Exploring the Ecological Preferences and Essential Oil Variability in Wild-Growing Populations of the Endangered Local Greek Endemic Thymus holosericeus (Lamiaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of the Studied Essential Oils
2.2. Nuclear Magnetic Resonance Analysis of the Studied Essential Oils
2.3. Thin-Layer Chromatography (TLC) Analysis of the Studied Essential Oils
2.4. Ecological Profiling of Natural Preferences
2.5. Correlations of Climatic Data and Major Compounds of Essential Oil Composition
3. Materials and Methods
3.1. Collections of Plant Material
3.2. Sample Preparation
3.3. Gas Chromatography-Mass Spectrometry Analysis
3.4. Nuclear Magnetic Resonance Analysis
3.5. Thin-Layer Chromatography (TLC) Analysis
3.6. Ecological Profiling of T. holosericeus
3.7. Canonical Correlation Analysis (CCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeljković, S.Ć.; Maksimović, M. Chemical composition and bioactivity of essential oil from Thymus species in Balkan Peninsula. Phytochem. Rev. 2015, 3, 335–352. [Google Scholar] [CrossRef]
- Morales, R. Synopsis of the genus Thymus L. in the Mediterranean area. Lagascalia 1997, 19, 249–261. Available online: http://hdl.handle.net/10261/66806 (accessed on 6 October 2022).
- Tsiftsoglou, S.O.; Krigas, N.; Hadjipavlou-Litina, D.; Lazari, D. Temporal variation on chemical composition, anti-inflammatory and antioxidant activities of the essential oils of Thymus sibthorpii Benth. (Lamiaceae) growing wild in Kilkis (Northern Greece). Intern. J. Pharmacogn. Phytochem. Res. 2021, 13, 1–7. Available online: http://impactfactor.org/PDF/IJPPR/13/IJPPR,Vol13,Issue3,Article1.pdf (accessed on 6 October 2022).
- Tzakou, O.; Constantinidis, T. Chemotaxonomic significance of volatile compounds in Thymus samius and its related species Thymus atticus and Thymus parnassicus. Biochem. Syst. Ecol. 2005, 33, 1131–1140. [Google Scholar] [CrossRef]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Strid, A.; Dimopoulos, P. Extinction risk assessment of the Greek endemic flora. Biology 2021, 10, 195. [Google Scholar] [CrossRef]
- Tzakou, O.; Couladis, M. Essential oil of Thymus zygioides var. lycaonicus from Greece. J. Essent. Oil Res. 2008, 20, 442–443. [Google Scholar] [CrossRef]
- Samaropoulou, S.; Bareka, P.; Kamari, G. Reports (1817–1823). Flora Medit. 2013, 23, 285–291. [Google Scholar] [CrossRef]
- Skropolithas, A. Comparison of Carvacrol-Type Aromatic Medicinal Plants from Cephalonia and Ikaria in Terms of Chemotypes, Reproductive and Bioactive Characteristics. Master’s Thesis, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athina, Greece, 2014. Available online: http://hdl.handle.net/10329/6036 (accessed on 6 October 2022).
- Kadoglou, N. Morphological, Phenological and Chemotypic Variation of Wild-Growing Populations of Carvacrol-Type Aromatic and Medicinal Plants (Origanum spp., Thymbra spp. and Satureja spp.) Originating from Ikaria and Cephalonia (Greece). Master’s Thesis, Deaprtment of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athina, Greece, 2015. Available online: http://hdl.handle.net/10329/6038 (accessed on 6 October 2022).
- Krigas, N.; Mouflis, G.; Grigoriadou, K.; Maloupa, E. Conservation of important plants from the Ionian Islands at the Balkan Botanic Garden of Kroussia, N Greece: Using GIS to link the in situ collection data with plant propagation and ex situ cultivation. Biodivers. Conserv. 2010, 19, 3583–3603. [Google Scholar] [CrossRef]
- Abdelmajeed, N.A.; Danial, E.N.; Ayad, H.S. The effect of environmental stress on qualitative and quantitative essential oil of aromatic and medicinal plants. Arch. Sci. 2013, 66, 100–120. Available online: https://www.researchgate.net/publication/258959867_The_effect_of_environmental_stress_on_qualitative_and_quantitative_essential_oil_of_aromatic_and_medicinal_plants (accessed on 6 October 2022).
- Schearer, W.R. Components of oil of tansy (Tanacetum vulgare) that repel colorado potato beetles (Leptinotarsa decemlineata). J. Nat. Prod. 1984, 47, 964–969. [Google Scholar] [CrossRef]
- Krigas, N.; Papadimitriou, K.; Mazaris, A.D. GIS and Ex situ Plant Conservation. In Application of Geographic Information Systems; Alam, B.M., Ed.; IntechOpen: London, UK, 2012; pp. 153–174. [Google Scholar] [CrossRef] [Green Version]
- Bourgou, S.; Ben Haj Jilani, I.; Karous, O.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; Greveniotis, V.; et al. Medicinal-cosmetic potential of the local endemic plants of Crete (Greece), northern Morocco and Tunisia: Priorities for conservation and sustainable exploitation of neglected and underutilized phytogenetic resources. Biology 2021, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Krigas, N.; Tsoktouridis, G.; Anestis, I.; Khabbach, A.; Libiad, M.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Lamchouri, F.; Tsiripidis, I.; Tsiafouli, M.A.; et al. Exploring the potential of neglected local endemic plants of three Mediterranean regions in the ornamental sector: Value chain feasibility and readiness timescale for their sustainable exploitation. Sustainability 2021, 13, 2539. [Google Scholar] [CrossRef]
- Libiad, M.; Khabbach, A.; El Haissoufi, M.; Anestis, I.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Greveniotis, V.; Tsiripidis, I.; et al. Agro-alimentary potential of the neglected and underutilized local endemic plants of Crete (Greece), Rif-Mediterranean coast of Morocco and Tunisia: Perspectives and challenges. Plants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Tümen, M.; Koyuncu, N.; Kırımer, A.; Baser, K.H.C. Composition of the essential oil of Thymus cilicicus Boiss. & Bal. J. Essent. Oil Res. 1994, 6, 97–98. [Google Scholar] [CrossRef]
- Zayzafoon, G.; Odeh, A.; Allaf, A.W. Determination of essential oil composition by GC-MS and integral antioxidant capacity using photochemiluminescence assay of two Thymus leaves: Thymus syriacus and Thymus cilicicus from different Syrian locations. Herba Pol. 2012, 58, 70–84. Available online: http://www.herbapolonica.pl/magazines-files/237441-Zayzafoon%20et%20al.pdf (accessed on 6 October 2022).
- Al-Mariri, A.; Swied, G.; Oda, A.; Al Hallab, A. Antibacterial activity of Thymus syriacus Boiss. essential oil and its components against some Syrian gram-negative bacteria isolates. Iran J. Med. Sci. 2013, 38, 180–186. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771221/ (accessed on 6 October 2022).
- Al Hafi, M.; El Beyrouthy, M.; Ouaini, N.; Stien, D.; Rutledge, D.; Chaillou, S. Chemical composition and antimicrobial activity of Satureja, Thymus, and Thymbra species grown in Lebanon. Chem. Biodivers. 2017, 14, e1600236. [Google Scholar] [CrossRef]
- Akgül, A.; Özcan, M.; Chialva, F.; Monguzzi, F. Essential oils of four Turkish wild-growing Labiatae herbs: Salvia cryptantha Montbr. et Auch., Satureja cuneifolia Ten., Thymbra spicata L. and Thymus cilicicus Boiss. et Bal. J. Essent. Oil Res. 1999, 11, 209–214. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Kürkçüoglu, M.; Özek, T.; Tümen, G.; Akgül, A. The essential oil of Thymus sipyleus subsp. sipyleus var. sipyleus. J. Essent. Oil Res. 1995, 4, 411–413. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sökmen, M.; Polissiou, M.; Sökmen, A. In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii. J. Agric. Food Chem. 2004, 52, 1132–1137. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Özek, T.; Tümen, G. Essential oils of Thymus cariensis and Thymus haussknechtii, two endemic species in Turkey. J. Essent. Oil Res. 1992, 4, 659–661. [Google Scholar] [CrossRef]
- Tepe, B.; Sökmen, M.; Akpulat, H.A.; Daferera, D.; Polissiou, M.; Sökmen, A. Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. J. Food Engin. 2005, 66, 447–454. [Google Scholar] [CrossRef]
- Ceylan, O.; Ugur, A. Chemical composition and anti-biofilm activity of Thymus sipyleus Boiss. subsp. sipyleus Boiss. var. davisianus Ronniger essential oil. Arch. Pharm. Res. 2015, 38, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Demirci, F.; Karaca, N.; Tekin, M.; Demirci, B. Anti-inflammatory and antibacterial evaluation of Thymus sipyleus Boiss. subsp. sipyleus var. sipyleus essential oil against rhinosinusitis pathogens. Microb. Pathog. 2018, 122, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Özek, T.; Kürkcüoglu, M.; Tümen, G.; Yildiz, B. Composition of the essential oils of Thymus leucostomus Hausskn. et Velen var. gypsaceus Jalas and Thymus pubescens Boiss. et Kotschy ex Celak var. cratericola Jalas. J. Essent. Oil Res. 1999, 11, 776–778. [Google Scholar] [CrossRef]
- Tümen, G.; Ermin, N.; Kürkçüoglu, M.; Baser, K.H.C. Essential oil of Thymus leucostomus Hausskn. et Velen. var. leucostomus. J. Essent. Oil Res. 1997, 9, 229–230. [Google Scholar] [CrossRef]
- Hanoglu, A.; Hanoglu, D.Y.; Demirci, B.; Yavuz, D.Ö. Chemical composition of essential oil of the aerial parts of wild growing Thymus capitatus (L.) Hoffm. & Link species collected from three different locations in Northern Cyprus. J. Essent. Oil Bear. Plants 2017, 20, 546–551. [Google Scholar] [CrossRef]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Singh-Sangwan, N.; Abad Farooqi, A.H.; Singh Sangwan, R. Effect of drought stress on growth and essential oil metabolism in Lemongrasses. New Phytol. 1994, 128, 173–179. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Abedi, R.; Mokhtassi-Bidgoli, A. Which environmental factors are more important for geographic distributions of Thymus species and their physio-morphological and phytochemical variations? Arab. J. Geosci. 2021, 14, 1864. [Google Scholar] [CrossRef]
- Zouari, N.; Ayadi, I.; Fakhfakh, N.; Rebai, A.; Zouari, S. Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic species. Lipids Health Dis. 2012, 11, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ložiene, K.; Venskutonis, P.R. Influence of environmental and genetic factors on the stability of essential oil composition of Thymus pulegioides. Biochem. Syst. Ecol. 2005, 33, 517–525. [Google Scholar] [CrossRef]
- Grigoriadou, K.; Sarropoulou, V.; Krigas, N.; Maloupa, E.; Tsoktouridis, G. GIS-facilitated effective propagation protocols of the Endangered local endemic of Crete Carlina diae (Rech. f.) Meusel and A. Kástner (Asteraceae): Serving ex situ conservation needs and its future sustainable utilization as an ornamental. Plants 2020, 9, 1465. [Google Scholar] [CrossRef] [PubMed]
- Kostas, S.; Hatzilazarou, S.; Pipinis, E.; Bourgou, S.; Ben Haj Jilani, I.; Ben Othman, W.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; et al. DNA Barcoding, GIS-facilitated seed germination and pilot cultivation of Teucrium luteum subsp. Gabesianum (Lamiaceae), a Tunisian local endemic with potential medicinal and ornamental value. Biology 2022, 11, 462. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2005; Volume 2. [Google Scholar]
- Hodaj, O.; Tsiftsoglou, L.; Shuka, S.; Abazi, D.; Hadjipavlou-Litina, D.; Lazari, D. Antioxidant activity and chemical composition of essential oils of some aromatic and medicinal plants from Albania. Nat. Prod. Com. 2017, 12, 785–790. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chrom. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Massada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Hatzilazarou, S.; El Haissoufi, M.; Pipinis, E.; Kostas, S.; Libiad, M.; Khabbach, A.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; et al. GIS-Facilitated seed germination and multifaceted evaluation of the Endangered Abies marocana Trab. (Pinaceae) enabling conservation and sustainable exploitation. Plants 2021, 10, 2606. [Google Scholar] [CrossRef]
- Sarrou, E.; Doukidou, L.; Avramidou, E.V.; Martens, S.; Angeli, A.; Stagiopoulou, R.; Fyllas, N.M.; Tourvas, N.; Abraham, E.; Maloupa, E.; et al. Chemodiversity is closely linked to genetic and environmental diversity: Insights into the Endangered populations of the local endemic plant Sideritis euboea Heldr. of Evia Island (Greece). J. Appl. Res. Med. Arom. Plants 2022, 31, 100426. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Intern. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. R Package Version 2.1-66. 2010. Available online: https://www.researchgate.net/publication/308748932_Raster_geographic_analysis_and_modeling_with_raster_data_R_package_version_21-66 (accessed on 13 November 2022).
- Aboukhalid, K.; Al Faiz, C.; Douaik, A.; Bakha, M.; Kursa, K.; Agacka-Mołdoch, M.; Machon, N.; Tomi, F.; Lamiri, A. Influence of environmental factors on essential oil variability in Origanum compactum Benth. growing wild in Morocco. Chem. Biodivers. 2017, 14, e1700158. [Google Scholar] [CrossRef]
- Uttu, A.J.; Sallau, M.S.; Iyun, O.R.A.; Ibrahim, H. Isolation, characterization and in silico molecular docking studies of two terpenoids from Strychnos innocua Delile root bark for antibacterial properties. Adv. J. Chem. Sect. A 2022, 5, 241–252. [Google Scholar] [CrossRef]
- Masila, V.M.; Ndakala, A.J.; Midiwo, J.O.; Byamukama, R.; Kamau, R.W.; Kumarihamy, M.; Muhammad, I. Synthesis of a pyrrolidine derivative of a carvotacetone and monoterpenes for anti-methicillin-resistant Staphylococcus aureus and anti-cryptococcal properties. Nat. Prod. Res. 2022, 36, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, B.M.; Ngoc, T.T.; Tzaras, D.I.; Trinadh, K.; Teichert, J.F. Bifunctional copper catalyst enables ester reduction with H2: Expanding the reactivity space of nucleophilic copper hydrides. J. Am. Chem. Soc. 2021, 143, 40–16865. [Google Scholar] [CrossRef] [PubMed]
Ionian Islands | |||||||
---|---|---|---|---|---|---|---|
Zakynthos | Cephalonia | Lefkada | |||||
Total Yield | 1.93% ± 0.07 | 2.28% ± 0.12 | 1.92% ±0.09 | ||||
a Compounds | bRIexp | RIlit | TH-Z | TH-C | TH-L | c ID | |
1 | α-Thujene | 926 | 924 | nd | 0.13 ± 0.01 | nd | RI, MS |
2 | α-Pinene | 932 | 932 | 0.18 ± 0.01 | 0.22 ± 0.01 | 0.14 ± 0.01 | RI, MS, Co-GC |
3 | Camphene | 946 | 946 | 0.39 ± 0.09 | 0.36 ± 0.11 | 0.32 ± 0.05 | RI, MS |
4 | β-Pinene | 974 | 974 | nd | Tr | nd | RI, MS, Co-GC |
5 | 1-Octen-3-ol | 978 | 974 | 0.34 ± 0.11 | 0.34 ± 0.23 | 0.18 ± 0.06 | RI, MS |
6 | Myrcene | 991 | 988 | 0.10 ± 0.01 | 0.15 ± 0.01 | 0.07 ± 0.00 | RI, MS, Co-GC |
7 | α-Terpinene | 1015 | 1014 | 0.15 ± 0.01 | 0.47 ± 0.01 | nd | RI, MS, Co-GC |
8 | p-Cymene | 1024 | 1020 | 0.32 ± 0.01 | 4.08 ± 0.01 | nd | RI, MS, Co-GC |
9 | Limonene | 1027 | 1024 | nd | 0.39 ± 0.08 | nd | RI, MS, Co-GC |
10 | 1,8-Cineole | 1030 | 1026 | 0.21 ± 0.03 | nd | 0.11 ± 0.01 | RI, MS, Co-GC |
11 | γ-Terpinene | 1058 | 1054 | 0.32 ± 0.07 | 1.05 ± 0.22 | 0.06 ± 0.02 | RI, MS, Co-GC |
12 | cis-Sabinene hydrate | 1068 | 1065 | 0.25 ± 0.08 | nd | nd | RI, MS |
13 | cis-Linalool oxide (furanoid) | 1073 | 1067 | 0.44 ± 0.10 | 0.12 ± 0.00 | 0.49 ± 0.01 | RI, MS |
14 | trans-Linalool oxide(furanoid) | 1087 | 1084 | 0.56 ± 0.0 | 0.22 ± 0.03 | 0.50 ± 0.06 | RI, MS |
15 | Linalool | 1099 | 1095 | 82.77 ± 0.93 | 14.37 ± 0.08 | 40.37± 0.10 | RI, MS, Co-GC |
16 | Camphor | 1144 | 1141 | 0.10 ± 0.00 | Tr | 2.03 ± 0.01 | RI, MS, Co-GC |
17 | Borneol | 1165 | 1165 | 5.95 ± 0.22 | 5.66 ± 0.17 | 5.20 ± 0.09 | RI, MS, Co-GC |
18 | Terpinen-4-ol | 1177 | 1174 | 1.61 ± 0.25 | 2.43 ± 0.06 | 0.69 ± 0.08 | RI, MS, Co-GC |
19 | α-Terpineol | 1190 | 1186 | 0.19 ± 0.87 | 0.21 ± 0.02 | 0.15 ± 0.07 | RI, MS, Co-GC |
20 | trans-Dihydro carvone | 1203 | 1200 | nd | 0.10 ± 0.01 | nd | RI, MS |
21 | Nerol | 1229 | 1227 | nd | 0.89 ± 0.04 | 0.74 ± 1.63 | RI, MS, Co-GC |
22 | Neral | 1240 | 1235 | nd | 0.22 ± 0.02 | 0.64 ± 0.08 | RI, MS |
23 | Carvone | 1244 | 1239 | nd | 0.38 ± 0.02 | nd | RI, MS |
24 | Thymoquinone | 1251 | 1248 | nd | 0.07 ± 0.00 | nd | RI, MS |
25 | Geraniol | 1255 | 1249 | nd | 23.98 ± 1.24 | 39.42 ± 0.86 | RI, MS |
26 | Geranial | 1272 | 1264 | nd | 0.75 ± 0.02 | 1.10 ± 0.21 | RI, MS |
27 | Bornyl acetate | 1286 | 1287 | nd | 0.12 ± 0.00 | 0.0 8± 0.01 | RI, MS, Co-GC |
28 | Thymol | 1291 | 1289 | 0.31 ± 0.02 | 4.27 ± 1.07 | 0.04 ± 0.01 | RI, MS, Co-GC |
29 | Carvacrol | 1300 | 1298 | 1.07 ± 0.03 | 35.34 ± 0.87 | 0.28 ± 0.00 | RI, MS |
30 | Geranyl acetate | 1383 | 1379 | nd | nd | 1.00 ± 0.30 | RI, MS |
31 | β-Caryophyllene | 1420 | 1408 | 2.87 ± 0.19 | 1.83 ± 1.56 | 2.36 ± 0.44 | RI, MS, Co-GC |
32 | β-Copaene | 1431 | 1430 | nd | nd | 0.04 ± 0.02 | RI, MS |
33 | α-Humulene | 1455 | 1452 | nd | nd | 0.08 ± 0.01 | RI, MS, Co-GC |
34 | Germacrene D | 1483 | 1484 | 0.18 ± 0.00 | 0.05 ± 0.01 | 0.32 ± 0.03 | RI, MS, Co-GC |
35 | Bicyclogermacrene | 1498 | 1500 | nd | nd | 0.10 ± 0.00 | RI, MS |
36 | Geranyl isobutanoate | 1515 | 1514 | nd | nd | 0.12 ± 0.00 | RI, MS |
37 | Geranyl butanoate | 1562 | 1562 | nd | nd | 0.26 ± 0.01 | RI, MS |
38 | Spathulenol | 1580 | 1577 | nd | 0.25 ± 0.02 | 0.11 ± 0.02 | RI, MS |
39 | Caryophyllene oxide | 1585 | 1582 | 0.78 ± 0.02 | 0.93 ± 0.11 | 2.16 ± 0.01 | RI, MS, Co-GC |
40 | Caryophylla-4(12),8(13)-dien-5-ol | 1640 | 1639 | nd | nd | 0.14 ± 0.00 | RI, MS |
Total % | 99.09 | 99.38 | 99.30 | ||||
Monoterpene Hydrocarbons | 1.46 | 6.85 | 0.84 | ||||
Oxygenated Monoterpenes | 92.08 | 40.40 | 88.40 | ||||
Aromatic compounds | 1.38 | 39.61 | 0.32 | ||||
Sesquiterpene Hydrocarbons | 3.05 | 1.88 | 2.90 | ||||
Oxygenated Sesquiterpenes | 0.78 | 1.18 | 2.41 |
Data for 19 Bioclimatic Variables per Sampled Population of Thymus holosericeus | |||
---|---|---|---|
TH-C | TH-Z | TH-L | |
Annual Mean Temperature (°C) | 13.84 | 15.56 | 14.40 |
Mean Diurnal Range (°C) | 8.54 | 7.92 | 9.37 |
Isothermality (%) | 35.30 | 34.57 | 36.59 |
Temperature Seasonality (%) | 585.46 | 559.34 | 602.43 |
Max Temperature of Warmest Month (°C) | 27.70 | 28.50 | 29.10 |
Min Temperature of Coldest Month (°C) | 3.50 | 5.60 | 3.50 |
Temperature Annual Range (°C) | 24.20 | 22.90 | 25.60 |
Mean Temperature of Wettest Quarter (°C) | 8.68 | 10.75 | 8.92 |
Mean Temperature of Driest Quarter (°C) | 21.23 | 22.55 | 22.02 |
Mean Temperature of Warmest Quarter (°C) | 21.23 | 22.58 | 22.02 |
Mean Temperature of Coldest Quarter (°C) | 7.25 | 9.30 | 7.57 |
Annual Precipitation (mm) | 978.00 | 942.00 | 954.00 |
Precipitation of Wettest Month (mm) | 162.00 | 169.00 | 161.00 |
Precipitation of Driest Month (mm) | 12.00 | 8.00 | 14.00 |
Precipitation Seasonality (%) | 67.85 | 75.54 | 64.49 |
Precipitation of Wettest Quarter (mm) | 449.00 | 463.00 | 426.00 |
Precipitation of Driest Quarter (mm) | 45.00 | 30.00 | 53.00 |
Precipitation of Warmest Quarter (mm) | 45.00 | 60.00 | 53.00 |
Precipitation of Coldest Quarter (mm) | 408.00 | 419.00 | 385.00 |
Ionian Island | Area | Altitude (m) | Latitude (North) | Longitude (East) |
---|---|---|---|---|
Cephalonia | Mt Roudi | 565 | 38°11′915″ | 20°35′86″ |
Lefkada | Mt Elati, Hortata,1.7 km before Asprogerakata | 786 | 38°46′55″ | 20°29′10″ |
Zakynthos | 2.4 km NW of Orthonies to Volimes | 350 | 37°45′00″ | 20°55′00″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiftsoglou, O.S.; Stagiopoulou, R.; Krigas, N.; Lazari, D. Exploring the Ecological Preferences and Essential Oil Variability in Wild-Growing Populations of the Endangered Local Greek Endemic Thymus holosericeus (Lamiaceae). Plants 2023, 12, 348. https://doi.org/10.3390/plants12020348
Tsiftsoglou OS, Stagiopoulou R, Krigas N, Lazari D. Exploring the Ecological Preferences and Essential Oil Variability in Wild-Growing Populations of the Endangered Local Greek Endemic Thymus holosericeus (Lamiaceae). Plants. 2023; 12(2):348. https://doi.org/10.3390/plants12020348
Chicago/Turabian StyleTsiftsoglou, Olga S., Rafaela Stagiopoulou, Nikos Krigas, and Diamanto Lazari. 2023. "Exploring the Ecological Preferences and Essential Oil Variability in Wild-Growing Populations of the Endangered Local Greek Endemic Thymus holosericeus (Lamiaceae)" Plants 12, no. 2: 348. https://doi.org/10.3390/plants12020348
APA StyleTsiftsoglou, O. S., Stagiopoulou, R., Krigas, N., & Lazari, D. (2023). Exploring the Ecological Preferences and Essential Oil Variability in Wild-Growing Populations of the Endangered Local Greek Endemic Thymus holosericeus (Lamiaceae). Plants, 12(2), 348. https://doi.org/10.3390/plants12020348