Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato (Solanum tuberosum) Tubers
Abstract
:1. Introduction
2. Results
2.1. Tissue Culture, Acclimatization and Minituber Production
2.2. Tuberization and Starch Accumulation
2.3. Gene Expression Analysis
3. Discussion
4. Materials and Methods
4.1. Explant Preparation
4.2. Callus Induction, Shoot Regeneration and Rooting
4.3. Starch Determination
4.4. Real-Time Quantitative PCR
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devaux, A.; Goffart, J.-P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-Food Systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef]
- Zhang, H.; Fen, X.; Yu, W.; HU, H.; DAI, X. Progress of Potato Staple Food Research and Industry Development in China. J. Integr. Agric. 2017, 16, 2924–2932. [Google Scholar] [CrossRef]
- Maroufpour, B.; Rad, F.A.; Yazdanseta, S. Bioethanol Production as Biofuel from Potato Peel Using Saccharomyces Cerevisiae PTCC 5052 and Zymomonas Mobilis PTCC 1718. Bioagro 2019, 31, 177–184. [Google Scholar]
- Dupuis, J.H.; Liu, Q. Potato Starch: A Review of Physicochemical, Functional and Nutritional Properties. Am. J. Potato Res. 2019, 96, 127–138. [Google Scholar] [CrossRef]
- Nazarian-Firouzabadi, F.; Visser, R.G. Potato Starch Synthases: Functions and Relationships. Biochem. Biophys. Rep. 2017, 10, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, D.M.; Piattoni, C.V.; Diez, M.D.A.; Rojas, B.E.; Hartman, M.D.; Ballicora, M.A.; Iglesias, A.A. Phosphorylation of ADP-Glucose Pyrophosphorylase during Wheat Seeds Development. Front. Plant Sci. 2020, 11, 1058. [Google Scholar] [CrossRef]
- Su, W.; Ye, G.; Zhou, Y.; Wang, J. Starch Synthesis and Gelatinization Properties of Potato Tubers. Ciência Rural 2022, 52, e20210050. [Google Scholar] [CrossRef]
- Kumari, M.; Kumar, M.; Solankey, S.S. Breeding Potato for Quality Improvement. Potato Incas All Over World 2018, 37, 71482. [Google Scholar]
- Diambra, L.A. Genome Sequence and Analysis of the Tuber Crop Potato. Nature 2011, 475, 189–195. [Google Scholar]
- Fouad, A.; Hafez, R.; Hosni, H. Authentication of Three Endemic Species of the Caryophyllaceae from Sinai Peninsula Using DNA Barcoding. Egypt. J. Bot. 2019, 59, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Zaidi, S.S.-A.; Shakir, S.; Mansoor, S. Applications of New Breeding Technologies for Potato Improvement. Front. Plant Sci. 2018, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Bisognin, D.A. Breeding Vegetatively Propagated Horticultural Crops. Crop Breed. Appl. Biotechnol. 2011, 11, 35–43. [Google Scholar] [CrossRef]
- Simmonds, N. A Review of Potato Propagation by Means of Seed, as Distinct from Clonal Propagation by Tubers. Potato Res. 1997, 40, 191–214. [Google Scholar] [CrossRef]
- Ashrafzadeh, S.; Leung, D.W. Novel Potato Plants with Enhanced Cadmium Resistance and Antioxidative Defence Generated after in Vitro Cell Line Selection. PLoS ONE 2017, 12, e0185621. [Google Scholar] [CrossRef] [Green Version]
- Ricroch, A.E.; Hénard-Damave, M.-C. Next Biotech Plants: New Traits, Crops, Developers and Technologies for Addressing Global Challenges. Crit. Rev. Biotechnol. 2016, 36, 675–690. [Google Scholar] [CrossRef]
- Karalis, D.T.; Karalis, T.; Karalis, S.; Kleisiari, A.S. Genetically Modified Products, Perspectives and Challenges. Cureus 2020, 12, e7306. [Google Scholar] [CrossRef] [Green Version]
- Larkin, P.J.; Scowcroft, W.R. Somaclonal Variation—A Novel Source of Variability from Cell Cultures for Plant Improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Krishna, H.; Alizadeh, M.; Singh, D.; Singh, U.; Chauhan, N.; Eftekhari, M.; Sadh, R.K. Somaclonal Variations and Their Applications in Horticultural Crops Improvement. 3 Biotech 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Albiski, F.; Najla, S.; Sanoubar, R.; Alkabani, N.; Murshed, R. In Vitro Screening of Potato Lines for Drought Tolerance. Physiol. Mol. Biol. Plants 2012, 18, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Zeid, I.M.A.; Soliman, H.I.; Metwali, E.M. In Vitro Evaluation of Some High Yield Potato (Solanum Tuberosum L.) Cultivars under Imposition of Salinity at the Cellular and Organ Levels. Saudi J. Biol. Sci. 2022, 29, 2541–2551. [Google Scholar] [CrossRef]
- Mirkarimi, H.R.; Abasi-moghadam, A.; Mozafari, J. In Vitro and Greenhouse Evaluation for Resistance to Early Blight of Potato Isolated from Alternaria Alternata. Agric. Sci. 2013, 4, 473–476. [Google Scholar]
- Soliman, W.; Ibrahim, M.; El Baz, H. In Vitro Evaluation of Syzygium Aromaticum L. Ethanol Extract as Biocontrol Agent against Postharvest Tomato and Potato Diseases. Egypt. J. Bot. 2019, 59, 81–94. [Google Scholar]
- Bayati, E.; Gomarian, M.; Mirzaie-Nodousha, H.; Changizi, M.; Khaghani, S. Producing a Superior Genotype from Agria Potato Cultivar Using Somaclonal Variation. Nexo Rev. Científica 2021, 34, 671–681. [Google Scholar] [CrossRef]
- Rosenberg, V.; Kotkas, K.; Särekanno, M.; Ojarand, A.; Vasar, V. Variation of Potato Meristem Clones-New Facts for Science and Practice. Agron. Vestis 2008, 11, 129–135. [Google Scholar]
- Rosenberg, V.; Särekanno, M.; Kotkas, K.; Vasar, V.; Ojarand, A. Variation of Agronomic Traits of Potato Somaclones Produced by Meristem Culture. S. Afr. J. Plant Soil 2007, 24, 95–99. [Google Scholar] [CrossRef]
- Thieme, R.; Griess, H. Somaclonal Variation in Tuber Traits of Potato. Potato Res. 2005, 48, 153–165. [Google Scholar] [CrossRef]
- Kloosterman, B.; Vorst, O.; Hall, R.D.; Visser, R.G.; Bachem, C.W. Tuber on a Chip: Differential Gene Expression during Potato Tuber Development. Plant Biotechnol. J. 2005, 3, 505–519. [Google Scholar] [CrossRef]
- Ferreira, S.J.; Senning, M.; Sonnewald, S.; Keßling, P.-M.; Goldstein, R.; Sonnewald, U. Comparative Transcriptome Analysis Coupled to X-Ray CT Reveals Sucrose Supply and Growth Velocity as Major Determinants of Potato Tuber Starch Biosynthesis. BMC Genom. 2010, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Krishna, H.; Sairam, R.; Singh, S.; Patel, V.; Sharma, R.; Grover, M.; Nain, L.; Sachdev, A. Mango Explant Browning: Effect of Ontogenic Age, Mycorrhization and Pre-Treatments. Sci. Hortic. 2008, 118, 132–138. [Google Scholar] [CrossRef]
- Zayova, E.; Vassilevska-Ivanova, R.; Kraptchev, B.; Stoeva, D. Somaclonal Variations through Indirect Organogenesis in Eggplant (Solanum Melongena L.). Biol. Divers. Conserv. 2010, 3, 1–5. [Google Scholar]
- Adly, W.M.; Mazrou, Y.S.; EL-Denary, M.E.; Mohamed, M.A.; El-Salam, A.; El-Sayed, T.; Fouad, A.S. Boosting Polyamines to Enhance Shoot Regeneration in Potato (Solanum Tuberosum L.) Using AgNO3. Horticulturae 2022, 8, 113. [Google Scholar] [CrossRef]
- Kumlay, A.M.; Ercisli, S. Callus Induction, Shoot Proliferation and Root Regeneration of Potato (Solanum Tuberosum L.) Stem Node and Leaf Explants under Long-Day Conditions. Biotechnol. Biotechnol. Equip. 2015, 29, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Majumdar, S.; Sarkar, D.; Datta, K. An Efficient Adventitious Shoot Regeneration System for Potato (Solanum Tuberosum L.) Using Leaf Discs. J. Plant Biochem. Biotechnol. 2015, 24, 298–304. [Google Scholar] [CrossRef]
- Shin, S.Y.; Choi, Y.; Kim, S.-G.; Park, S.-J.; Park, J.-S.; Moon, K.-B.; Kim, H.-S.; Jeon, J.H.; Cho, H.S.; Lee, H.-J. Submergence Promotes Auxin-Induced Callus Formation through Ethylene-Mediated Post-Transcriptional Control of Auxin Receptors. Mol. Plant 2022, 15, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Seo, P.J. Varying Auxin Levels Induce Distinct Pluripotent States in Callus Cells. Front. Plant Sci. 2018, 9, 1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidabadi, S.S.; Jain, S.M. Cellular, Molecular, and Physiological Aspects of in Vitro Plant Regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- Malik, W.A.; Mahmood, I.; Razzaq, A.; Afzal, M.; Shah, G.A.; Iqbal, A.; Zain, M.; Ditta, A.; Asad, S.A.; Ahmad, I.; et al. Exploring Potential of Copper and Silver Nano Particles to Establish Efficient Callogenesis and Regeneration System for Wheat (Triticum Aestivum L.). GM Crops Food 2021, 12, 564–585. [Google Scholar] [CrossRef]
- Zhao, X.-C.; Qu, X.; Mathews, D.E.; Schaller, G.E. Effect of Ethylene Pathway Mutations upon Expression of the Ethylene Receptor ETR1 from Arabidopsis. Plant Physiol. 2002, 130, 1983–1991. [Google Scholar] [CrossRef] [Green Version]
- Feray, A.; Hourmant, A.; Brun, A.; Penot, M. Effect of Polyamines on Morphogenesis of in Vitro Potato Plants (Solanum Tuberosum Cv. Bintje). Comptes Rendus De L’académie Des Sci. Série 3 Sci. De La Vie 1993, 316, 1446–1451. [Google Scholar]
- Hajare, S.T.; Chauhan, N.M.; Kassa, G. Effect of Growth Regulators on in Vitro Micropropagation of Potato (Solanum Tuberosum L.) Gudiene and Belete Varieties from Ethiopia. Sci. World J. 2021, 2021, 5928769. [Google Scholar] [CrossRef] [PubMed]
- Abeuova, L.S.; Kali, B.R.; Rakhimzhanova, A.O.; Bekkuzhina, S.S.; Manabayeva, S.A. High Frequency Direct Shoot Regeneration from Kazakh Commercial Potato Cultivars. PeerJ 2020, 8, e9447. [Google Scholar] [CrossRef] [PubMed]
- Elaleem, K.; Modawi, R.S.; Khalafalla, M.M. Effect of Plant Growth Regulators on Callus Induction and Plant Regeneration in Tuber Segment Culture of Potato (Solanum Tuberosum L.) Cultivar Diamant. Afr. J. Biotechnol. 2009, 8, 2529–2534. [Google Scholar]
- Aamir, I.; Ali, R.; Zahid, M.; Shahid, M.; Khalid, Z.M.; Shaheen, A. Establishment of an Efficient and Reproducible Regeneration System for Potato Cultivars Grown in Pakistan. Pak. J. Bot. 2016, 48, 285–290. [Google Scholar]
- Genene, G.; Mekonin, W.; Meseret, C.; Manikandan, M.; Tigist, M. Protocol Optimization for in Vitro Propagation of Two Irish Potato (Solanum Tuberosum L.) Varieties through Lateral Bud Culture. Afr. J. Plant Sci. 2018, 12, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Yoon, Y.-J.; Paek, K.-Y.; Park, S.-Y. Endoreduplication and Gene Expression in Somaclonal Variants of Clonally Propagated Phalaenopsis ‘Wedding Promenade. Hortic.Environ. Biotechnol. 2017, 58, 85–92. [Google Scholar] [CrossRef]
- Wang, N.; Yu, Y.; Zhang, D.; Zhang, Z.; Wang, Z.; Xun, H.; Li, G.; Liu, B.; Zhang, J. Modification of Gene Expression, DNA Methylation and Small RNAs Expression in Rice Plants under In Vitro Culture. Agronomy 2022, 12, 1675. [Google Scholar] [CrossRef]
- Pawe\lkowicz, M.E.; Skarzyńska, A.; Mróz, T.; Bystrzycki, E.; Pląder, W. Molecular Insight into Somaclonal Variation Phenomena from Transcriptome Profiling of Cucumber (Cucumis Sativus L.) Lines. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 145, 239–259. [Google Scholar] [CrossRef]
- López-Hernández, F.; Cortés, A.J. Whole Transcriptome Sequencing Unveils the Genomic Determinants of Putative Somaclonal Variation in Mint (Mentha L.). Int. J. Mol. Sci. 2022, 23, 5291. [Google Scholar] [CrossRef]
- Müller-Röber, B.; Sonnewald, U.; Willmitzer, L. Inhibition of the ADP-Glucose Pyrophosphorylase in Transgenic Potatoes Leads to Sugar-Storing Tubers and Influences Tuber Formation and Expression of Tuber Storage Protein Genes. EMBO J. 1992, 11, 1229–1238. [Google Scholar] [CrossRef]
- Stark, D.M.; Timmerman, K.P.; Barry, G.F.; Preiss, J.; Kishore, G.M. Regulation of the Amount of Starch in Plant Tissues by ADP Glucose Pyrophosphorylase. Science 1992, 258, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Ye, N.; Yang, J.; Peng, X.; Zhang, J. Regulation of Expression of Starch Synthesis Genes by Ethylene and ABA in Relation to the Development of Rice Inferior and Superior Spikelets. J. Exp. Bot. 2011, 62, 3907–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Han, S.; Chen, L.; Mu, J.; Duan, L.; Li, Y.; Yan, Y.; Li, X. Expression and Regulation of Genes Involved in the Reserve Starch Biosynthesis Pathway in Hexaploid Wheat (Triticum Aestivum L.). Crop J. 2021, 9, 440–455. [Google Scholar] [CrossRef]
- Li, W.; Huang, D.; Wang, B.; Hou, X.; Zhang, R.; Yan, M.; Liao, W. Changes of Starch and Sucrose Content and Related Gene Expression during the Growth and Development of Lanzhou Lily Bulb. PLoS ONE 2022, 17, e0262506. [Google Scholar] [CrossRef] [PubMed]
- Hovenkamp-Hermelink, J.; Jacobsen, E.; Ponstein, A.; Visser, R.; Vos-Scheperkeuter, G.; Bijmolt, E.; De Vries, J.; Witholt, B.; Feenstra, W. Isolation of an Amylose-Free Starch Mutant of the Potato (Solanum Tuberosum L.). Theor. Appl. Genet. 1987, 75, 217–221. [Google Scholar] [CrossRef]
- Bowsher, C.G.; Scrase-Field, E.F.; Esposito, S.; Emes, M.J.; Tetlow, I.J. Characterization of ADP-Glucose Transport across the Cereal Endosperm Amyloplast Envelope. J. Exp. Bot. 2007, 58, 1321–1332. [Google Scholar] [CrossRef] [Green Version]
- Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J. Molecular and Biochemical Analysis of the Plastidic ADP-Glucose Transporter (ZmBT1) from Zea Mays. J. Biol. Chem. 2007, 282, 22481–22491. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Kumar, D.; Ezekiel, R.; Singh, B.; Ahmed, I. Conversion Table for Specific Gravity, Dry Matter and Starch Content from under Water Weight of Potatoes Grown in North-Indian Plains. Potato J. 2005, 32, 79–84. [Google Scholar]
- Sadasivam, S.; Manickam, A. Biochemical Methods for Agricultural Sciences; Wiley Eastern Limited: Hoboken, NJ, USA, 1992. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2- ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene | Identification ID | Primer Sequence |
---|---|---|
Tublin | LOC102577624 | 5′-GTCAGTCTGGTGCTGGTAATAA-3′ 5′-TCTCAGCCTCCTTCCTTACA-3′ |
AGPase | LOC102577790 | 5′-TT CCTT CCACCAACCAAGATAG-3′ 5′-CACTATGG AGTGTT CCACAGAA-3′ |
GBSS I | LOC102583115 | 5′-CTTGCGTTTGCTGAGATGATAAA-3′ 5′-CAGAAGCTCCTAAGCCCAATAG-3′ |
SBE I | LOC102596498 | 5′-GCGAACATGTGTGGCTTATTAC-3′ 5′-TCTCGTCACTCTCCTCGATATT-3′ |
SBE II | LOC102590711 | 5′-CTCTGGATAGACCGTCAACATC-3′ 5′-AGGTACCCTT CTCCTCCTAATC-3′ |
SS II | LOC102583115 | 5′-CAACAGGACCTACTTCAACAGA-3′ 5′-CTACCACTCCCACCATCATAAG-3′ |
SS III | LOC102577674 | 5′-GTCACCTGTTCGTGTATCATCT-3′ 5′-CCACTCTCTT CCGATCTCTTTG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adly, W.M.R.M.; Niedbała, G.; EL-Denary, M.E.; Mohamed, M.A.; Piekutowska, M.; Wojciechowski, T.; Abd El-Salam, E.-S.T.; Fouad, A.S. Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato (Solanum tuberosum) Tubers. Plants 2023, 12, 232. https://doi.org/10.3390/plants12020232
Adly WMRM, Niedbała G, EL-Denary ME, Mohamed MA, Piekutowska M, Wojciechowski T, Abd El-Salam E-ST, Fouad AS. Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato (Solanum tuberosum) Tubers. Plants. 2023; 12(2):232. https://doi.org/10.3390/plants12020232
Chicago/Turabian StyleAdly, Walaa M. R. M., Gniewko Niedbała, Mohammad E. EL-Denary, Mahasen A. Mohamed, Magdalena Piekutowska, Tomasz Wojciechowski, El-Sayed T. Abd El-Salam, and Ahmed S. Fouad. 2023. "Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato (Solanum tuberosum) Tubers" Plants 12, no. 2: 232. https://doi.org/10.3390/plants12020232
APA StyleAdly, W. M. R. M., Niedbała, G., EL-Denary, M. E., Mohamed, M. A., Piekutowska, M., Wojciechowski, T., Abd El-Salam, E. -S. T., & Fouad, A. S. (2023). Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato (Solanum tuberosum) Tubers. Plants, 12(2), 232. https://doi.org/10.3390/plants12020232