Exogenous α-Tocopherol Regulates the Growth and Metabolism of Eggplant (Solanum melongena L.) under Drought Stress
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Layout
4.2. Morphological Parameters
4.3. Chlorophyll Determination
4.4. Relative Membrane Permeability
4.5. Hydrogen Peroxide Determination
4.6. Malondialdehyde Determination
4.7. Determination of Glycine Betaine
4.8. Free Proline Determination
4.9. Ascorbic Acid Determination
4.10. Determination of Total Soluble Proteins
4.11. Determination of Enzyme Antioxidants
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AsA | ascorbic acid |
FC | field capacity |
FS | foliar spray |
GB | glycine betaine |
H2O2 | hydrogen peroxide |
MDA | malondialdehyde |
POD | peroxidase |
PS | pre-sowing |
RMP | relative membrane permeability |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TOC | α-tocopherol |
TSP | total soluble protein |
References
- Bahar, N.H.; Lo, M.; Sanjaya, M.; van Vianen, J.; Alexander, P.; Ickowitz, A.; Sunderland, T. Meeting the food security challenge for nine billion people in 2050: What impact on forests? Glob. Environ. Chang. 2020, 62, 102056. [Google Scholar] [CrossRef]
- Foyer, C.H.; Rasool, B.; Davey, J.W.; Hancock, R.D. Cross-tolerance to biotic and abiotic stresses in plants: A focus on resistance to aphid infestation. J. Exp. Bot. 2016, 67, 2025–2037. [Google Scholar] [CrossRef] [PubMed]
- Kosar, F.; Akram, N.A.; Ashraf, M.; Ahmad, A.; Alyemeni, M.N.; Ahmad, P. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiol. Plant. 2021, 172, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Postel, S.L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Mao, Q.; Wan, H.; Zhou, G.; Cheng, Y. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiol. Plant. 2021, 172, 885–895. [Google Scholar] [CrossRef]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Wallace, J.G.; Zhang, X.; Beyene, Y.; Semagn, K.; Olsen, M.; Prasanna, B.M.; Buckler, E.S. Genome-wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Well-Watered Conditions in Sub-Saharan Africa. Crop. Sci. 2016, 56, 2365–2378. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Tao, Y.; Hussain, S.; Jiang, Q.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul. 2016, 78, 167–178. [Google Scholar] [CrossRef]
- Kissoudis, C.; van de Wiel, C.; Visser, R.G.F.; van der Linden, G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 2014, 5, 207. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Alam, M.M.; Rahman, A.; Hasanuzzaman, M.; Nahar, K.; Fujita, M. Exogenous Proline and Glycine Betaine Mediated Upregulation of Antioxidant Defense and Glyoxalase Systems Provides Better Protection against Salt-Induced Oxidative Stress in Two Rice (Oryza sativa L.) Varieties. BioMed. Res. Int. 2014, 2014, 757219. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X. Dopamine-induced abiotic stress tolerance in horticultural plants. Sci. Hortic. 2023, 307, 111506. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Ahammed, G.J.; Zhang, X.-N.; Ying, L.; Zhang, L.; Yan, P.; Zhang, L.-P.; Li, Q.-Y.; Han, W.-Y. RBOH1-dependent apoplastic H2O2 mediates epigallocatechin-3-gallate-induced abiotic stress tolerance in Solanum lycopersicum L. Environ. Exp. Bot. 2019, 161, 357–366. [Google Scholar] [CrossRef]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef]
- Saleem, M.S. Effect of Seed Soaking on Seed Germination and Growth of Bitter Gourd Cultivars. IOSR J. Agric. Veter. Sci. 2013, 6, 7–11. [Google Scholar] [CrossRef]
- Gu, J.; Liu, G.-S.; Guo, J.; Zhang, J. Effects of Vitamin E on the Activities of Protective Enzymes and Membrane Lipid Peroxidation in Leymus Chinensis under Drought Stress. Chem. Res. Chin. Univ. 2008, 24, 80–83. [Google Scholar] [CrossRef]
- Rady, M.; Sadak, M.; El-Bassiouny, H.; El-Monem, A.A. Alleviation the adverse effects of salinity stress in sunflower cultivars using nicotinamide and α-tocopherol. Aust. J. Basic Appl. Sci. 2011, 5, 342–355. [Google Scholar]
- Shahi, S.; Srivastava, M. Foliar application of manganese for increasing salinity tolerance in mungbean. Int. J. Appl. Biol. Pharm. Technol. 2016, 7, 148–153. [Google Scholar]
- Latha, M.R.; Nadanassababady, T. Foliar nutrition in crops—A review. Agric. Rev. 2003, 24, 229–234. [Google Scholar]
- Rahmawati, N.; Damanik, R.I.M. Effect of foliar application of α-tocopherol on vegetative growth and some biochemical constituents of two soybean genotypes under salt stress. IOP Conf. Series Earth Environ. Sci. 2018, 122, 012049. [Google Scholar] [CrossRef]
- Sadiq, M.; Akram, A.; Javed, M.T. Alpha-tocopherol alters endogenous oxidative defense system in mung bean plants under water-deficit conditions. Pak. J. Bot. 2016, 48, 2177–2182. [Google Scholar]
- Sadiq, M.; Akram, N.A.; Ashraf, M.; Al-Qurainy, F.; Ahmad, P. Alpha-Tocopherol-Induced Regulation of Growth and Metabolism in Plants Under Non-stress and Stress Conditions. J. Plant Growth Regul. 2019, 38, 1325–1340. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Nayyar, H. α-Tocopherol Application Modulates the Response of Wheat (Triticum aestivum L.) Seedlings to Elevated Temperatures by Mitigation of Stress Injury and Enhancement of Antioxidants. J. Plant Growth Regul. 2012, 32, 307–314. [Google Scholar] [CrossRef]
- Atkinson, J.; Epand, R.F.; Epand, R.M. Tocopherols and tocotrienols in membranes: A critical review. Free Radic. Biol. Med. 2008, 44, 739–764. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S. The role of α-tocopherol in plant stress tolerance. J. Plant Physiol. 2005, 162, 743–748. [Google Scholar] [CrossRef]
- Szarka, A.; Tomasskovics, B.; Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 2012, 13, 4458–4483. [Google Scholar] [CrossRef] [Green Version]
- Chan, Z.; Yokawa, K.; Kim, W.-Y.; Song, C.-P. Editorial: ROS Regulation during Plant Abiotic Stress Responses. Front. Plant Sci. 2016, 7, 1536. [Google Scholar] [CrossRef]
- Weese, T.L.; Bohs, L. Eggplant origins: Out of Africa, into the Orient. Taxon 2010, 59, 49–56. [Google Scholar] [CrossRef]
- Javed, H. Management of eggplant shoot and fruit borer (Leucinodes Orbonalis Guenee) by integrating different non-chemical approaches. Pak. J. Agric. Sci. 2017, 54, 65–70. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Whitaker, A.B.D.; Stommel, J.R. Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongena L.) Cultivars. J. Agric. Food Chem. 2003, 51, 3448–3454. [Google Scholar] [CrossRef] [PubMed]
- Niño-Medina, G.; Urías-Orona, V.; Rangel, M.D.M.; Heredia, J.B. Structure and content of phenolics in eggplant (Solanum melongena)—A review. S. Afr. J. Bot. 2017, 111, 161–169. [Google Scholar] [CrossRef]
- Sarker, B.C.; Hara, M. Effects of elevated CO2 and water stress on the adaptation of stomata and gas exchange in leaves of eggplants (Solanum melongena L.). Bangladesh J. Bot. 2011, 40, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Orabi, S.A.; Abdelhamid, M.T. Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J. Saudi Soc. Agric. Sci. 2016, 15, 145–154. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid—A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 2017, 8, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.; Akram, N.A.; Ashraf, M. Foliar applications of alpha-tocopherol improves the composition of fresh pods of Vigna radiata subjected to water deficiency. Turk. J. Bot. 2017, 41, 244–252. [Google Scholar] [CrossRef]
- El-Quesni, F.E.M.; Abd El-Aziz, N.G.; Kandil, M.M. Some studies on the effect of ascorbic acid and α-tocopherol on the growth and some chemical composition of Hibiscus rosasineses L. Nubaria. Ozean J. Appl. Sci. 2009, 2, 156–167. [Google Scholar]
- Sakr, M.; El-Metwally, M. Alleviation of the Harmful Effects of Soil Salt Stress on Growth, Yield and Endogenous Antioxidant Content of Wheat Plant by Application of Antioxidants. Pak. J. Biol. Sci. 2009, 12, 624–630. [Google Scholar] [CrossRef]
- Akram, N.A.; Ashraf, M.; Al-Qurainy, F. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 2012, 142, 143–148. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Scandalios, J.G. Oxygen Stress and Superoxide Dismutases. Plant Physiol. 1993, 101, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.R.; Wang, W.L.; Zheng, C.S.; Fu, D.J.; Liu, H.W.; Shen, X. Foliar-application of α-tocopherol enhanced salt tolerance of Carex leucochlora. Biol. Plant. 2017, 61, 565–570. [Google Scholar] [CrossRef]
- Farouk, S. Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. J. Stress Physiol. Biochem. 2011, 7, 58–79. [Google Scholar]
- Semida, W.M.; El-Mageed, T.A.A.; Howladar, S.M.; Rady, M.M. Foliar-applied ɑ-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Aust. J. Crop. Sci. 2016, 10, 1030–1039. [Google Scholar] [CrossRef]
- Plazas, M.; Nguyen-Huu, T.; González-Orenga, S.; Fita, A.; Vicente, O.; Prohens, J.; Boscaiu, M. Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiol. Biochem. 2019, 143, 72–82. [Google Scholar] [CrossRef]
- Meena, Y.K.; Kaur, N. Towards an Understanding of Physiological and Biochemical Mechanisms of Drought Tolerance in Plant. Annu. Res. Rev. Biol. 2019, 31, 1–13. [Google Scholar] [CrossRef]
- AL Hassan, M.; Fuertes, M.M.; Sánchez, F.J.R.; Vicente, O.; Boscaiu, M. Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Not. Bot. Horti Agrobot. 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Yang, G.; Rhodes, D.; Joly, R. Effects of High Temperature on Membrane Stability and Chlorophyll Fluorescence in Glycinebetaine-Deficient and Glycinebetaine-Containing Maize Lines. Funct. Plant Biol. 1996, 23, 437–443. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Cakmak, I.; Horst, W.J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 1991, 83, 463–468. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Mukherjee, S.P.; Choudhuri, M.A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Maehly, A.C. The assay of catalases and peroxidases. In Methods of Biochemical Analysis; Glick, D., Ed.; Interscience Publishers, Inc.: London, UK, 1954; Volume 1, pp. 357–424. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
Source of Variations | df | Shoot Length | Root Length | Root Fresh Weight |
---|---|---|---|---|
Cultivars (Cv) | 1 | 8.588 ns | 8.214 ns | 0.080 ns |
Drought stress (D) | 1 | 609.9 *** | 59.20 ** | 0.954 *** |
TOC | 4 | 38.56 * | 20.95 * | 0.078 * |
Cv × D | 1 | 24.19 ns | 0.770 ns | 0.001 ns |
Cv × TOC | 4 | 10.70 ns | 6.761 ns | 0.048 ns |
D × TOC | 4 | 0.633 ns | 8.092 ns | 0.033 ns |
Cv × D × TOC | 4 | 5.360 ns | 4.151 ns | 0.020 ns |
Error | 48 | 11.72 | 6.812 | 0.027 |
Root dry weight | Chlorophyll a | Chlorophyll b | ||
Cultivars (Cv) | 1 | 0.019 ** | 0.202 ns | 0.113 ns |
Drought stress (D) | 1 | 0.025 *** | 0.215 ** | 0.512 ** |
TOC | 4 | 0.009 ** | 0.330 * | 0.331 ** |
Cv × D | 1 | 0.001 ns | 0.021 ns | 0.022 ns |
Cv × TOC | 4 | 0.001 ns | 0.057 ns | 0.037 ns |
D × TOC | 4 | 0.005 * | 0.049 ns | 0.018 ns |
Cv × D × TOC | 4 | 7.555 ns | 0.061 ns | 0.071 ns |
Error | 48 | 0.001 | 0.087 | 0.063 |
Chlorophyll a/b ratio | Total chlorophyll | RMP | ||
Cultivars (Cv) | 1 | 0.027 ns | 0.077 ns | 905.5 ** |
Drought stress (D) | 1 | 0.017 ns | 2.473 * | 1568 *** |
TOC | 4 | 0.035 ns | 0.326 ns | 343.7 * |
Cv × D | 1 | 0.015 ns | 0.324 ns | 82.76 ns |
Cv × TOC | 4 | 0.021 ns | 0.229 ns | 37.32 ns |
D × TOC | 4 | 0.018 ns | 0.135 ns | 42.23 ns |
Cv × D × TOC | 4 | 0.002 ns | 0.459 ns | 69.67 ns |
Error | 48 | 0.017 | 0.243 | 122.4 |
GB | Proline | H2O2 | ||
Cultivars (Cv) | 1 | 467.9 ** | 2.840 *** | 476.7 ns |
Drought stress (D) | 1 | 445.1 ** | 4.235 *** | 4851 ** |
Alpha tocopherol (TOC) | 4 | 336.6 *** | 1.531 *** | 1829 * |
Cv × D | 1 | 41.41 ns | 0.096 ns | 1386 ns |
Cv × TOC | 4 | 1.680 ns | 0.132 ns | 256.2 ns |
D × TOC | 4 | 42.79 ns | 0.149 ns | 18.12 ns |
Cv × D × TOC | 4 | 27.72 ns | 0.049 ns | 137.3 ns |
Error | 48 | 50.33 | 0.149 ns | 488.1 |
MDA | TSP | AsA | ||
Cultivars (Cv) | 1 | 0.701 ns | 1026 *** | 7.575 * |
Drought stress (D) | 1 | 316.3 ** | 3122ns | 28.55 *** |
TOC | 4 | 166.1 *** | 2290 *** | 15.52 *** |
Cv × D | 1 | 0.877 ns | 891.4 ns | 4.423 ns |
Cv × TOC | 4 | 139.4 ** | 2280ns | 0.920 ns |
D × TOC | 4 | 15.78 ns | 1323 ** | 3.691 * |
Cv × D × TOC | 4 | 29.09 ns | 559.6 ns | 0.794 ns |
Error | 48 | 28.80 | 3006 | 1.368 |
SOD | POD | |||
Cultivars (Cv) | 1 | 1.332 ns | 141.8 *** | |
Drought stress (D) | 1 | 0.212 ns | 33.92 * | |
TOC | 4 | 7.363 *** | 109.1 *** | |
Cv × D | 1 | 5.081 ** | 31.53 * | |
Cv × TOC | 4 | 0.073 ns | 29.39 ** | |
D × TOC | 4 | 0.645 ns | 14.32 ns | |
Cv × D × TOC | 4 | 1.416 ns | 5.875 ns | |
Error | 48 | 0.567 | 7.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, N.A.; Bashir, R.; Ashraf, G.; Bashir, S.; Ashraf, M.; Alyemeni, M.N.; Bajguz, A.; Ahmad, P. Exogenous α-Tocopherol Regulates the Growth and Metabolism of Eggplant (Solanum melongena L.) under Drought Stress. Plants 2023, 12, 237. https://doi.org/10.3390/plants12020237
Akram NA, Bashir R, Ashraf G, Bashir S, Ashraf M, Alyemeni MN, Bajguz A, Ahmad P. Exogenous α-Tocopherol Regulates the Growth and Metabolism of Eggplant (Solanum melongena L.) under Drought Stress. Plants. 2023; 12(2):237. https://doi.org/10.3390/plants12020237
Chicago/Turabian StyleAkram, Nudrat Aisha, Rohina Bashir, Gulshan Ashraf, Shehnaz Bashir, Muhammad Ashraf, Mohammed Nasser Alyemeni, Andrzej Bajguz, and Parvaiz Ahmad. 2023. "Exogenous α-Tocopherol Regulates the Growth and Metabolism of Eggplant (Solanum melongena L.) under Drought Stress" Plants 12, no. 2: 237. https://doi.org/10.3390/plants12020237
APA StyleAkram, N. A., Bashir, R., Ashraf, G., Bashir, S., Ashraf, M., Alyemeni, M. N., Bajguz, A., & Ahmad, P. (2023). Exogenous α-Tocopherol Regulates the Growth and Metabolism of Eggplant (Solanum melongena L.) under Drought Stress. Plants, 12(2), 237. https://doi.org/10.3390/plants12020237