacy
and interest of essential oils and their importance in pharmacology depend on the extrac-
tion method, the plant source and chemical composition, as well as the presence of volatile
compounds responsible for the plant’s aroma and flavor [10,14]. These pharmacological
interests of aromatic and medicinal plants are the subject of extensive pharmacological
research. Many studies focus on identifying bioactive compounds, mechanisms of action,
toxicity, and potential drug interactions [15–17]. However, it is important to stress that
using these plants for therapeutic purposes requires rigorous evaluation.

In this systematic paper, we discuss the chemical composition of essential oils from
three medicinal plants, Origanum compactum (HO), Salvia officinal (HS), and Syzygium
aromaticum (HC). However, no investigations on the content and biological activity of (HO),
(HS), and (HC) oils, particularly those harvested in northern Morocco, are known. As a
result, the study sought to determine the phytochemical content, as well as the antioxidant
and antibacterial activity, of (HO), (HS), and (HC). A computational analysis was used
to assess the physicochemical attributes of each detected molecule in the oils, including
drug-likeness and pharmacokinetic qualities. In addition to in vitro investigations, a
computational study was carried out using molecular docking and an ADMET analysis.
The main purpose of the molecular docking experiment was to determine how the ligands
interacted with the individual proteins involved in the investigated biological processes.
This investigation provided critical information about the binding mechanisms, affinities,
and potential interactions between the ligands and the target proteins. The ADMET analysis,
on the other hand, attempted to evaluate the three essential oils’ various pharmacokinetic
features, providing significant information about their absorption, distribution, metabolism,
and other relevant aspects.

2. Results
2.1. Phytochemical Analysis

Studying the chemical composition of any plant is a highly useful way to assess its
quality before its use or consumption. In this context, the chemical composition of the
essential oils from three plants, namely S. officinalis, O. compactum, and S. aromaticum, was
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investigated, and the results are presented in Table 1 and Figures 1 and 2. The results
show that the essential oil obtained with hydrodistillation of S. officinalis contains eleven
compounds, with the major ones being α-thujone and p-cymene, accounting for 78.04%
and 17.77%, respectively.
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Figure 2. Structural formulas of the main components of O. compactum (HO), S. officinalis (HS), and S.
aromaticum (HC) essential oils.

In O. compactum, the major compound identified was thymol, accounting for (37.68%),
followed by carvacrol (12.73%) and p-cymene (13.33%). As for the essential oil of S. aro-
maticum, the main identified components were eugenol, with a concentration of 72.66%,
and β-caryophyllene, present at 17.41%.

The S. officinalis specimens collected from the Adriatic coast of Croatia exhibited
high levels of α-thujone, β-thujone, camphor, and 1,8-cineole [18]. In the essential oil
of S. officinalis sourced from Tunisia, 49 different components were identified. The pri-
mary constituent was camphor, followed by a significant presence of α-thujone at 18.83%.
Additionally, significant components included 1,8-cineole, viridiflorol, β-thujone, and
β-caryophyllene [19]. In S. officinalis obtained from the eastern Adriatic coast flora and
islands, this plant’s essential oil contains significant amounts of dominant compounds,
specifically thujones and camphor [20]. The major components found in the essential oil of
O. compactum collected in Morocco were camphor, carvacrol, thymol, and p-cymene [21].
Carvacrol, linalool, and p-cymene were identified as the primary constituents of the essen-
tial oil of O. compactum from Turkey [22]. Another study on the essential oils of this plant
from China revealed that the main constituents were methyl eugenol, myristicin, carvacrol,
and thymol [23]. An essential oil analysis of clove (S. aromaticum) grown in Mexico unveiled
eugenol as the primary compound, accounting for a minimum of 50% of the oil. The
remaining 10 to 40% consists of eugenyl acetate, β-caryophyllene, and α-humulene [24].
The main constituents of S. aromaticum grown in Algeria are eugenol, β-caryophyllene, and
eugenyl acetate [25].
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The significant variation in the essential oil composition observed between our studies
and other studies can be attributed to various factors, including the conditions that influence
the seasonal fluctuations of plant metabolites [26]. Regarding the genotype of the plant, the
phenological stage of the plant at the time of harvest, environmental conditions, the plant
parts used for essential oil extraction, and the drying method employed, all these factors
can influence the chemical composition of the essential oil and account for the differences
observed between studies [20]. Indeed, the variations in chemical composition observed
in essential oils have given rise to chemotypes [27]. Chemotypes are typically described
as distinct populations within the same species that exhibit variations in their chemical
profiles, particularly for specific classes of secondary metabolites. These chemotypes can be
identified based on the unique combination and abundance of critical compounds present
in their essential oils.

Table 1. Chemical composition of O. compactum (HO), S. Officinal (HS), and S. aromaticum (HC).

No.
Classification

of Volatile
Compounds

Compounds Tr
(min) RI RI (Literature)

[28,29] HS a HO b HC c

1

Monoterpene
Hydrocarbons

α-thujene 5.08 953 919 - 1.06 -

2 α-pinene 5.21 957 927 1.4 0.95 -

3 camphene 5.47 966 945 0.2 0.02 -

4 β-pinene 5.94 981 980 0.27 0.2 -

5 β-myrcene 6.11 986 991 0.31 1.73 -

6 α-terpinene 6.59 1022 1015 0.52 0.7 -

7 p-cymene 6.74 1025 1026 17.77 13.33 0.12

8 γ-terpinene 7.3 1036 1062 - 9.98 -

9

Oxygenated
Monoterpenes

1,8-cineole 8.29 1053 1028 0.41 0.09 -

10 camphor 8.79 1061 1137 0.61 2.89 -

11 α-terpineol 9.34 1069 1189 - 0.55 -

12 geranyl acetate 9.57 1073 - 0.03 2.25 -

13 α-thujone 10.84 1089 - 78.04 0.65 -

14 thymol 11.19 1092 1291 0.26 12.73 -

15 carvacrol 11.36 1174 - 0.18 37.68 -

16 Phenylpropanoid eugenol 12.08 1281 - - 11.22 72.66

17
Sesquiterpene
Hydrocarbons

α-copaene 12.31 1457 - - - 0.02

18 β-caryophyllene 12.99 1485 - - 2.28 17.41

19 cis-calamenene 14.37 1537 - - 0.06 4.83

20 Oxygenated
Sesquiterpenes

caryophyllene
oxide 15.23 1566 1581 - 1.63 4.5

a (S. Officinal), b (O. compactum), c (S. aromaticum); Tr: Retention time; RI: Retention index.

2.2. Antioxidant Activity

The ability of a chemical to prevent or reduce oxidative damage caused by free radicals
in the body is referred to as its antioxidant potential. It measures the cumulative antioxidant
activity present in the substance or sample. Depending on the individual characteristics
and objectives of the study, various methods for measuring antioxidant potential can be
used. In our work, we evaluated this activity using the following methods, the DPPH•
radical scavenger activity and the TAC test.
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The TAC of essential oils from the three oils was evaluated using the phosphomolyb-
denum test. This method relies on the reduction of Mo (VI) to Mo (V) by the various
antioxidants present in oils, resulting in the formation of a green-colored phosphate/Mo (V)
complex. During the test, it was observed that the absorbance increased proportionally with
increasing concentrations (Figure 3). At a 100 mg/mL concentration, O. compactum (HO)
essential oil exhibited the highest total antioxidant activity (1086.81 ± 0.32 µM AAE/mg).
S. officinalis (HS) and S. aromaticum (HC) oils followed, with total antioxidant activities of
250.27± 0.47 µM AAE/mg and 942.58± 0.24 µM AAE/mg, respectively. Notably, the phos-
phomolybdenum assay had not been previously employed to determine the antioxidant
activity of the oils under investigation.
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Figure 3. Effect of essential oil concentration on O. compactum (HO), S. Officinalis (HS), and S.
aromaticum (HC) total antioxidant activity (phosphomolybdate assay). The mean SD of three determi-
nations is used to calculate the values.

Additionally, for the DPPH assay, at a concentration of 100 mg/mL (Table 2 and Figure 4), the
oil of O. compactum (HO) exhibited the highest anti-radical activity (IC50 = 0.12± 0.02 mg/mL) in
comparison with ascorbic acid as a reference (IC50 = 0.26± 0.24 mg/mL) followed by S. aromaticum
(HC) (IC50 = 0.42± 0.76 mg/mL) and S. officinalis (HS) (IC50 = 0.46± 0.23 mg/mL) extracts.

Table 2. The antioxidant and free radical scavenging ability of O. compactum (HO), S. Officinal L. (HS),
and S. Aromaticum (HC).

Oils/Standard DPPH Scavenging Capacity
IC50 (mg/mL)

Total
Antioxidant Capacity *

HO 0.12 ± 0.02 1086.81 ± 0.32
HC 0.42 ± 0.76 942.58 ± 0.24
HS 0.46 ± 0.23 250.27 ± 0.47

IC50 (Ascorbic acid (AA)) 0.26 ± 0.24 -
* Total antioxidant capacity expressed in µM ascorbic acid equivalents/mg oil.
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calculate the values.

Based on the data, the DPPH scavenging capacity indicates the ability of the essential
oils from these three plant sources (O. compactum, S. officinalis L., and S. aromaticum) to
neutralize free radicals, which are reactive molecules that can cause oxidative damage
in cells and tissues. The oxygenated monoterpenes (carvacrol, thymol, and eugenol),
the main components of the oils studied, are three compounds found in various plant
sources. Because of their ability to scavenge free radicals and alleviate oxidative stress, these
chemicals are recognized for their antioxidant characteristics and have been researched for
their potential health benefits [30,31]. These essential oils’ scavenging activity indicates
their potential health advantages and applications.

2.3. Antibacterial Activity

The chemical diversity of the molecules that make up essential oils defines their an-
tibacterial power. This study aimed to demonstrate the antibacterial activity of essential oils
extracted from HC, HO, and HS medicinal and aromatic plants against Staphylococcus aureus,
Listeria innocua, Escherichia coli, and Pseudomonas aeruginosa bacteria. The chromatograms
showed inhibition diameters between 8 and 10 mm for HO and HS oils and 10 and 13 mm
for HC oils (Table 3). That means the three essential oils have low activity compared to
gentamycin used as a reference, so there is no point in conducting the quantitative tests
(calculation of MIC and CMF).

Table 3. Diameters (mm) of the bacterial growth inhibition zones induced using one of three species (S.
officinalis, O. compactum, and S. Aromaticum (20 µg/disque)), as well as gentamycine (1 mg/mL/disc).

Oils/Antibiotic
IZ (mm) a

E. coli L. innocua S. aureus P. aeruginosa

HS b 9.00 ± 0.31 8.00 ± 0.22 10.00 ± 0.26 10.00 ± 0.10
HO c 8.00 ± 0.12 8.00 ± 0.43 10.00 ± 0.25 10.00 ± 0.22
HC d 10.00± 0.23 10.00 ± 0.14 11.00 ± 0.22 13.00 ± 0.23

Gentamycine e 29.50 ± 0.60 29.90 ± 0.20 30.10 ± 0.40 21.30 ± 0.11
a Inhibition zone; b S. officinal L.; c O. compactum; d S. aromaticum; e Positive control.
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The antifungal activity was evaluated against the yeasts Candida albicans, Candida
glabrata, Saccharomyces cerevisiae, Aspergillus niger, and Geotrichum candidum. Measurement
of inhibition diameters gave poor results for essential oils HS and HO against all the fungal
strains tested. However, the oil of HC gave good results against all tested strains (Table 4).
The activity of the HC oil gave a zone of inhibition of 14.5± 0.2 against C. albicans, 21.5 ± 0.1
against C. glabrata, 16 ± 0.1 against S. cerevisiae, 22.5 ± 0.1 against A. niger, and 18 ± 0.2
against G. candidum. That means essential oil HC has potent antifungal activity against all
the fungal strains tested. The results obtained for the antifungal activity of essential oil HC
led us to move on to quantitative tests and thus measure this oil’s minimum inhibitory and
fungicidal concentrations against all the fungal strains tested.

Table 4. HS, HO, and HC essential oils’ effect on bacterial strains.

Oils/Antibiotic
IZ (mm) a

C. albicans C. glabrata S. cerevisiae A. niger G. candidum

HS b 8.00 ± 0.21 7.00 ± 0.20 - - -
HO c 9.00 ± 0.27 10.00 ± 0.35 7.00 ± 0.23 13.50 ± 0.28 11.00 ± 0.12
HC d 14.50 ± 0.23 21.50 ± 0.17 16.00 ± 0.13 22.50 ± 0.14 18.00 ± 0.20

Gentamycine e 21.40 ± 0.13 41.32 ± 0.03 67.50 ± 0.29 48.12 ± 0.01 23.00 ± 0.28
a Inhibition zone; b S. officinal L.; c O. compactum; d S. aromaticum; e Positive control.

The lowest MIC of this oil was recorded against A. niger, which was equal to 0.125%,
followed by 0.25% against C. glabrata, 0.5% against G. candidum, 1% against S. cerevisiae, and
2% against Candida albicans (Table 5), with MFCs ranging from 0.25% against A. niger to 8%
against S. cerevisiae and G. candidum. These results confirm that this essential oil has a potent
antifungal activity and can be used as an alternative against various diseases caused by
these fungal types and even for treating phytopathology of a fungal origin. The bioactive
compounds in HC essential oil could be responsible for this solid antifungal activity [32]. β-
caryophyllene, one of plants’ major compounds, contributes significantly to their antifungal
activity against various fungal strains. Carvacrol, another bioactive compound, is also
responsible for the antifungal effects observed in the essential oils studied. It can disrupt
fungal cell membranes, hindering their growth and dissemination. In addition, it can
interfere with the mechanisms that regulate fungal growth, reducing their viability. These
results suggest that these three essential oils could be used as natural alternatives in various
fields, including food, health, and pharmaceutical research [31,33,34].

Table 5. Minimum inhibitory (MIC) and fungicidal concentrations (MFC) of HC (S. aromaticum)
against the studied fungal strains.

Oils/Antibiotic C. albicans C. glabrata S. cerevisiae A. niger G. candidum

MIC (%) 2 0.25 1 0.125 0.5
MFC (%) 8 1 8 0.25 4

MFC/MIC 4 4 8 2 8

2.4. In Silico Prediction

The drug discovery process is a complex undertaking, and selecting the right lead
molecule is paramount for the overall success of the project [35,36]. Molecular docking
has been a widely used computational technique in structure-based drug design since
the early 1980s [36–38]. The molecular docking process involves two main stages: firstly,
predicting the shape, position, and orientation of the ligand (typically a small molecule)
within the protein’s binding site, and secondly, evaluating the binding quality using a
scoring function. Ideally, the sampling method should accurately reproduce the actual
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binding mode observed in experiments, and the scoring function should rank it as the most
favorable among all generated binding positions [36].

In this particular study, researchers utilized molecular docking to investigate the po-
tential underlying mechanism responsible for the antioxidant, antifungal, and antibacterial
properties of three components found in essential oils. The researchers used binding affinity
values, represented using ∆G, to assess how strongly the compounds preferred the target
proteins compared to a known inhibitor. Specifically, they employed this method to exam-
ine the binding affinities of 20 compounds present in essential oils to two proteins associated
with bactericidal/bacteriostatic activity: DNA gyrase topoisomerase II (PDB ID: 1KZN)
and enoyl-acyl carrier protein reductase (PDB ID: 3GNS) [39–42]. Furthermore, they inves-
tigated two proteins related to antifungal activity, namely cytochrome P450 14 alpha-sterol
demethylase (PDB ID: 1EA1) and N-myristoyl transferase (PDB ID: 1IYL) [39,40,43].

The results of the molecular docking experiments are presented using a heat map
table, which employed a color gradient (Table 6). Topoisomerase enzymes have gained
significant attention in the development of medications due to their crucial role in DNA
replication [44]. Among them, DNA gyrase, a type II topoisomerase found in all bacteria,
plays a vital role in determining DNA’s topological state. Releasing the supercoiled DNA is
essential for processes such as replication and transcription. Consequently, many antibiotics
and antimicrobial agents primarily function by inhibiting DNA gyrase and blocking this
step [45]. Given the importance of DNA gyrase, our in silico research primarily focused on
DNA gyrase topoisomerase II (PDB: 1KZN), an enzyme derived from the E. coli bacterium.
Studies have demonstrated that DNA gyrase controls the topological structure of bacterial
genomes and is present in all bacterial species [46,47].

The compounds from the essential oils, when docked to protein 1KZN (DNA gyrase
topoisomerase II), exhibited moderate binding affinities ranging from−4.7 to −6.7 kcal/mol.
However, they did not demonstrate significant inhibitory potential compared to the native
ligand Clorobiocin, which achieved a high docking score of−9.6 kcal/mol. This stark difference
in inhibitory potential can be attributed to the formation of two conventional hydrogen bonds
between Clorobiocin and specific amino acid residues (THR A:165 and ASP A:73) on the
protein [48]. These hydrogen bonds likely play a crucial role in stabilizing the complex and
enhancing inhibitory activity. The structural diversity of the essential oil compounds, variations
in chemical structures, and potentially suboptimal orientations may contribute to their lower
inhibitory potential [48].

Bacteria utilize fatty acid biosynthesis to construct and maintain their cell membranes
and other essential cellular structures. This process involves a series of enzyme-driven
reactions that convert simple precursors into long-chain, unsaturated fatty acids, which
form the majority of these structures. The final step in this pathway involves reducing the
double bond in an intermediate called an enoyl-ACP derivative. This reduction step is
catalyzed by an enzyme known as enoyl-acyl carrier protein (ACP) reductase or FabI [49].

FabI plays a crucial role in the efficiency and effectiveness of the fatty acid biosyn-
thesis pathway. Inhibiting FabI can result in the accumulation of toxic intermediates and
eventually cause cell death. Therefore, FabI is a promising target for developing new
antibiotics [50,51]. FabI, particularly the main enoyl reductase enzyme, FabI, is found in
various microorganisms, including bacterial strains. In line with previous investigations,
this study selected the enoyl-acyl carrier protein reductase (S. aureus) protein (PDB ID:
3GNS) as a potential target. Scientists are currently focusing on FabI as a potential target
for developing antibacterial compounds. FabI crystal structures have been identified in
different types of bacteria, such as E. coli and S. aureus [52]. In the context of our study,
β-caryophyllene and caryophyllene oxide from HO and HC emerged as robust inhibitors of
the FabI protein. These compounds displayed binding affinities of −6.2 kcal/mol, mirror-
ing the binding affinity of the native ligand Triclosan (−6.2 kcal/mol). Notably, Triclosan
formed a single conventional hydrogen bond with ILE A:193 (Figure 5a). In comparison,
our two compounds established a similar interaction, forming a conventional hydrogen
bond with the amino acid residue ASN A:205 at the active site of FabI (Figure 5b). This
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structural similarity in hydrogen bonding interactions suggests that β-caryophyllene and
caryophyllene oxide possess inhibitory potential against FabI comparable to that of the
reference compound Triclosan.

Table 6. Heat map of the docking scores (affinity values are expressed in kcal/mol) of the three
essential oils’ bioactive components. The essential oils are HS, S. officinalis; HO, O. compactum; and
HC, S. aromaticum; (+) present; (−) absent.

No. Compounds
Compound Abundance in Antibacterial Proteins

(PDB IDs)
Antifungal Proteins

(PDB IDs)
Antioxidant Proteins

(PDB IDs)

HS HO HG
1KZN 3GNS 1EA1 1IYL 1N8Q 1OG5

Free Binding Energy (Kcal/mol) *

- native ligand − − − −9.6 −6.2 −5.8 −5.8 −6 −6.6

1 α-thujene − + − −5.3 −4.7 −4.4 −4.5 −6.5 −5.6

2 α-pinene + + − −4.7 −5 −4.2 −4.9 −5.6 −5.6

3 camphene + + − −6.3 −5.1 −4.7 −4.8 −6.1 −6

4 β-pinene + + − −4.7 −4.9 −4.1 −4.8 −5.5 −5.6

5 β-myrcene + + − −4.9 −4.3 −3.2 −4.6 −4.1 −5.3

6 α-terpinene + + − −5.8 −4.9 −4.2 −4.7 −5.1 −6.1

7 p-cymene + + + −6 −4.9 −4.2 −4.8 −4.1 −5.9

8 γ-terpinene − + − −5.8 −4.7 −4.3 −4.7 −5.1 −6.1

9 1.8-cineole + + − −5.3 −5.4 −4.3 −4.8 −5.4 −5.6

10 camphor + + − −5.5 −5.5 −4.4 −4.7 −5.5 −5.9

11 α-terpineol + + − −5.9 −5 −4.4 −5.1 −5.5 −5.7

12 geranyl acetate + + − −5.4 −4.8 −4.3 −4.8 −5 −6

13 α-thujone + − − −5.9 −4.9 −4.2 −4.6 −5.6 −6.1

14 thymol + + − −6.2 −5.1 −4.7 −4.7 −6.2 −6

15 carvacrol + + − −6 −5.4 −4.7 −5.3 −6.2 −6.3

16 eugenyl − + + −5.8 −5.3 −4.1 −4.8 −5.5 −5.5

17 α-copaene − − + −6.7 −5.6 −5.2 −6.6 −6.3 −5.6

18 β-caryophyllene − + + −5.3 −6.2 −5.5 −5.8 −6.1 −7.4

19 cis-calamenene − − + −6.1 −5.9 −5.4 −6.5 −6.2 −7.3

20 caryophyllene oxide − + + −5.6 −6.2 −5.2 −6.4 −6.6 −7.3

* The color scale for each column runs from red (representing the native ligand ∆G) through yellow (the midpoint)
to green (representing the native ligand ∆G +4 kcal/mol). 1KZN: DNA Gyrase Topoisomerase II; 3GNS: Enoyl-
Acyl Carrier Protein Reductase; 1EA1: Cytochrome P450 14 Alpha-sterol Demethylase; 1IYL: N-Myristoyl
Transferase; 1N8Q: Lipoxygenase; 1OG5: CYP2C9.
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The essential role of the enzyme cytochrome P450 14 α-sterol demethylase (CYP51s;
PDB ID: 1EA1) is to facilitate the synthesis of sterols in fungi by catalyzing the production
of intermediate compounds, particularly ergosterol [53]. CYP51s, recognized as a pivotal
enzyme in sterol production, is a prime target for antifungal medications [54]. However,
our study on this enzyme revealed that none of the tested compounds exhibited signifi-
cant inhibitory effects on the fungal protein. The binding energies of these compounds
ranged from −3.2 to −5.5 kcal/mol, indicating their lower potency when compared to
the established antifungal drug Fluconazole, which demonstrated a binding energy of
−5.8 kcal/mol. These results strongly suggest that the observed antifungal effects of the
three essential oils are not attributed to the inhibition of this particular protein. It under-
scores the possibility that alternative mechanisms or target proteins may be responsible
for the antifungal properties exhibited with the essential oils. In the research conducted by
Kandsi et al. in 2022 [50], it was found that (+)-4-Carene, present in the essential oil of D.
ambrosioides, exhibited a robust inhibitory impact on the fungal protein. This inhibition was
characterized by a binding energy of −6.1 kcal/mol, surpassing the potency of the current
antifungal medication Fluconazole, which displayed a binding energy of −5.8 kcal/mol.

The protein known as N-myristoyl transferase (NMT; PDB ID: 1IYL) is exclusively
found in eukaryotic cells and serves as a catalyst for the attachment of myristate fatty acid
to the N-terminal glycine of other proteins. It utilizes myristoyl-CoA as a substrate [55].
NMT (N-myristoyltransferase) is required for the growth of fungal infections, cell death,
and signal transduction, among other biological activities [56]. In the case of α-copaene
and cis-calamenene from HC, as well as β-caryophyllene and caryophyllene oxide from
HO and HC, these compounds demonstrated inhibitory potential on NMT with binding
affinities of−6.6,−6.5,−5.8, and−6.4 kcal/mol, respectively. These values were compared
with the binding affinity of the potent antifungal agent Fluconazole (−5.8 kcal/mol).
Upon analyzing the two-dimensional pattern of chemical interactions with the protein’s
active site, we made intriguing observations regarding the mechanisms of action of certain
compounds. For instance, Fluconazole, a reference antifungal agent, was found to create a
solitary typical hydrogen bond with SER A:120 (Figure 6a). In contrast, the potent inhibitor
α-copaene, identified in our study, did not establish any typical hydrogen bonds with the
protein’s active pocket (Figure 6b). This divergence in interaction mechanisms suggests
that α-copaene may employ a distinct inhibitory process, differing from the conventional
hydrogen bond formation seen with Fluconazole.

These findings strongly imply that α-copaene and similar compounds may be responsible
for the observed antifungal activity in HO and HC against the studied fungi. Their unique
interaction patterns with the protein’s active site point to alternative mechanisms of inhibition,
highlighting their potential as novel antifungal agents worthy of further investigation.

Lipoxygenases are a type of enzyme that utilize a redox mechanism to facilitate the oxi-
dation of PUFAs. This enzymatic process leads to the production of a hydroperoxide, which
is an oxygen-centered radical derived from the fatty acids. The presence of these radicals
can potentially contribute to the onset and progression of various serious diseases [57,58].
Two specific proteins, lipoxygenase (1N8Q) and cyto-chrome P450 (1OG5), were selected
for investigation. Regarding lipoxygenase, eight ligands, namely α-thujene, carvacrol,
thymol, α-copaene, camphene, β-caryophyllene, cis-calamenene, and caryophyllene oxide,
were identified as potent inhibitors. These ligands exhibited binding affinities of−6.5,−6.2,
−6.2, −6.3, −6.1, −6.1, −6.2, and −6.6 kcal/mol, respectively. The binding energy value of
−6.0 kcal/mol was observed for the native ligand protocatechuic acid, in contrast to the
comparison compound. The 2D interactions of both protocatechuic acid and the potent
ligand found in the essential oils, caryophyllene oxide, with the active site of lipoxygenase
are presented in Figure 7a,b.
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Figure 6. Two-dimensional presentation of the interaction of the antifungal agent Fluconazole (a),
and α-copaene (b), with the active site of NMT (PDB ID: 1IYL).

In the case of the second protein of interest, cytochrome P450 (PDB ID: 1OG5), cis-
calamenene from HC, as well as caryophyllene and caryophyllene oxide from HO and
HC, demonstrated inhibitory effects; cis-calamenene exhibited an inhibitory activity with a
binding energy of −7.3 kcal/mol, while caryophyllene and caryophyllene oxide showed
binding energies of −7.4 and −7.3 kcal/mol, respectively. These values were compared
to the free binding energy of −6.6 kcal/mol, which corresponds to the native inhibitor
warfarin [59]. Figure 8a,b depict the two-dimensional interactions between warfarin and the
powerful ligand derived from essential oils, caryophyllene, and the active site of NADPH
oxidase (PDB ID: 1OG5).
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Figure 8. Two-dimensional interactions between the native ligand protocatechuic acid (a) and β-
caryophyllene (b) with the active site of lipoxygenase (PDB ID: 1N8Q).

3. Materials and Methods
3.1. Plant Materials

The aerial part of each of the studied plants (S. officinalis, O. compactum, and S. aro-
maticum) was gathered from Taourirt (Northeastern Morocco, coordinates 34◦8′31′′ N,
2◦59′52′′ W) in March 2023. They were located in the Oriental region, approximately
100 km west of Oujda, as described in Figure 9, and were chosen to further this work.
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Fresh species were consecutively gathered in sterile plastic bags, transferred to the
laboratory, and chopped into small fragments.

3.2. Hydrodistillation Protocol

The essential oils of three species (S. officinalis, O. compactum, and S. aromaticum)
(Figure 10) were extracted with hydrodistillation using Clevenger-apparatus equipment, as
described by Azghar, A. et al. [60]. The three fresh species (150 g) were accurately weighed
and combined with 500 ml of purified water. They were subjected for 2 h to 100 ◦C until
the EO level stabilized. Essential oils were collected, dried over anhydrous Na2SO4, and
stored in sealed amber vials (4–6 ◦C) until the analysis. The essential oil hydrodistillation
yield was calculated as the oil mass after distillation divided by the mass of fresh organs.
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3.3. GC-MS Analysis

The phytochemical study of EO was characterized and identified using a Shimadzu
GC system (Kyoto, Japan) equipped with a BPX25 capillary column with a 5% diphenyl
and 95% dimethylpolysiloxane phase (30 m, 0.25 mm, and 0.25 m) and coupled to a QP2010
MS. The mobile phase was helium gas (99.99%) at a flow rate of 1.69 L/min. The injection,
ion source, and interface temperatures were set to 250 ◦C, while the temperature program
for the column oven was set to 50 ◦C for 1 min before being heated to 250 ◦C at a rate of
10 ◦C/min and maintained for an additional minute. The sample components were ionized
in the Electron Ionization (EI) mode at 70 eV and a scanned mass range of 40 to 300 m/z.
Each extract was administered in a 1 µL volume in the split mode. The compounds were
identified by comparing their retention durations, mass spectra fragmentation patterns, and
databases such as the National Institute of Standards and Technology’s (NIST) database.
LabSolutions (version 2.5, Shimadzu, Kyoto, Japan) was used to process the data [61–63].

3.4. DPPH Scavenging Assay

The test was evaluated using the in vitro DPPH assay, as described in [32], with mi-
nor adjustments. The substance’s essential oil was diluted in a series of concentrations
(5 to 200 mg/mL were created) to determine the antioxidant properties. Then, a 1 mL
volume of each dilution was combined with 2.5 mL of a 0.1 mM methanolic DPPH solution.
The mixture was incubated in darkness for 30 min, measuring at 517 nm. Each experi-
ment was repeated thrice, and the scavenging activity was calculated using the provided
formula [58,64,65].

Free Radical Scavenging(%) =

[(Ablank −Asample

Ablank

)]
× 100

The measurements were taken for the absorbance in the absence of the sample (A0)
and the absorbance in the presence of the sample (A1). Ascorbic acid was employed as the
reference compound.
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The amount of DPPH inhibited using the essential oils was expressed as the percent
concentration corresponding to a 50% inhibition (IC50).

3.5. Total Antioxidant Capacity

The total antioxidant capacity was determined using the phosphor-molybdenum
method [58]. The sample extract or standard solution was combined with a 0.6 M sulfuric
acid reagent solution, 28 mM of sodium phosphate, and 4 mM of ammonium molybdate.
Subsequently, the mixture was incubated at 95 ◦C for 90 min. The resulting solution’s
absorbance was measured at 695 nm. The antioxidant capacity was expressed as ascorbic
acid equivalents, determined using a standard curve established with ascorbic acid [66].
The blank solution, which did not contain the test sample, included all the reagents. The
experiments were conducted three times.

3.6. Choice of Strains and Agar Diffusion Method

The in vitro antibacterial activity of the samples was assessed with the suitable dif-
fusion method on Mueller–Hinton agar (MHA) against two Gram-negative bacteria, Es-
cherichia coli and Pseudomonas aeruginosa (ATCC 49,189), and two Gram-positive bacteria,
Staphylococcus aureus (ATCC 6538) and Listeria monocytogenes (ATCC 19,117), and antifungal
activity was tested against Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae,
Candida glabrata, and Candida albicans on PDA agar. Briefly, agar Petri plates were inoculated
with bacterial strains. Sterilized filter paper discs (6 mm in diameter) were filled with 20 µL
of the essential oils. Gentamicin (1 mg/mL) was used as a positive control and DMSO as a
negative control. The discs containing the samples, the standard antibiotic (gentamicin),
and the DMSO were deposited on the agar surface using flamed forceps, then slightly
compressed to ensure good contact between the discs and the surface. After pre-diffusing
for 30 min at room temperature, the Petri dishes were incubated at 37 ◦C for 18 h. The
diameters of the inhibited growth zones were then measured in millimeters (mm) [67].

3.7. Determination of MIC in Liquid Medium

The minimum inhibitory concentration (MIC) is the lowest concentration that ef-
fectively inhibits bacterial growth after a 24 h incubation period. The MIC value was
determined by visually observing the presence or absence of a red color indicator [43,68].

3.8. Determination of the MFC on Solid Media

The Minimum Fungicidal Concentration (MFC) corresponds to the lowest essential oil
concentration capable of killing more than 99.9% of the initial fungal inoculum. The MFC
was determined for yeasts by taking 3 µL from the negative wells, depositing them on the
solid YEG medium, and then incubating it at 25 ◦C for 48 h. The same protocol was used
for molds, except that incubation was carried out at 25 ◦C for 72 h. After incubation, the
CMF corresponds to the lowest essential oil concentration, showing no growth [43,69].

3.9. Molecular Docking Procedure

We used molecular docking approaches to estimate the antioxidant, antibacterial,
and antifungal activities of the discovered compounds contained in three essential oils to
evaluate their potential therapeutic effects. The approach used in this investigation adhered
to a pre-established protocol specified in earlier research [50,58,70]. The automated docking
experiments were performed using Auto Dock Vina v1.5.6 software [71]. The study focused
on two antibacterial proteins, DNA gyrase topoisomerase II (PDB ID: 1KZN) [72,73] and
enoyl-acyl carrier protein reductase (PDB ID: 3GNS) [41,42], as well as two antifungal
target proteins, cytochrome P450 14 α-sterol demethylase (PDB ID: 1EA1) and N-myristoyl
transferase (PDB ID: 1IYL) [4,5,74,75]. Additionally, two protein structures, lipoxygenase
and CYP2C9 (PDB IDs: 1N8Q and 1OG5, respectively), were selected as antioxidant
proteins [59,76,77].
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4. Conclusions

The current research adds to our understanding of the phytochemical and biological
activities of Moroccan O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) es-
sential oils generated using HDs. The results suggest that the primary ones in S. officinalis
essential oil are α-thujone and p-cymene, accounting for 78.04% and 17.77%, respectively.
Thymol was the most abundant compound found in O. compactum, accounting for 37.68%
of the total, followed by carvacrol (12.73%) and p-cymene (13.33%). The discovered pri-
mary components of S. aromaticum essential oil were eugenol (72.66% concentration) and
caryophyllene (17.41% concentration). We discovered that HO and HS have low antibacte-
rial activity except for HC, which has highly remarkable antifungal activity. Furthermore,
the findings suggested that HO oil has significant antioxidant effects. The presence of
α-thujene, carvacrol, thymol, α-copaene, camphene, β-caryophyllene, cis-calamenene, and
caryophyllene oxide was found as a significant inhibitor of bioactive chemicals based on
the results of the in silico assays, which were compatible with the experimental results.
In conclusion, the study indicated that these natural metabolites in essential oils of O.
compactum (HO), S. officinalis (HS), and S. aromaticum (HC) could be good alternatives to
standard approved drugs and can support the usefulness of HC, HS, and HO in nutritional
and medicinal contexts.
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