Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats
Abstract
:1. Introduction
2. Results
2.1. Structural Analysis of Moringa Leaves Water-Soluble Polysaccharide (MLWSP)
2.1.1. Yield and Composition
2.1.2. UV–Vis Spectroscopy
2.1.3. X-ray Diffraction Analysis
2.1.4. Monosaccharide Composition
2.1.5. FT-IR Spectroscopy
2.1.6. Scanning Electron Microscopy (SEM)
2.2. Proprieties and Biological Activities of Moringa Leaves Water-Soluble Polysaccharide (MLWSP)
2.2.1. Functional Proprieties: Water Holding (WHC) and Oil Holding Capacities (OHC)
2.2.2. Cytotoxic Activity
2.2.3. In Vitro Antioxidant Activity
2.2.4. In Vivo Burn Healing Study
- The effect of MLWSP on rats
- Morphological evaluation
- Wound area assessment
- Hydroxyproline and collagen turnover
- Histomorphometric study
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Extraction of MLWSP
4.3. Physico-Chemical Analysis
4.4. Thin Layer Chromatography (TLC)
4.5. Spectroscopic Analysis
4.5.1. UV Absorption Peak Detection
4.5.2. FT-IR Spectrometric Analysis
4.5.3. X-ray Diffraction (XRD)
4.5.4. HPLC Analysis
4.6. Scanning Electron Microscopic (SEM)
4.7. Water-Holding and Oil-Holding Capacities (WHC and OHC)
4.8. Biological Activities Evaluation
4.8.1. In Vitro Antioxidant Assays
DPPH Radical Scavenging Assay
Ferric Reducing Antioxidant Power Assay (FRAP)
ABTS Assay
4.8.2. Cytotoxic Activity
4.9. In Vivo Study of the Effect of MLWSP on Laser Wound Healing
4.9.1. In Vivo Assay
4.9.2. Wound Healing Activity
Fractional CO2 Laser Burn Creation
Experiment Protocol
Hydroxyproline Level Measurement
Histopathological Examinations
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautial, A.R. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-A Review. Plants 2017, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Tyavambiza, C.; Dube, P.; Goboza, M.; Meyer, S.; Madiehe, A.M.; Meyer, M. Wound Healing Activities and Potential of Selected African Medicinal Plants and Their Synthesized Biogenic Nanoparticles. Plants 2021, 10, 2635. [Google Scholar] [CrossRef] [PubMed]
- Kapp, S.; Miller, C.; Santamaria, N. The quality of life of people who have chronic wounds and who self-treat. J. Clin. Nurs. 2018, 27, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bu, J.; Li, B.; Xuan, H.; Jin, Y.; Yuan, H. Dynamic Double Cross-Linked Self-Healing Polysaccharide Hydrogel Wound Dressing Based on Schiff Base and Thiol-Alkynone Reactions. Int. J. Mol. Sci. 2022, 23, 13817. [Google Scholar] [CrossRef] [PubMed]
- Rohini, J.; Wan Ezumi, M.F.; Rabeta, M.S. Polysaccharides as wound healing agent: A mini review. Food Res. 2021, 5, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef]
- Quan, W.; Li, P.; Wei, J.; Jiang, Y.; Liang, Y.; Zhang, W.; Chen, Q.; Wu, K.; Luo, H.; Ouyang, Q. Bio-Multifunctional Sponges Containing Alginate/Chitosan/Sargassum Polysaccharides Promote the Healing of Full-Thickness Wounds. Biomolecules 2022, 12, 1601. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, S.; Hu, X.; Li, L.; Li, W.; Parungao, R.; Wang, Y.; Nie, Y.; Liu, T.; Song, K. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers 2020, 12, 1237. [Google Scholar] [CrossRef]
- Zeru, A.E.; Hassen, A.; Apostolides, Z.; Tjelele, J. Relationships between Agronomic Traits of Moringa Accessions and In Vitro Gas Production Characteristics of a Test Feed Incubated with or without Moringa Plant Leaf Extracts. Plants 2022, 11, 2901. [Google Scholar] [CrossRef]
- Mashamaite, C.V.; Ngcobo, B.L.; Manyevere, A.; Bertling, I.; Fawole, O.A. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants 2022, 11, 2214. [Google Scholar] [CrossRef]
- Trigo, C.; Castelló, M.L.; Ortolá, M.D.; García-Mares, F.J.; Desamparados Soriano, M. Moringa oleifera: An Unknown Crop in Developed Countries with Great Potential for Industry and Adapted to Climate Change. Foods 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Meireles, D.; Gomes, J.; Lopes, L.; Hinzmann, M.; Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 2020, 20, 495–515. [Google Scholar] [CrossRef]
- Yang, M.; Tao, L.; Kang, X.-R.; Li, L.-F.; Zhao, C.-C.; Wang, Z.-L.; Sheng, J.; Tian, Y. Recent developments in Moringa oleifera Lam. polysaccharides: A review of the relationship between extraction methods, structural characteristics and functional activities. Food Chem. 2022, 14, 100322. [Google Scholar] [CrossRef] [PubMed]
- Mehwish, H.M.; Liu, G.; Rajoka, M.S.R.; Cai, H.; Zhong, J.; Song, X.; Xia, L.; Wang, M.; Aadil, R.M.; Inam-Ur-Raheem, M.; et al. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int. J. Biol. Macromol. 2021, 184, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Kolsi, R.B.A.; Gargouri, B.; Sassi, S.; Frikha, D.; Lassoued, S.; Belghith, K. In vitro biological properties and health benefits of a novel sulfated polysaccharide isolated from Cymodocea nodosa. Lipids Health Dis. 2017, 16, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolsi, R.B.A.; Fakhfakh, J.; Sassi, S.; Elleuch, M.; Gargouri, L. Physico-chemical characterization and beneficial effects of seaweed sulfated polysaccharide againstoxydatif and cellular damages caused by alloxan in diabetic rats. Int. J. Biol. Macromol. 2018, 117, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Han, L.; Liu, J.-M.; Zhang, J.; Wang, W.; Li, B.-G.; Dong, C.-X.; Bai, C.-C. Lycium Genus Polysaccharide: An Overview of its Extraction, Structures, Pharmacological Activities and Biological Applications. Separations 2022, 9, 197. [Google Scholar] [CrossRef]
- Zeng, C.; Feng, S. Optimized Extraction of Polysaccharides from Bergeniaemeiensis Rhizome, Their Antioxidant Ability and Protection of Cells from Acrylamide-induced Cell Death. Plants 2020, 9, 976. [Google Scholar] [CrossRef]
- Wiater, A.; Paduch, R.; Trojnar, S.; Choma, A.; Pleszczyńska, M.; Adamczyk, P.; Pięt, M.; Próchniak, K.; Szczodrak, J.; Strawa, J.; et al. The Effect of Water-Soluble Polysaccharide from Jackfruit (Artocarpusheterophyllus Lam.) on Human Colon Carcinoma Cells Cultured In Vitro. Plants 2020, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, I.; Ktari, N.; Triki, M.; Bkhairia, I.; Slima, S.B.; Aydi, S.S.; Ben Salah, R. Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int. J. Biol. Macromol. 2018, 111, 11–18. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Liu, R.H. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Ind. Crop. Prod. 2017, 100, 1–11. [Google Scholar] [CrossRef]
- Li, J.; Fan, Y.; Huang, G.; Huang, H. Extraction, structural characteristics and activities of Zizylphus vulgaris polysaccharides. Ind. Crop. Prod. 2022, 178, 114675. [Google Scholar] [CrossRef]
- Otu, P.N.Y.; Osae, R.; Abdullateef, M.T.; Cunshan, Z.; Xiaojie, Y.; Azumah, B.K. Characterization of Moringa oleifera leaf polysaccharides extracted by coupling ionic liquid separation system with ultrasound irradiation. J. Food Process. Eng. 2020, 43, e13417. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Bouaziz, F.; Belghith, L.; Zouari-Ellouzi, S.; Haddar, A.; Ghorbel, R. Polysaccharide from garlic straw: Extraction, structural data, biological properties and application to beef meat preservation. RSC Adv. 2015, 5, 6728–6741. [Google Scholar] [CrossRef]
- Geresh, S.; Adin, I.; Yarmolinsky, E.; Karpasas, M. Characterization of the extracellular polysaccharide of Porphyridium sp.: Molecular weight determination and rheological properties. Carbohydr. Polym. 2002, 50, 183–189. [Google Scholar] [CrossRef]
- Pawar, H.A.; Lalitha, K.G. Extraction, characterization, and molecular weight determination of Senna tora (L.) seed polysaccharide. Int. J. Biomater. 2015, 2015, 928679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Li, C.; Zheng, Q.; Wu, J.; Zhu, K.; Shen, X.; Cao, J. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota). Food Hydrocoll. 2019, 89, 735–741. [Google Scholar] [CrossRef]
- Harding, S.; Varum, K.; Stokke, B.; Smidsrød, O. Molecular Weight Determination of Polysaccharides. Adv. Carbohydr. Anal. 1991, 1, 63−144. [Google Scholar]
- Zhou, S.; Huang, G.; Huang, H. Extraction, derivatization and antioxidant activities of onion polysaccharide. Food Chem. 2022, 388, 133000. [Google Scholar] [CrossRef]
- Ogawa, Y.; Putaux, J.L.; Nishiyama, Y. Crystallography of polysaccharides: Current state and challenges. Curr. Opin. Chem. Biol. 2022, 70, 102183. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Xin, Y.; Yin, J.-Y.; Huang, X.-J.; Wang, J.-Q.; Hu, J.-L.; Geng, F.; Nie, S.-P. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chem. 2022, 368, 130772. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Malik, S.; Joshi, G.; Gupta, P.K.; Rana, V. Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100050. [Google Scholar] [CrossRef]
- Yazdi, M.K.; Seidi, F.; Jin, Y.; Zarrintaj, P.; Xiao, H.; Esmaeili, A.; Saeb, M.R. Crystallization of polysaccharides. Polysacch. Prop. Appl. 2021, 283–300. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Helbert, C.B.; Ghorbel, R.E. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Sassi Aydi, S.; Aydi, S.; Ktari, N.; Ben Salah, R.; Bouajila, J. Polysaccharides in CO2 enriched Spirulina platensis: Structure, chemical proprieties, antioxidant activity, cytotoxicity and laser burn wound healing in rats. Cell. Mol. Biol. 2022; in press. [Google Scholar]
- Hong, T.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. 2021, 12, 100168. [Google Scholar] [CrossRef]
- Borovkova, V.S.; Malyar, Y.N.; Sudakova, I.G.; Chudina, A.I.; Skripnikov, A.M.; Fetisova, O.Y.; Kazachenko, A.S.; Miroshnikova, A.V.; Zimonin, D.V.; Ionin, V.A.; et al. Molecular Characteristics and Antioxidant Activity of Spruce (Piceaabies) Hemicelluloses Isolated by Catalytic Oxidative Delignification. Molecules 2022, 27, 266. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Li, W.; Qiu, Y.; Hua, C.; Zhang, Y.; Guo, Z.; Xie, Z. Immunomodulatory activity and active mechanisms of a low molecular polysaccharide isolated from Lanzhou lily bulbs in RAW264. 7 macrophages. J. Funct. Foods 2022, 92, 105071. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Hong, T.; Shi, H.-F.; Yin, J.-Y.; Koev, T.; Nie, S.-P.; Gilbert, R.G.; Xie, M.-Y. Probiotic fermentation modifies the structures of pectic polysaccharides from carrot pulp. Carbohydr. Polym. 2021, 251, 117116. [Google Scholar] [CrossRef]
- Tang, P.L.; Hao, E.; Du, Z.; Deng, J.; Hou, X.; Qin, J. Polysaccharide extraction from sugarcane leaves: Combined effects of different cellulolytic pretreatment and extraction methods. Cellulose 2019, 26, 9423–9438. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, Y.; Juzenas, K. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls. J. Exp. Bot. 2017, 68, 2231–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamang, B.; Liang, Q.; Balakrishnan, B.; Peng, S.; Zhang, W. Astragalus Shiitake—A Novel Functional Food with High Polysaccharide Content and Anti-Proliferative Activity in a Colorectal Carcinoma Cell Line. Nutrients 2022, 14, 2333. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Qiu, H.M.; Cheong, K.L.; Zhong, S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int. J. Biol. Macromol. 2022, 221, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Nkwe, D.O.; Lotshwao, B.; Rantong, G.; Matshwele, J.; Kwape, T.E.; Masisi, K.; Makhzoum, A. Anticancer mechanisms of bioactive compounds from Solanaceae: An update. Cancers 2021, 13, 4989. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, J.; Chen, Y.; Ma, Y.; Yang, Q.; Fan, Y.; Liao, W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT 2022, 154, 112805. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Gu, L.B.; Zhang, G.J.; Liu, H.M.; Zhang, Y.T.; Zhang, K.P. Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method. Process Biochem. 2022, 121, 178–187. [Google Scholar] [CrossRef]
- Dibacto, R.E.K.; Tchuente, B.R.T.; Nguedjo, M.W.; Tientcheu, Y.M.T.; Nyobe, E.C.; Edoun, F.L.E.; Kamini, M.F.G.; Dibanda, R.F.; Medoua, G.N. Total Polyphenol and Flavonoid Content and Antioxidant Capacity of Some Varieties of Perseaamericana Peels Consumed in Cameroon. Sci. World J. 2021, 21, 8882594. [Google Scholar] [CrossRef]
- Aduba, D.C., Jr.; Yang, H. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials. Bioengineering 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, Y.; Cai, K.; Zhang, B.; Tang, S.; Zhang, W.; Liu, W. Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burn. Trauma 2021, 9, tkab041. [Google Scholar] [CrossRef]
- You, S.; Huang, Y.; Mao, R.; Xiang, Y.; Cai, E.; Chen, Y.; Qi, X. Together is better: Poly (tannic acid) nanorods functionalized polysaccharide hydrogels for diabetic wound healing. Ind. Crop. Prod. 2022, 186, 115273. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, K.; Zhang, X.; Ma, G.; Zhang, W.; Hu, Z. Facile preparation of polysaccharides-based adhesive hydrogel with antibacterial and antioxidant properties for promoting wound healing. Colloids Surf. B Biointerfaces 2022, 209, 112208. [Google Scholar] [CrossRef] [PubMed]
- Ktari, N.; Trabelsi, I.; Bardaa, S.; Triki, M.; Bkhairia, I.; Salem, R.B.S.B.; Salah, R.B. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonellafoenum-graecum) seeds. Int. J. Biol. Macromol. 2017, 95, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Mapoung, S.; Umsumarng, S.; Semmarath, W.; Arjsri, P.; Thippraphan, P.; Yodkeeree, S.; Limtrakul, P. Skin Wound-Healing Potential of Polysaccharides from Medicinal Mushroom Auricularia auricula-judae (Bull.). J. Fungi 2021, 7, 247. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.M.; Campelo, M.D.S.; CamaraNeto, J.F.; Lima, A.B.N.; Silva, G.D.A.; Dias, A.T.D.F.F.; Ribeiro, M.E.N.P. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Eleroui, M.; Feki, A.; Hamzaoui, A.; Kammoun, I.; Bouhamed, M.; Boudawara, O.; Amara, I.B. Preparation and characterization of a novel hamada scoparia polysaccharide composite films and evaluation of their effect on cutaneous wound healing in rat. Inter. J. Pharm. 2021, 608, 121056. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I.; Ktari, N.; Ben Slima, S.; Triki, M.; Bardaa, S.; Mnif, H.; Ben Salah, R. Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca6. Int. J. Biol. Macromol. 2017, 103, 194–201. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Method of Analysis Gaithersburg; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Nielsen, S.S. Total Carbohydrate by Phenol-Sulfuric Acid Method. In Food Analysis Laboratory Manual. Food Science Text Series; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ben Khadher, T.; Aydi, S.; Mars, M.; Bouajila, J. Study on the Chemical Composition and the Biological Activities of Vitis vinifera Stem Extracts. Molecules 2022, 27, 3109. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Mounir, S.; Allaf, K. Functional properties of water holding capacity, oil holding capacity, wettability, and sedimentation of swell-dried soybean powder. Sch. J. Eng. Technol. 2015, 3, 402–412. [Google Scholar]
- Shekhar, T.C.; Anju, G. Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn leaves. Am. J. Ethnomed. 2014, 1, 244–249. [Google Scholar]
- Abreu, J.; Quintino, I.; Pascoal, G.; Postingher, B.; Cadena, R.; Teodoro, A. Antioxidant capacity, phenolic compound content and sensory properties of cookies produced from organic grape peel (Vitislabrusca) flour. Int. J. Food Sci. Technol. 2019, 54, 1215–1224. [Google Scholar] [CrossRef]
- Dissanayake, D.P.A.; Sivaganesh, S.; Tissera, M.H.A.; Handunnetti, S.M.; Arawwawala, L.D.A.M. Comparison of antioxidant properties of Cyathulaprostrata Linn and Achyranthesaspera Linn grown in Sri lanka. Res. Rev. Insights 2018, 2, 1–3. [Google Scholar] [CrossRef]
- Guide for the Care and Use of Laboratory Animals. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. In The National Academies Collection: Reports funded by National Institutes of Health, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Lodhi, S.; Jain, A.P.; Rai, G.; Yadav, A.K. Preliminary investigation for wound healing and anti-inflammatory effects of Bambusa vulgaris leaves in rats. J. Ayurveda Integr. Med. 2016, 7, 14–22. [Google Scholar] [CrossRef] [PubMed]
Composition (g/100 g) | |
---|---|
Yield | 18.6 ± 0.42 |
Protein | 2.9 ± 0.24 |
Fat | 0.00 ± 0.00 |
Ash | 3.95 ± 0.08 |
Total sugars | 94.71 ± 0.21 |
pH (solution 1%) | 6.76 |
Color | |
L* | 48.68 ± 1.1 |
a* | −1.24 ± 0.01 |
b* | 8.18 ± 0.85 |
Molecular weight (KDa) | 175.21 |
Monosaccharides | Glucose | Galactose | Rhamnose | Arabinose |
---|---|---|---|---|
% | 14.64 | 14.18 | 63 | 9.4 |
Properties | Capacities (%) * |
---|---|
Water-holding capacity | 1.54 ± 0.25 |
Oil-holding capacity | 1.62 ± 0.17 |
Celllines | MLWSP | Tamoxifen |
---|---|---|
MCF-7 | * 48 ± 3.2 | 0.15 ± 0.02 |
HCT-116OVCAR | * 36 ± 2.5 * 24 ± 1.8 | 0.14 ± 0.02 0.19 ± 0.03 |
Group | Days | ||||
---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | |
Group I | 1.60 ± 0.22 a | 1.56 ± 0.28 a | 1.52 ± 0.14 b | 1.22 ± 0.11 b | 0.89 ± 0.17 d |
Group II | 1.60 ± 0.13 a | 1.51 ± 0.11 a | 1.43 ± 0.10 ab | 0.95 ± 0.15 a | 0.36 ± 0.02 c |
Group III | 1.61 ± 0.35 a | 1.42 ± 0.36 a | 1.23 ± 0.19 a | 0.87 ± 0.08 a | 0.25 ± 0.03 b |
Group IV | 1.62 ± 0.18 a | 1.39 ± 0.32 a | 1.21 ± 0.29 a | 0.67 ± 0.05 a | 0.01 ± 0.001 a |
Groups | Hydroxyproline (mg/g of Tissue) |
---|---|
Control | 642.88 ± 48.9 d |
Glycerol | 735.16 ± 43.3 c |
Cytol | 842.82 ± 51.4 b |
MLWSP | 972.54 ± 64.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sassi Aydi, S.; Aydi, S.; Ben Khadher, T.; Ktari, N.; Merah, O.; Bouajila, J. Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats. Plants 2023, 12, 229. https://doi.org/10.3390/plants12020229
Sassi Aydi S, Aydi S, Ben Khadher T, Ktari N, Merah O, Bouajila J. Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats. Plants. 2023; 12(2):229. https://doi.org/10.3390/plants12020229
Chicago/Turabian StyleSassi Aydi, Sameh, Samir Aydi, Talel Ben Khadher, Naourez Ktari, Othmane Merah, and Jalloul Bouajila. 2023. "Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats" Plants 12, no. 2: 229. https://doi.org/10.3390/plants12020229
APA StyleSassi Aydi, S., Aydi, S., Ben Khadher, T., Ktari, N., Merah, O., & Bouajila, J. (2023). Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats. Plants, 12(2), 229. https://doi.org/10.3390/plants12020229