Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community
Abstract
:1. Introduction
2. Results
2.1. Growth of Cucumber Seedlings
2.2. Gas Exchange Parameters
2.3. Fruit Qualities in Fresh Cucumbers
2.4. Substrate Enzyme Activities
2.5. Sequencing and Microbial Diversity Analysis
2.6. Microbial Community Structure
2.7. Effects of B. subtilis K424 Application on the Rhizospheric Microbial Community Composition
2.8. Correlation between Rhizospheric Microbiota and Substrate Indexes
3. Discussion
4. Materials and Methods
4.1. Pot Experiment Design
4.2. Assays of Growth Indices
4.3. Determination of Leaf Photosynthetic Parameters
4.4. Determination of Qualities in Fresh Cucumbers
4.5. Analysis of Substrate Enzyme Activity and DNA Extraction
4.6. PCR Amplification and Miseq Sequencing
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D. Nutrient solution recycling. In Hydroponic Production of Vegetables and Ornamentals; Embryo Publications: Athens, Greece, 2002; pp. 299–343. [Google Scholar]
- Amoruso, F.; Signore, A.; Gómez, P.A.; Martínez-Ballesta, M.d.C.; Giménez, A.; Franco, J.A.; Fernández, J.A.; Egea-Gilabert, C. Effect of Saline-Nutrient Solution on Yield, Quality, and Shelf-Life of Sea Fennel (Crithmum maritimum L.) Plants. Horticulturae 2022, 8, 127. [Google Scholar] [CrossRef]
- Buck, J.; Kubota, C.; Wu, M. Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponic tomatoes (Lycopersicon esculentum). In Proceedings of the VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition, Kissimmee, FL, USA, 23–27 March 2004; Volume 659, pp. 541–547. [Google Scholar]
- Gül, A.; Kidoglu, F.; Tüzel, Y.; Tüzel, I.H. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Span. J. Agric. Res. 2008, 6, 422–429. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Ryu, C.M.; Zhang, S. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Kochar, M.; Upadhyay, A.; Srivastava, S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Res. Microbiol. 2011, 162, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Viveros, O.; Jorquera, M.; Crowley, D.; Gajardo, G.; Mora, M. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Palacios, O.A.; Bashan, Y.; De-Bashan, L.E. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—An overview. Biol. Fertil. Soils 2014, 50, 415–432. [Google Scholar] [CrossRef]
- Jiang, C.H.; Wu, F.; Yu, Z.Y.; Xie, P.; Guo, J.H. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol. Res. 2015, 170, 95–104. [Google Scholar] [CrossRef]
- Niu, D.D.; Liu, H.X.; Jiang, C.H.; Wang, Y.P.; Wang, Q.Y.; Jin, H.L.; Guo, J.H. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe Interact. 2011, 24, 533–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, H.; Lv, C.; Fernández-García, V.; Huang, B.; Ding, W. Biochar and PGPR amendments influence soil enzyme activities and nutrient concentrations in a eucalyptus seedling plantation. Biomass Convers. Biorefin. 2021, 11, 1865–1874. [Google Scholar] [CrossRef]
- Palmieri, D.; Vitullo, D.; Curtis, F.D.; Lima, G. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant & Soil 2017, 412, 425–439. [Google Scholar]
- Shi, L.; Du, N.; Shu, S.; Sun, J.; Li, S.; Guo, S. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci. Rep. 2017, 7, 41234. [Google Scholar] [CrossRef] [Green Version]
- Adams, P. Crop nutrition in hydroponics. Acta Hortic. 1993, 323, 289–306. [Google Scholar] [CrossRef]
- Morard, P.; Caumes, E.; Silvestre, J. Influence of nutritive solution concentration on the growth and mineral nutrition of tomatoes. Can. J. Plant Sci. 2004, 84, 299–304. [Google Scholar]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernandez-Munoz, R.; Mayora, E.E.L. Tomato and salinity. Sci. Hortic. 1998, 78, 83–125. [Google Scholar] [CrossRef]
- Ligor, T.; Buszewski, B. Single-drop microextraction and gas chromatography-mass spectrometry for the determination of volatile aldehydes in fresh cucumbers. Anal. Bioanal. Chem. 2008, 391, 2283–2289. [Google Scholar] [CrossRef]
- Li, X.; Sun, P.; Zhang, Y.; Jin, C.; Guan, C. A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ. Exp. Bot. 2020, 174, 104023. [Google Scholar] [CrossRef]
- Mitter, B.; Brader, G.; Afzal, M.; Compant, S.; Sessitsch, A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. Adv. Agron. 2013, 121, 381–445. [Google Scholar]
- Guo, H.; Hu, Z.; Zhang, H.; Hou, Z.; Min, W. Soil Microbial Metabolic Activity and Community Structure in Drip-Irrigated Calcareous Soil as Affected by Irrigation Water Salinity. Water Air Soil Pollut. 2019, 230, 44–56. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Wang, M.W.; Zhu, H.W.; Guo, Z.H.; Han, X.Q.; Zeng, P. Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol. Environ. Saf. 2017, 142, 200–206. [Google Scholar] [CrossRef]
- Xiong, W.; Guo, S.; Jousset, A.; Zhao, Q.; Shen, Q. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol. Biochem. 2017, 114, 238–247. [Google Scholar] [CrossRef]
- Elsas, J.D.V.; Garbeva, P.; Salles, J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 2002, 13, 29–40. [Google Scholar] [CrossRef] [PubMed]
- De Boer, W.; Verheggen, P.; Klein Gunnewiek, P.J.A.; Kowalchuk, G.A.; Van Veen, J.A. Microbial community composition affects soil fungistasis. Appl. Environ. Microbiol. 2003, 69, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Wang, Z.; Li, N.; Wang, Y.; Feng, J.; Zhang, X. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Appl. Soil Ecol. 2019, 136, 55–66. [Google Scholar] [CrossRef]
- Kadam, P.D.; Chuan, H.H. Rectocutaneous fistula with transmigration of the suture: A rare delayed complication of vault fixation with the sacrospinous ligament. Int. Urogynecol. J. 2016, 27, 155–157. [Google Scholar] [CrossRef]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Khushboo, C.; Priyanka, G.; Ashwani, P.; Singh, D.P.; Ratna, P.; Sahu, P.K.; Gupta, V.K. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Front. Plant Sci. 2017, 8, 172–197. [Google Scholar] [CrossRef] [Green Version]
- Vasim, A.; Verma, M.K.; Shashank, G.; Vibha, M.; Chauhan, N.S. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes. Front. Microbiol. 2018, 9, 159–170. [Google Scholar]
- Shen, Z.; Ruan, Y.; Wang, B.; Zhong, S.; Su, L.; Li, R.; Shen, Q. Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Appl. Soil Ecol. 2015, 93, 111–119. [Google Scholar] [CrossRef]
- Shen, Z.; Ruan, Y.; Chao, X.; Zhang, J.; Li, R.; Shen, Q. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils 2015, 51, 553–562. [Google Scholar] [CrossRef]
- Duque, A.D.B.; Samad, A.; Nybroe, O.; Antonielli, L.; Compant, S. Interaction between endophytic Proteobacteria strains and Serendipita indica enhances biocontrol activity against fungal pathogens. Plant Soil 2020, 451, 277–305. [Google Scholar] [CrossRef]
- Sen, S.; Chandrasekhar, C. Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J. Plant Sci. Res. 2014, 4, 62–67. [Google Scholar]
- Khan, A.; Uddin, S.; Xue, Q.Z.; Javed, M.T.; Masood, S. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ. Exp. Bot. 2016, 124, 120–129. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Blakeney, A.B.; Mutton, L.L. A simple colorimetric method for the determination of sugars in fruit and vegetables. J. Sci. Food Agric. 1980, 31, 889–897. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.; Yang, H.; Sun, X.; Hui, L.; Gong, X.; Jiang, C.; Ding, C. Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage. LWT Food Sci. Technol. 2010, 43, 26–32. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Xue, D.; Huang, X. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties. Chemosphere 2013, 93, 583–589. [Google Scholar] [CrossRef]
- Ge, G.; Li, Z.; Fan, F.; Chu, G.; Hou, Z.; Liang, Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 2010, 326, 31–34. [Google Scholar] [CrossRef]
- Bartha, R.; Bordeleau, L. Cell-free peroxidases in soil. Soil Biol. Biochem. 1969, 1, 139–143. [Google Scholar] [CrossRef]
Treatment | Pn (µmol CO2 m−2 s−1) | GS (mmol H2O m−2 s−1) | Ci (µmol mol−1) | Tr (mmol m−2 s−1) |
---|---|---|---|---|
CK | 20.84 ± 0.32 b | 0.39 ± 0.04 b | 320.36 ± 14.43 a | 4.53 ± 0.18 c |
Y | 26.25 ± 0.79 a | 0.68 ± 0.03 a | 313.46 ± 15.59 a | 7.49 ± 0.13 a |
N | 16.11 ± 0.14 d | 0.28 ± 0.02 c | 297.83 ± 10.94 a | 6.06 ± 0.16 b |
N + Y | 19.45 ± 0.29 c | 0.36 ± 0.02 b | 295.16 ± 10.27 a | 6.38 ± 0.22 b |
Treatment | Moisture Content (%) | Vitamin C (μg·g−1) | Soluble Sugar (μg·g−1) | Titratable Acidity (μg·g−1) | Sugar/Acid | Soluble Protein (μg·g−1) | Total Pectin (μg·g−1) | Soluble Solids (μg·g−1) |
---|---|---|---|---|---|---|---|---|
CK | 95.52 ± 0.19 b | 117.98 ± 5.93 c | 15.86 ± 0.14 b | 0.75 ± 0.03 bc | 21.16 ± 0.09 c | 10.58 ± 0.38 d | 54.81 ± 1.89 a | 37.36 ± 3.69 b |
Y | 96.02 ± 0.00 a | 153.05 ± 6.94 b | 17.43 ± 0.20 a | 0.79 ± 0.01 ab | 22.14 ± 0.41 b | 12.00 ± 0.17 c | 54.19 ± 3.60 a | 27.75 ± 4.49 c |
N | 95.10 ± 0.16 c | 143.25 ± 0.61 b | 16.12 ± 0.20 b | 0.83 ± 0.06 a | 19.40 ± 1.55 c | 13.11 ± 0.37 b | 46.38 ± 5.32 b | 47.61 ± 8.38 a |
N + Y | 94.76 ± 0.04 c | 175.41 ± 6.52 a | 17.57 ± 0.24 a | 0.69 ± 0.01 c | 25.48 ± 0.25 a | 13.88 ± 0.30 a | 60.77 ± 3.02 a | 48.35 ± 3.44 a |
NO. | Compound | Relative Percentage Content (%) | |||
---|---|---|---|---|---|
CK | Y | N | N + Y | ||
Aldehydes | |||||
1 | Hexanal | 4.40 ± 0.12 a | 3.37 ± 0.21 b | 1.13 ± 0.22 d | 2.11 ± 0.20 c |
2 | 2-Hexenal | 1.72 ± 0.10 a | 1.89 ± 0.04 a | 0.47 ± 0.20 b | 0.55 ± 0.20 b |
3 | Heptanal | 0.28 ± 0.06 a | 0.24 ± 0.02 a | 0.00 ± 0.00 b | 0.30 ± 0.12 a |
4 | 2-Nonenal, (E) | 25.61 ± 1.08 b | 20.79 ± 2.17 c | 35.25 ± 1.50 a | 35.96 ± 1.82 a |
5 | 2-Nonenal, (Z) | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.21 ± 0.02 a |
6 | Nonanal | 22.32 ± 1.40 a | 15.21 ± 0.57 b | 11.98 ± 1.42 c | 12.56 ± 0.30 c |
7 | 2,6-Nonadienal, (E,Z) | 19.16 ± 0.83 b | 12.81 ± 0.30 c | 31.52 ± 5.01 a | 28.75 ± 0.40 a |
8 | Decanal | 0.24 ± 0.08 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
9 | 1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl | 0.00 ± 0.00 c | 0.16 ± 0.03 a | 0.09 ± 0.02 b | 0.15 ± 0.03 a |
Alcohols | |||||
10 | 1-Penten-3-ol | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.13 ± 0.01 b | 0.25 ± 0.10 a |
11 | 1-Hexanol | 0.28 ± 0.02 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.17 ± 0.03 b |
12 | Eucalyptol | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.06 ± 0.01 a | 0.06 ± 0.01 a |
13 | trans,cis-2,6-Nonadien-1-ol | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.77 ± 0.05 a | 0.00 ± 0.00 b |
14 | 2-Nonen-1-ol | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 1.43 ± 0.16 a | 0.00 ± 0.00 b |
15 | 3-Decyn-2-ol | 0.07 ± 0.02 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.06 ± 0.02 a |
16 | trans-3-nonen-1-ol | 0.28 ± 0.02 a | 0.16 ± 0.06 ab | 0.13 ± 0.02 b | 0.21 ± 1.14 a b |
17 | n-Tridecan-1-ol | 0.38 ± 0.05 a | 0.28 ± 0.02 a | 0.36 ± 0.18 a | 0.21 ± 0.22 a |
Ketones | |||||
18 | Ethanone, 1-(2-methyl-1-cyclopenten-1-yl) | 0.16 ± 0.04 bc | 0.20 ± 0.03 b | 0.13 ± 0.04 c | 0.27 ± 0.02 a |
19 | Cyclohexanone, 2,2,6-trimethyl | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.05 ± 0.00 a | 0.06 ± 0.00 a |
Hydrocarbons | |||||
20 | Heptane | 0.28 ± 0.03 a | 0.36 ± 0.08 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
21 | Di-tert-butyl peroxide | 7.98 ± 0.19 b | 19.71 ± 1.40 a | 3.10 ± 0.13 c | 3.99 ± 0.46 c |
22 | Cyclobutene, 2-propenylidene | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.09 ± 0.01 a | 0.00 ± 0.00 b |
23 | Toluene | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.13 ± 0.02 a |
24 | 2-Octene | 0.00 ± 0.00 b | 0.04 ± 0.00 a | 0.02 ± 0.02 a | 0.04 ± 0.01 a |
25 | 3-Octyne | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.02 ± 0.02 a |
26 | Cyclopentane, propyl | 1.25 ± 0.06 a | 1.12 ± 0.10 a | 0.39 ± 0.17 c | 0.68 ± 0.04 b |
27 | 2,3,5-trimethylhexa-1,3-diene | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.03 ± 0.00 a | 0.00 ± 0.00 b |
28 | 1,2,4,4-Tetramethylcyclopentene | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.02 ± 0.00 a |
29 | 1-hydroperoxyhexane | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.13 ± 0.02 a | 0.00 ± 0.00 b |
30 | p-Xylene | 0.07 ± 0.04 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
31 | Nonane | 1.08 ± 0.23 a | 1.24 ± 0.49 a | 0.31 ± 0.11 b | 0.42 ± 0.04 b |
32 | à-Pinene | 0.00 ± 0.00 b | 0.20 ± 0.03 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
33 | á-Phellandrene | 0.05 ± 0.01 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
34 | Bicyclo [3.1.0]hexane, 4-methylene-1-(1-methylethyl) | 0.00 ± 0.00 cb | 0.2 ± 0.01 a | 0.03 ± 0.01 b | 0.02 ± 0.01 b |
35 | o-Cymene | 0.00 ± 0.00 b | 0.08 ± 0.01 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
36 | 1,6-Dioxaspiro[4.4]nonane, 2-ethyl | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.14 ± 0.02 b | 0.25 ± 0.02 a |
37 | Undecane | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.02 ± 0.00 a | 0.00 ± 0.00 b |
38 | 1-Nonene | 2.99 ± 0.21 b | 3.17 ± 0.08 b | 5.83 ± 1.41 a | 4.47 ± 1.57 ab |
39 | 1-Tridecene | 0.09 ± 0.02 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
40 | Tridecane | 0.19 ± 0.05 a | 0.04 ± 0.00 b | 0.14 ± 0.04 a | 0.23 ± 0.04 a |
41 | Tetradecane | 0.00 ± 0.00 b | 0.36 ± 0.05 a | 0.42 ± 0.04 a | 1.01 ± 0.28 a |
42 | Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)] | 0.24 ± 0.03 a | 0.24 ± 0.01 a | 0.08 ± 0.02 b | 0.00 ± 0.00 b |
43 | Caryophyllene | 5.16 ± 0.11 b | 7.55 ± 0.28 a | 2.51 ± 1.42 c | 1.27 ± 0.01 c |
44 | trans-à-Bergamotene | 0.16 ± 0.03 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.25 ± 0.12 a |
45 | Bicyclo[3.1.1]hept-2-ene, 2,6-dimethyl-6-(4-methyl-3-pentenyl) | 0.00 ± 0.00 c | 0.20 ± 0.02 a | 0.14 ± 0.01 b | 0.15 ± 0.01 b |
46 | Humulene | 2.85 ± 0.07 b | 4.54 ± 0.29 a | 1.57 ± 0.23 c | 1.44 ± 0.41 c |
47 | Others | ||||
Furan, 2-ethyl | 0.00 ± 0.00 d | 0.92 ± 0.04 a | 0.39 ± 0.11 c | 0.59 ± 0.06 b | |
48 | Bicyclo[3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl) | 0.00 ± 0.00 b | 0.08 ± 0.02 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
49 | Furan, 2-pentyl | 2.71 ± 0.64 ab | 2.45 ± 0.21 b | 1.21 ± 0.08 c | 3.12 ± 0.14 a |
Treatment | Urease (mg/g·h−1) | Catalase (mg/g·h−1) | Peroxidase (μg/g·h−1) | Sucrase (mg/g·h−1) |
---|---|---|---|---|
CK | 19.41 ± 0.48 c | 0.57 ± 0.02 c | 63.93 ± 3.97 a | 3.75 ± 0.03 b |
Y | 28.40 ± 0.64 b | 0.60 ± 0.00 b | 63.57 ± 6.37 a | 4.05 ± 0.36 b |
N | 40.99 ± 1.09 a | 0.65 ± 0.02 a | 66.78 ± 3.75 a | 2.93 ± 0.20 c |
N + Y | 37.67 ± 3.29 a | 0.66 ± 0.02 a | 59.33 ± 2.76 a | 4.84 ± 0.25 a |
Sample | Retained Sequences | |
---|---|---|
Bacterial 16S rRNA Genes | Fungal ITS Sequences | |
CK1 | 60,766 | 62,970 |
CK2 | 67,166 | 72,769 |
CK3 | 61,550 | 70,545 |
Y1 | 69,043 | 58,851 |
Y2 | 72,138 | 59,491 |
Y3 | 66,874 | 54,379 |
N1 | 72,269 | 70,028 |
N2 | 64,099 | 69,633 |
N3 | 74,765 | 71,773 |
N + Y1 | 56,886 | 59,880 |
N + Y2 | 66,420 | 69,166 |
N + Y3 | 70,339 | 61,300 |
Mean | 66,860 | 65,065 |
Total | 802,315 | 780,785 |
Treatment | Community Characteristics | |||||||
---|---|---|---|---|---|---|---|---|
Bacterial Community | Fungal Community | |||||||
ACE | Chao1 | Shannon | Simpson | ACE | Chao1 | Shannon | Simpson | |
CK | 1732.92 a | 1705.46 a | 5.32 a | 0.01 c | 172.68 a | 162.71 a | 1.08 b | 0.61 a |
Y | 1634.19 a b | 1648.51 ab | 5.09 b | 0.02 b | 193.60 a | 185.89 a | 1.65 a | 0.42 b |
N | 1370.63 c | 1388.97 c | 4.66 c | 0.03 a | 203.21 a | 190.51 a | 1.76 a | 0.37 b |
N + Y | 1508.23 b c | 1494.90 b c | 4.95 b | 0.02 b | 218.91 a | 200.32 a | 1.74 a | 0.39 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhao, L.; Liu, D.; Zhang, Y.; Wang, W.; Miao, Y.; Han, L. Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community. Plants 2023, 12, 298. https://doi.org/10.3390/plants12020298
Li B, Zhao L, Liu D, Zhang Y, Wang W, Miao Y, Han L. Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community. Plants. 2023; 12(2):298. https://doi.org/10.3390/plants12020298
Chicago/Turabian StyleLi, Bin, Lixiang Zhao, Dongxu Liu, Yi Zhang, Wenjiao Wang, Yanxiu Miao, and Lingjuan Han. 2023. "Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community" Plants 12, no. 2: 298. https://doi.org/10.3390/plants12020298
APA StyleLi, B., Zhao, L., Liu, D., Zhang, Y., Wang, W., Miao, Y., & Han, L. (2023). Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community. Plants, 12(2), 298. https://doi.org/10.3390/plants12020298