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Abstract: Remote sensing of nutrient disorders has become more common in recent years. Most
research has considered one or two nutrient disorders and few studies have sought to distinguish
among multiple macronutrient deficiencies. This study was conducted to provide a baseline spectral
characterization of macronutrient deficiencies in flue-cured tobacco (Nicotiana tabacum L.). Reflectance
measurements were obtained from greenhouse-grown nutrient-deficient plants at several stages
of development. Feature selection methods including information entropy and first and second
derivatives were used to identify wavelengths useful for discriminating among these deficiencies.
Detected variability was primarily within wavelengths in the visible spectrum, while near-infrared
and shortwave-infrared radiation contributed little to the observed variability. Principal component
analysis was used to reduce data dimensionality and the selected components were used to develop
linear discriminant analysis models to classify the symptoms. Classification models for young, inter-
mediate, and mature plants had overall accuracies of 92%, 82%, and 75%, respectively, when using 10
principal components. Nitrogen, sulfur, and magnesium deficiencies exhibited greater classification
accuracies, while phosphorus and potassium deficiencies demonstrated poor or inconsistent results.
This study demonstrates that spectral analysis of flue-cured tobacco is a promising methodology to
improve current scouting methods.

Keywords: macronutrients; Hoagland solution; spectroscopy; principal component analysis;
information entropy; classification modeling

1. Introduction

Remote sensing of nutrient disorders enables growers to rapidly scout their crops
and manage fertilization practices with greater precision. Automation using spectral
sensors mounted to trucks, tractor spray booms, or unmanned aerial vehicles (UAVs) is
becoming more common in agricultural production settings [1,2]. Spectral sensors measure
crop reflectance at various wavelengths in the electromagnetic spectrum, which can be
correlated to the symptoms of specific nutrient disorders. Plants exposed to various biotic
and abiotic stressors exhibit different visual symptoms, due in part to changes in how light
interacts with plant tissues [1,3]. This characteristic enables spectral sensors to diagnose
plant health problems before symptoms are visually apparent [3]. For instance, Osborne
et al. [4] found several wavelengths in the visible and near-infrared (NIR) spectra that could
be used to estimate nitrogen (N) content in field-grown corn measured under ambient
light conditions. Zhang et al. [5] reported several wavelengths that were correlated with N,
phosphorus (P), or potassium (K) deficiencies in field-grown rapeseed (Brassica napus L.)
measured under artificial lighting within a laboratory setting. These studies demonstrate
that spectral signatures can be correlated to specific nutrient disorders and can then be
used to distinguish among disorders.
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Certain wavelengths are already associated with plant stress in general and nutrient
stress specifically. Many of these bands fall within the red edge, the portion of the spectrum
between the visible red and NIR spectra. These wavelengths are located at approximately
700, 720, and 740 nm [6]. Other wavelengths of interest fall in the blue, (375, 466, and
490 nm), green (515, 520, 525, 550, and 575 nm) and red (675 and 682 nm) spectra [6]. These
wavelengths have been used to classify nutrient stress or pigment changes [6]. Soil-Plant
Analysis Development (SPAD) meters emit targeted electromagnetic radiation (EMR) near
650 and 940 nm and subsequently measure the amount of radiation transmitted through
the leaf [7]. The values obtained from these sensors provide a measure of the green (high
values) or yellow (low values) coloration exhibited in the foliage [7]. These values correlate
to leaf chlorophyll concentrations which in turn correlate to leaf N concentrations. The
primary goals of plant spectral analysis in terms of plant nutrition are the detection and
discrimination of nutrient disorders or estimating foliar nutrient concentrations.

Rustioni et al. [8] reported successful discrimination among N, K, magnesium (Mg),
and iron (Fe) deficiencies in greenhouse-grown grape (Vitis vinifera L.) leaves using hyper-
spectral reflectance measurements under artificial lighting. The effects of each deficiency on
foliar pigment concentrations leads to the observed spectral differences [8]. Other studies
by Adams et al. [9,10] demonstrate spectral separability of various micronutrient deficien-
cies. They found that copper (Cu)-deficient soybean [Glycine max (L.) Merr.] leaves from
growth-chamber-grown plants were most successfully distinguishable, and manganese
(Mn)-deficient leaves were also distinguishable in many cases; however, Fe and zinc (Zn)
deficiencies were more difficult to classify [10]. Adams et al. [9] suggested that Cu, Fe, and
Mn may affect spectral reflectance due to their specific roles in chlorophyll synthesis and
electron transport.

Although there are at least 17 essential elements required to complete the cycle of plant
growth and maturation, monitoring macronutrient status is considered most important
for maintaining crop quality and yield. The essential macronutrients including N, P, K,
calcium (Ca), Mg, and sulfur (S) are needed in relatively high concentrations [11]. Each of
the essential nutrients perform crucial roles in plant development, and deficiencies of each
nutrient cause unique symptoms that are visually diagnosable in many instances. Some
of the primary effects of nutrient deficiencies include stunting and changes in leaf shape
or orientation [12]. Nutrient deficiencies often cause changes in foliar coloration which
may appear yellow (chlorotic), white (bleached), brown (necrotic), red, or black [12]. It is
important to consider that the mobility of nutrients within plant tissues also dictate the
location symptoms occur. For instance, deficiencies of mobile nutrients such as N, P, K, and
Mg typically lead to symptom development on the mature lower foliage while relatively
immobile nutrients such as Ca and S cause symptoms to develop on the upper foliage.
Additionally, the pattern and distribution of symptoms on a single leaf are important to
consider when diagnosing symptoms.

Henry et al. [13,14] induced nutrient disorders of flue-cured tobacco and provided
detailed descriptions of the symptoms exhibited from each deficiency and toxicity. The
results indicated that several nutrient disorders were readily induced, and symptoms
had unique characteristics that made them visually distinguishable. Nitrogen deficiency
appeared as a pale-yellow chlorosis that occurred uniformly on individual leaves but
was more severe on the lower leaves [14]. Similarly, S deficiency led to symptoms of
pale chlorosis; however, these symptoms occurred uniformly throughout the canopy [13].
Phosphorus deficiency resulted in symptoms of nonuniform chlorosis on the lower leaves
with olive-green leaf spots and large necrotic lesions [13]. Potassium deficiency led to the
development of marginal chlorosis on the lower to central leaves, while Mg deficiency
caused symptoms of interveinal chlorosis in the same region of the plant [13].

Although numerous studies have been done to measure the spectral response of vari-
ous nutrient deficiencies, fewer studies have compared the spectral responses of multiple
nutrient deficiencies in one particular species. Besides nutrient status, numerous factors
including plant species and maturity are known to impact spectral reflectance. Research on
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the effect of plant and leaf maturity on the spectral profile of healthy and nutrient deficient
plants is limited. Studies investigating spectral reflectance in relation to foliar N concentra-
tions in flue-cured tobacco have been conducted [15], but studies investigating multiple
nutrient deficiencies in flue-cured tobacco have yet to be reported. Spectral remote sensing
has significant potential to aid in modern crop production, especially for high-value crops
such as flue-cured tobacco. Hyperspectral remote sensing can be used to diagnose plant
nutrient status but is currently impractical to use on a commercial scale due to the excessive
quantities of data and computational processing requirements. Using hyperspectral data
to identify relevant wavelengths associated with particular nutrient deficiencies can lead
to the development of relatively inexpensive sensors, offering greater opportunities for
commercial utilization.

The purpose of this study was to determine if macronutrient deficiency symptoms
could be distinguished among one another using spectral reflectance data. We hypothesized
that discrimination of certain nutrient deficiencies would be more successful than others. In
particular, we believed the symptoms of N and S deficiencies would be difficult to uncouple
due to their visual similarities. This study was achieved by inducing N, P, K, Mg, and S
deficiencies in a controlled environment and recording the spectral reflectance from each
disorder at different stages of plant maturity.

2. Results
2.1. Deficiency Symptoms

Plants grown in each nutrient deficient environment exhibited symptoms similar to
those described by Henry et al. [13]. Nitrogen-, P-, and Mg-deficient plants always devel-
oped symptoms on the lower leaves first, regardless of growth stage. Young K-deficient
plants developed symptoms on the lower leaves first, but mid- and late-stage plants
exhibited symptoms primarily on the leaves within the middle third of the plant. Sulfur-
deficient plants began developing symptoms on the upper foliage, spreading down the
plant. Nitrogen-deficient (Figure 1A) and S-deficient (Figure 1E) plants both developed sub-
stantial chlorosis that eventually turned to complete foliar bleaching. Phosphorus-deficient
plants developed nonuniform chlorosis with necrotic spotting (Figure 1B). Additionally,
P-deficient leaves permanently lost their rigidity, appearing wilted with a noticeably pli-
able texture. Potassium-deficient plants developed the characteristic symptom of “firing”
which consists of marginal chlorosis and necrosis (Figure 1C). Magnesium-deficient plants
developed an interveinal chlorosis which turned to bleaching between the veins and
downward-curling leaf margins (Figure 1D). Control plants consistently had higher foliar
concentrations of the particular deficient nutrient than the nutrient-deficient plants at all
maturity levels (Table 1).

Table 1. Pairwise comparisons of foliar nutrient concentrations found in the most recently matured
leaves of young, intermediate, and mature flue-cured tobacco (Nicotiana tabacum L.) plants grown
under macronutrient deficient conditions.

Treatment -N -P -K -Mg -S

Foliar nutrient concentration (%)

Element N P K Mg S

Young
Control 5.10a 1 0.41a 5.87 0.66 0.35a

Deficient 0.86b 0.06b — — 0.10b
Intermediate

Control 3.17a 0.11a 4.46a 0.74a 0.32a
Deficient 0.92b 0.05 0.34b 0.01b 0.09b

Mature
Control 2.47a 0.10a 3.37a 0.84a 0.33a

Deficient 0.81b 0.04b 0.27b 0.01b 0.06b
1 Within column-ordered pairs grouped by plant maturity, means followed by the same letter are not significantly
different according to Tukey’s HSD (0.05).
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Figure 1. Average spectra and associated leaf appearance for flue-cured tobacco (Nicotiana tabacum
L.) exhibiting: (A) nitrogen deficiency; (B) phosphorus deficiency; (C) potassium deficiency;
(D) magnesium deficiency; (E) sulfur deficiency.

2.2. Spectral Reflectance Characteristics

Average spectra of severely N-deficient leaves demonstrate greater reflectance than
control leaves at every wavelength from 350 to 1000 nm (Figure 2A). Some of the major
differences observed between N-deficient and control leaf spectra were observed in the
green and yellow regions of the visible spectrum, with reflectance peaking near 550 nm at
approximately 41.1% as opposed to 12.6% in control plants (Figure 2A). Control plants also
exhibited similar reflectance of red (~650 nm) and blue (~450 nm) EMR, while N-deficient
plants reflected higher quantities of red EMR proportionally (Figure 2A). Furthermore,
raw spectral derivatives illustrated some of the primary areas of interest due to significant
changes in slope. For instance, the first spectral derivatives for control and N-deficient
plants both exhibited prominent peaks near 550 and 700 nm (Figure 2B). However, upon
closer inspection, these two peaks illustrate the shift in the red edge from higher wave-
lengths in control plants to lower wavelengths in N-deficient plants (Figure 2B). These
trends are also exhibited in the second derivatives, but less so and with significantly more
noise, demonstrating the need to implement smoothing techniques (Figure 2C).
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Figure 2. Graphs illustrating (A) the average spectral reflectance from 350 to 1000 nm for severely
N-deficient flue-cured tobacco (Nicotiana tabacum L.) compared to the average control spectra,
(B) the first derivatives of the N-deficient and control spectra, and (C) the second derivatives of the
N-deficient and control spectra.

2.3. Band Selection

Both information entropy and spectral derivative methods were able to successfully
identify wavelengths that could explain the variability observed among symptoms (Table 2).
In general, the majority of observed variability could be explained by wavelengths in the
visible spectrum. Information entropy resulted in several peaks at 400, 423, 502, 530, 557,
618, 638, 657, and 697 nm for young plants (Figure 3A); 414, 520, 586, 610, 655, and 700 nm
for intermediate maturity plants (Figure 3B); and 376, 398, 460, 546, 565, 597, and 701 nm
for mature plants (Figure 3C). The highest peaks were typically between 500 and 650 nm,
as well as a specific peak at 700 nm. Plants at each growth stage exhibited a similarly steep
decreasing trend between 700 and 750 nm, coinciding with the red edge.

Table 2. Five most significant wavelengths (nm) selected for discrimination among macronutrient
deficiencies in flue-cured tobacco (Nicotiana tabacum L.) at three growth stages. Band selection
methods included information entropy, first spectral derivative, and second spectral derivative.

Maturity Stage
Young Intermediate Mature

Information Entropy
697 700 701
502 610 565
657 655 546

Information Entropy
618 586 597
638 520 398

First Derivative
699 702 704
517 518 519
383 383 383
368 369 369
648 414 573

Second Derivative
683 683 685
716 725 728
534 535 536
501 501 503
394 394 393
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Figure 3. Savitzky–Golay-filtered information entropy observed among (A) young, (B) intermediate,
and (C) mature flue-cured tobacco (Nicotiana tabacum L.) plants. Peak wavelengths demonstrate
locations with the most informative bands necessary to distinguish among each nutrient deficiency.

Several wavelengths were selected based on first and second derivative spectra
(Table 2). Wavelengths selected from the first derivative spectra for young plants included
368, 383, 414, 517, 573, 613, 648, 699, and 951 nm (Figure 4A). Second derivative spectra
resulted in the selection of 394, 413, 425, 501, 534, 584, 683, 716, and 965 nm (Figure 4A).
Wavelengths selected from the first spectral derivative of intermediate maturity plants
were 369, 383, 414, 518, 573, 613, 647, 702, and 951 nm (Figure 4B). Wavelengths selected
from second derivatives included 394, 413, 425, 501, 535, 584, 683, 725, and 965 nm for
intermediate maturity plants (Figure 4B). Finally, mature plants had selected wavelengths
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of 369, 383, 415, 519, 573, 612, 647, 704, and 951 nm for first derivative and 393, 413, 425,
503, 536, 584, 685, 728, and 965 nm for second derivative spectra (Figure 4C).
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Figure 4. First and second derivatives of (A) young, (B) intermediate, and (C) mature flue-cured
tobacco (Nicotiana tabacum L.) plants smoothed using the gap-segment algorithm. Peak wave-
lengths demonstrate locations with the most informative bands necessary to distinguish among each
nutrient deficiency.

2.4. Symptom Classification

Principal component analysis (PCA) greatly reduced the data dimensionality and led
to linear discriminant analysis (LDA) models with high classification accuracies. With
just 10 principal components (PCs) used in each model, dimensionality was reduced
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by more than 95% as we were able to combine our original 2250 bands into 10 linear
combinations of bands that captured most of the variability. This method was also
found to successfully reduce dimensionality in other studies investigating plant spectral
response [16,17]. Information entropy and PCA are both cited as useful methods for select-
ing bands containing the most information with regards to variability [16]. The LDA model
for young plants resulted in 92% overall accuracy with individual accuracies of 92%, 100%,
88%, and 90% for control, N-deficient, P-deficient, and S-deficient plants, respectively (Ta-
ble 3). The most common misclassification for young plants was between S deficiency and
the control, with several S-deficient plants being classified as controls, and some controls
classified as S-deficient.

Table 3. Linear discriminant analysis classification accuracies for nutrient deficient flue-cured tobacco
(Nicotiana tabacum L.) plants based on principal component analysis.

Deficiency
Treatment

Maturity Stage
Young Intermediate Mature

Control 92% 94% 89%
Nitrogen (N) 100% 92% 100%

Phosphorus (P) 88% 58% 52%
Potassium (K) — 70% 42%

Magnesium (Mg) — 79% 92%
Sulfur (S) 90% 80% 73%

Overall accuracy 92% 82% 75%

Overall accuracy for intermediate maturity plants was lower than for young plants at
82%. Classification accuracies for control, N-deficient, P-deficient, K-deficient,
Mg-deficient, and S-deficient plants were 94%, 92%, 58%, 70%, 79%, and 80%, respec-
tively (Table 3). Nitrogen-deficient plants were successfully classified in most instances,
but some N-deficient plants were misclassified as being Mg-deficient and vice versa. Addi-
tionally, a large proportion of P-deficient leaves were misclassified as control leaves. This
may have been because P-deficient leaves had large green, chlorotic, and necrotic spots that
likely resulted in more variable spectral measurements. Furthermore, a large portion of the
upper foliage of P-deficient plants was visually asymptomatic, leading these leaves to be
classified with control plants.

Mature plants exhibited the lowest classification accuracy with an overall accuracy
of 75%. Control plants had an 89% classification accuracy while N-deficient, P-deficient,
K-deficient, Mg-deficient, and S-deficient plants had 100%, 52%, 42%, 92%, and 73%,
respectively (Table 3). Potassium-deficient leaves were frequently misclassified as a control,
Mg-deficient, or S-deficient leaf. Mature P-deficient leaves also exhibited low classification
accuracy, with roughly one-third of all samples being classified as controls.

3. Discussion

Li et al. [18] studied hyperspectral reflectance for estimating N in upper, middle, and
lower leaves of oilseed rape plants. They used partial least squares regression (PLSR) and
reported optimal wavelengths of 437, 565, 667, 724, 993, 1084, and 1189 nm for upper leaves;
423, 570, 598, 659, 725, and 877 nm for middle leaves; and 420, 573, 597, 667, and 718 nm
for lower leaves [18]. Li et al. [19] also used PLSR to model and predict foliar N and P
concentrations in oilseed rape. They compared PLSR with other data transformations, such
as first derivatives and continuum removal, and found that PLSR with first derivatives was
most effective for nutrient estimation. The optimal wavelengths selected for N were 445,
556, 657, 764, 985, 1082, and 1994 nm while those selected for P included 755, 832, 891, 999,
1196, and 1267 nm [19]. Zhang et al. [5] investigated the spectral response of oilseed rape to
N, P, and K deficiencies using PLSR. They reported optimal wavelengths of 440, 473, 513,
542, 659, 718, 744, 865, 928, 965, 986, and 1015 nm for N; 468, 522, 698, 721, 817, 967, 979,
and 1025 nm for P; and 456, 554, 667, 720, and 1027 nm for K [5].
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These past studies demonstrate similar results to what we obtained in the present study.
In general, the majority of observed variation appears to be in the visible spectrum and falls
specifically between 400 and 750 nm. However, other studies reported several significant
wavelengths >800 nm [5,18,19], which was not the case in our study. Furthermore, we
identified bands of interest in the UV region, whereas most other studies did not. This may
be due in part to the specific spectroradiometer used in this study. It is also likely that the
species and nutrient deficiencies used in this study were different from the other studies,
and plants are known to demonstrate different spectral responses by species [6] and in
response to different stimuli. Further work should investigate whether UV EMR is a good
indicator of nutrient deficiencies in species other than tobacco.

Overall, PCA-based classification was highly accurate in distinguishing among the
five macronutrient deficiencies induced in this study. Accuracy decreased with increasing
maturity, likely due to the greater proportion of asymptomatic leaves on these plants. This
proposed effect was especially impactful for the discrimination of P and K deficiencies.
Nitrogen and S-deficient leaves were hypothesized to be similar enough to prevent accurate
classification between these symptoms. However, in only three instances were S-deficient
plants misclassified as N-deficient, and in no instance was a N-deficient plant misclassified
as S-deficient. Phosphorus-deficient plants exhibited some of the lowest overall classifica-
tion accuracies which may be attributed to the non-uniform appearance of the leaf surface.
Similarly, mature K-deficient plants had poor classification accuracy, possibly because a
large portion of the upper leaves appeared completely asymptomatic, and those leaves
remained in the analysis. Therefore, it may be inferred that N-, Mg-, and S-deficient plants
have a greater proportion of leaves that are visibly and spectrally different from the leaves
of control plants. Future work may find that dividing leaves by visual symptoms could
yield helpful insights.

4. Materials and Methods
4.1. Plant Material and Experimental Design

The experiment was replicated twice over time, and a total of 2563 individual sample
readings were taken over the 2 trials. Each replication began by sowing pelletized K-326
tobacco seeds (GoldLeaf Seed Co., Hartsville, SC, USA) into 128-cell plug flats and placing
them in a glass-glazed greenhouse at North Carolina State University in Raleigh, NC
(35◦47′41′′ N lat, 78◦41′57′′ W long). The substrate was an 80:20 (v:v) mix of Canadian
sphagnum peat moss (Conrad Fafard, Agawam, MA, USA) and horticultural coarse perlite
(Perlite Vermiculite Packaging Industries, Inc., North Bloomfield, OH, USA), amended
with mesh size #100 dolomitic limestone (Rockydale Agricultural, Roanoke, VA, USA)
at 8.9 kg m−3 and wetting agent (AquaGro 2000 G; Aquatrols, Cherry Hill, NJ, USA)
at 0.6 kg m−3. This custom substrate was used to limit nutrient contamination that would
be present in a commercial substrate. Flats were irrigated by hand with nonfertilized water
until seeds germinated and cotyledons fully expanded.

Following germination, seedlings were fertilized with a solution consisting of
7.5 mmol L−1 N, 0.5 mmol L−1 P, 3.0 mmol L−1 K, and 2.5 mmol L−1 Ca. Previous experi-
ments demonstrated tobacco seedlings require a low concentration of primary macronu-
trients to develop sufficiently for studies investigating nutrient disorders [13,14]. The
selected concentrations were a half rate of the primary macronutrient concentrations used
in the nutrient-sufficient control solution. The control solution was a modified all-nitrate
Hoagland solution consisting of 15.0 mmol L−1 N, 1.0 mmol L−1 P, 6.0 mmol L−1 K,
5.0 mmol L−1 Ca, 2.0 mmol L−1 Mg, and 2.0 mmol L−1 S, 72.0 µmol L−1 iron (Fe),
18.0 µmol L−1 Mn, 3.0 µmol L−1 Cu, 3.0 µmol L−1 Zn, 45.0 µmol L−1 boron (B), and
0.1 µmol L−1 molybdenum (Mo) [20] mixed with deionized (DI) water of 18 megohm purity.
All nutrients were provided by the following technical grade salts (Fisher Scientific, Pitts-
burg, PA, USA): calcium nitrate tetrahydrate [Ca(NO3)2·4H2O], potassium nitrate (KNO3),
potassium dihydrogen phosphate (KH2PO4), potassium sulfate (K2SO4), magnesium sul-
fate heptahydrate (MgSO4·7H2O), potassium chloride (KCl), calcium chloride dihydrate
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(CaCl2·2H2O), sodium nitrate (NaNO3), sodium phosphate dihydrate (NaH2PO4·2H2O),
iron chelate (Fe-DTPA), manganese chloride tetrahydrate (MnCl2·4H2O), zinc chloride
heptahydrate (ZnCl2·7H2O), copper chloride dihydrate CuCl2·2H2O, boric acid (H3BO3),
and sodium molybdate dihydrate (Na2MoO4·2H2O). Solution pH was adjusted to ~6.0
using sodium hydroxide (NaOH). Macronutrient deficiencies were induced by replacing
each cation (K+ and Mg+) or anion [(nitrate (NO3

−), phosphate (H2PO4
−), and sulfate

(SO4
2−)] containing salt with a sodium (Na) or chloride (Cl−) containing salt, respectively.

Fertilizer treatments began upon transplanting into a sand culture system.
The seedlings were thoroughly drenched with DI water three consecutive times to

leach any remaining nutrients prior to transplant. Seedlings were transplanted into 12.4 cm
diameter pots (Dillen, Middlefield, OH, USA) filled with silica sand [Millersville #2 (0.8 to
1.2 mm diameter); Southern Products & Silica Co., Hoffman, NC, USA] that was soaked
in sulfuric acid and triple-rinsed with DI water prior to use. The transplanted seedlings
were placed into an automated recirculating sand culture system. The system was built on
benches in a glass-glazed greenhouse in Raleigh, NC and utilized a completely randomized
design. Each segment of the system (referred to as “lines” hereafter) consisted of 10.2 cm
diameter polyvinyl chloride (PVC) piping (Charlotte Plastics, Charlotte, NC, USA) fit with
12.7 cm diameter PVC reducer couplings (Charlotte Plastics). Six couplings were used to
hold pots and recapture irrigation solutions in each line. Fertilizer solutions were delivered
via drip tubes fed from individual 20 L plastic buckets equipped with submersible pumps
(model 1A; Little Giant Pump Co., Oklahoma City, OK, USA). Each line contained one
treatment. Solutions were delivered for 1 min each cycle with as many cycles necessary
per day to prevent apparent water stress (i.e., wilting) between 6:00 and 18:00 h. Nutrient
solutions were replaced on a weekly basis.

4.2. Spectroscopic Measurements

A handheld spectrometer (PSM-2500; Spectral Evolution, Lawrence, MA, USA) was
used to collect spectral reflectance data throughout the study. The sensor had a spectral
range of 300 to 2500 nm and a spectral resolution of 3.5 nm at 700 nm, 22 nm at 1500 nm,
and 22 nm at 2100 nm with the percent reflectance output in 1 nm increments. The sensor
was equipped with a fiberoptic leaf clip capable of taking leaf-level measurements. This leaf
clip had a self-contained light source with two light settings, of which the higher setting
was used. Leaf clip measurements were taken inside the greenhouse under ambient light
conditions. Measured plants were irrigated prior to measurement to ensure drought stress
would not be a confounding factor.

Throughout the experiment, symptomatic and asymptomatic control plants were se-
lected to obtain hyperspectral measurements of the individual leaves. At each measurement
date, four individual plant replicates were selected. Reflectance data were collected from
each leaf, except for the small bottom two to three leaves exhibiting natural senescence
and the few immature upper leaves that were narrow with limited expansion. Measure-
ments using the leaf clip were taken approximately 2 to 3 cm from the leaf margin and
one-third of the leaf length away from the leaf tip. This location was selected because
it typically represented the average degree of symptoms for each leaf. Areas of necrosis
were avoided as necrotic tissues reflected much different patterns than non-necrotic tissues,
regardless of symptomology.

4.3. Leaf Tissue Analysis

Leaf tissues were dried at 70 ◦C for 72 h and then ground in a sample mill
(Thomas Wiley® Mini-Mill; Thomas Scientific, Swedesboro, NJ, USA), and analyzed for
nutrient concentrations (AgSource Laboratories, Lincoln, NE, USA). Total N was processed
by Kjeldahl digestion and determined via flow injection analysis (FIA). Extractable K was
processed by 2% acetic acid digestion and determined via inductively coupled plasma
mass spectrometry (ICP-MS). Total P and all other plant minerals were processed by ni-
tric acid/hydrogen peroxide digestion and determined via ICP-MS. Pairwise differences
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between control and deficient plant foliar nutrient concentrations were determined using
PROC ANOVA in SAS (version 9.4; SAS Institute, Cary, NC, USA).

4.4. Data Preparation

Reflectance data were manipulated and analyzed using R statistical software
(R Core Team, Auckland, New Zealand). Measurements from each leaf of each treat-
ment were assigned into several subgroups depending on various characteristics. Leaves
received an objective symptom severity rating of four possible categories: (1) none, (2) low,
(3) intermediate, or (4) high (Figure 5). We divided the symptom severity into four cate-
gories so that we could compare statistics for leaves that were visually symptomatic versus
those that were not. Categorization did not affect the results of the study but allowed us to
refine and better understand the symptoms that were observed. Examples of leaves from
each category can be seen in Figure 5. Furthermore, measurement stages were separated by
maturity: (1) young, (2) intermediate, or (3) mature. Young plants were those that had 6 or
fewer leaves, intermediate plants had 7 to 12 leaves, and mature plants had more than 12
leaves. Fully mature tobacco plants developed between 18 and 20 expanded leaves prior
to anthesis.
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Figure 5. Demonstration of the flue-cured tobacco (Nicotiana tabacum L.) symptom severity rating
system using nitrogen (N) deficiency as an example.

Water absorption bands were excluded from the analysis in the ranges of 1355 to
1450 nm and 1800 to 1950 nm. These wavelengths in the short-wave infrared (SWIR)
region can be important in the detection of water related stress, but can also contribute
noise, leading to the distortion of spectral measurements used for the detection of nutrient
disorders [1].

4.5. Band Selection

Spectra were used to calculate information entropy as well as first and second spectral
derivatives to identify which wavelengths contribute most to the variability observed
among the nutrient-deficient leaves. Information entropy is a measurement for how much
variability is contained within a band and it is commonly used for hyperspectral band
selection [16,17,21]. Derivative measures are also useful for band selection by identifying
areas with rapid changes in direction or pattern within spectra [16]. Information entropy
was calculated using the FSelector package [22] while derivatives were calculated using
the prospectr package [23] in R. Savitzky–Golay filtering was applied using a third-order
polynomial with a smoothing window size of 10 bands to information entropy data to



Plants 2023, 12, 280 12 of 13

reduce noise and smooth the data. Derivatives were calculated and smoothed using the
gap-segment algorithm with a filter length of 11 bands for both first and second order
derivatives. Peaks and valleys were then calculated using the splus2R package [24] to
determine the greatest individual absolute values or ranges of values within a span of 10
bands. Ranges of continuous values with uniform importance were aggregated and used
to determine the central wavelength representing that range. The identified wavelengths
represented those with the greatest impact on observed variability.

4.6. Symptom Classification

Reflectance spectra were analyzed by growth stage using PCA, with 10 PCs selected for
each growth stage. Linear discriminant analysis was used to develop classification models
to distinguish among the various symptoms. The classification models were conducted
using a (custom-built) five-fold cross validation approach, where 80% of the data was
randomly selected for model training and the remaining 20% used for testing. Following
the first validation, a second validation was conducted with a new set of testing data
previously used to train the model. This process was repeated to optimize the model
until all data were used for both training and testing functions. The final classification
results were put into a confusion matrix for each growth stage and analyzed using the
PredPsych package [25] in R. The matrices were used to determine the overall accuracy
and misclassification rates for each model. Overall accuracy was calculated by dividing the
number of correctly classified observations by the total number of observations.

5. Conclusions

Spectral discrimination of nutrient deficiencies appears to be a promising form of
precision scouting that should be investigated further in field scenarios. With continual
advancements in sensors and greater availability of technology, spectral remote sensing
has the potential to become an indispensable tool for agronomic crop producers. The
wavelengths identified here and in other studies should be used to develop simpler and
less-expensive sensors. Developing user-friendly software for automated spectral analysis
should also be considered moving forward.
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