Elemental Profile, General Phytochemical Composition and Bioaccumulation Abilities of Selected Allium Species Biofortified with Selenium under Open Field Conditions
Abstract
:1. Introduction
2. Results
2.1. Soil Analysis
2.2. Analyses of Plant Material
2.2.1. A. odorum—Elemental Profile (Season I)
2.2.2. A. odorum—Elemental Profile (Season II)
2.2.3. Bioaccumulation Factor (BAF)—A. odorum
2.2.4. Phytochemical Composition (TPC, TFC, HCAs) of A. odorum (Both Seasons)
2.2.5. A. schoenoprasum—Elemental Profile (Season I)
2.2.6. A. schoenoprasum—Elemental Profile (Season II)
2.2.7. Bioaccumulation Factor (BAF)—A. schoenoprasum
2.2.8. Phytochemical Composition (TPC, TFC, HCAs) of A. schoenoprasum (Both Seasons)
3. Discussion
3.1. Elemental Profile and Bioaccumulation Abilities
3.2. General Phytochemical Composition
4. Materials and Methods
4.1. Experimental Field and Plant Material
4.2. Growth Conditions
4.3. Agrochemical Soil Analysis
4.4. Determination of the Content of Biogenic Elements in the Soil and Plant Material by Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES)
4.5. Determination of Bioaccumulation Factor (BAF)
4.6. Determination of the Content of Total Free Phenolics (TPC), Total Free Flavonoids (TFC) and Free Hydroxycinnamic Acid Derivatives (HCAs)
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.Q.; Zhou, S.D.; He, X.J.; Yu, Y.; Zhang, Y.C.; Wei, X.Q. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 2010, 106, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules 2018, 24, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najjaa, H.; Sami, F.; Ammar, E.; Neffati, M. Allium Species, Ancient Health Food for the Future? In Scientific, Health and Social Aspects of the Food Industry; Valdez, B., Ed.; InTech: Rijeka, Croatia, 2012; pp. 343–354. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.K. Nutritional and Therapeutic Potential of Allium Vegetables. J. Nutr. Ther. 2017, 6, 18–37. [Google Scholar] [CrossRef]
- Hedges, L.; Lister, C. The nutritional attributes of Allium species; Crop and Food Research Confidential Report No. 1814; New Zealand Institute for Crop & Food Research Limited: Christchurch, New Zealand, 2007. [Google Scholar] [CrossRef]
- Wang, Y.; Raghavan, S.; Ho, C.T. 11—Process flavors of Allium vegetables. In Fruit and Vegetable Flavour; Brückner, B., Wyllie, S.G., Eds.; Woodhead Publishing: Sawston, UK, 2008; pp. 200–226. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Rabinowitch, H.D. Physiology of Domesticated Alliums: Onions, Garlic, Leek, and Minor Crops. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; Volume 3, pp. 255–261. [Google Scholar] [CrossRef]
- Bastaki, S.M.A.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef] [PubMed]
- Fredotović, Ž.; Puizina, J. Edible Allium species: Chemical composition, biological activity and health effects. Ital. J. Food Sci. 2019, 31, 19–39. [Google Scholar]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef] [Green Version]
- Imelouane, B.; Tahri, M.; Elbastrioui, M.; Aouinti, F.; Elbachiri, A. Mineral Contents of Some Medicinal and Aromatic Plants Growing in Eastern Morocco. J. Mater. Environ. Sci. 2011, 2, 104–111. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Macro- and Secondary Elements and Their Role in Human Health. In Soil Components and Human Health; Nieder, R., Benbi, D.K., Reichl, F.X., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 257–315. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health. In Soil Components and Human Health; Nieder, R., Benbi, D.K., Reichl, F.X., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 317–374. [Google Scholar] [CrossRef]
- Petropoulos, S.A.-O.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.A.-O. Nutritional Value, Chemical Characterization and Bulb Morphology of Greek Garlic Landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaim, M.; Stein, A.J.; Meenakshi, J.V. Economics of biofortification. J. Agric. Econ. 2007, 37, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Shivay, Y.S.; Nisar, S.; Gaber, A.; Brestic, M.; Barek, V.; et al. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Molecules 2022, 27, 1340. [Google Scholar] [CrossRef] [PubMed]
- Shreenath, A.P.; Ameer, M.A.; Dooley, J. Selenium Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Stefirta, A.; Botnari, V.; Brânza, L.; Bulhac, I.; Chilinciuc, L. Agronomical biofortification of garlic plant (Allium sativum L.) in aspect of increasing selenium content and antioxidant properties. Adv. Med. Plant Res. 2016, 4, 99–105. [Google Scholar]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Appendix 5: US EPA Ecological Soil Screening Level for Aluminum; Environmental and Social Impact Assessment Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2003; pp. 190–210.
- U.S. Environmental Protection Agency 2022. Available online: https://www.epa.gov/agriculture/agriculture-and-soils (accessed on 17 October 2022).
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–550. [Google Scholar]
- Jakovljevic, M.; Kostic, N.; Mladenovic, S. The availability of base elements (Ca, Mg, Na, K) in some important soil types in Serbia. Zb. Matice Srp. Prir. Nauke 2003, 104, 11–21. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of plant nutrition. Ann. Bot. 2004, 93, 479–480. [Google Scholar] [CrossRef]
- Bernard, A. Chapter 44—Lithium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 2015; pp. 969–974. [Google Scholar]
- Lucchini, R.G.; Aschner, M.; Yangho, K.; Šarić, M. Chapter 45—Manganese. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 2015; pp. 975–1011. [Google Scholar]
- Vuković, S.; Moravčević, Đ.; Gvozdanović-Varga, J.; Pećinar, I.; Vujošević, A.; Kilibarda, S.; Milinčić, D.D.; Gordanić, S.; Pavlović, D.; Kostić, Ž.A. Hydroxycinnamic acid derivatives: Potential antioxidants in rare grown Allium species from Serbia. In Book of Abstracts, Proceedings of the XII International Scientific Agriculture Symposium “AGROSYM 2021”, Jahorina, Bosnia and Hercegovina, 7–10 October 2021; Faculty of Agriculture: Lukavica, Bosnia and Herzegovina, 2021. [Google Scholar]
- Lavu, R.V.S.; Du Laing, G.; Van De Wiele, T.; Pratti, V.L.; Willekens, K.; Vandecasteele, B.; Tack, F. Fertilizing Soil with Selenium Fertilizers: Impact on Concentration, Speciation, and Bioaccessibility of Selenium in Leek (Allium ampeloprasum). Agric. Food Chem. 2012, 60, 10930–10935. [Google Scholar] [CrossRef]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef]
- Dumont, E.; Vanhaecke, F.; Cornelis, R. Selenium speciation from food source to metabolites: A critical review. Anal. Bioanal. Chem. 2006, 385, 1304–1323. [Google Scholar] [CrossRef]
- Guignardi, Z.; Schiavon, M. Biochemistry of Plant Selenium Uptake and Metabolism. In Selenium in Plants: Plant Ecophysiology; Pilon-Smits, E.A.H., Winkel, L.H.E., Lin, Z.-Q., Eds.; Springer: Cham, Switerland, 2017; Volume 11, pp. 21–34. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, C.M.; Mead, A.; Harriman, M.; Trueman, J.L.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobini, M.; Khoshgoftarmanesh, A.H.; Ghasemi, S. Biofortification of onion bulb with selenium at different levels of sulfate. J. Plant Nutr. 2019, 42, 269–277. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Randle, W.M. Selenium Affects the S-alk(en)yl Cysteine Sulfoxides among Short-day Onion Cultivars. J. Am. Soc. Hortic. 1999, 124, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Hui, M.; Thannhauser, T.; Pan, S.; Li, L. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica). Front. Plant Sci. 2017, 8, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Põldma, P.; Tõnutare, T.; Viitak, A.; Luik, A.; Moor, U. Effect of Selenium Treatment on Mineral Nutrition, Bulb Size, and Antioxidant Properties of Garlic (Allium sativum L.). J. Agric. Food Chem. 2011, 59, 5498–5503. [Google Scholar] [CrossRef] [PubMed]
- Pérez, B.M.; Lipinski, M.V.; Filippini, F.M.; Chacón-Madrid, K.; Arruda, Z.A.M.; Wuilloud, G.R. Selenium biofortification on garlic growth and other nutrients accumulation. Hortic. Bras. 2019, 37, 294–301. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Kalderis, D.; Massas, I. Selenium Biofortification of Lettuce Plants (Lactuca sativa L.) as Affected by Se Species, Se Rate, and a Biochar Co-Application in a Calcareous Soil. Agronomy 2022, 12, 131. [Google Scholar] [CrossRef]
- Põldma, P.; Moor, U.; Tõnutare, T.; Herodes, K.; Rebane, R. Selenium treatment under field conditions affects mineral nutrition, yield and antioxidant properties of bulb onion (Allium cepa L.). Acta Sci. Pol. Hortorum Cultus 2013, 12, 167–181. [Google Scholar]
- Republic of Serbia, Republic Hydrometeorological Service of Serbia. Agricultural meteorology 2022. Available online: https://www.hidmet.gov.rs/ciril/meteorologija/agro.php (accessed on 14 July 2022).
- Liang, B.; Gao, T.; Zhao, Q.; Ma, C.; Chen, Q.; Wei, Z.; Li, C.; Li, C.; Ma, F. Effects of Exogenous Dopamine on the Uptake, Transport, and Resorption of Apple Ionome Under Moderate Drought. Front. Plant Sci. 2018, 9, 755. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Folmanis, G.E.; Tananaev, I.G. Comparative evaluation of selenium accumulation by Allium species after foliar application of selenium nanoparticles, sodium selenite and sodium selenate. Dokl. Biol. Sci. 2012, 444, 176–179. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yu, F.Y.; Fu, Z.H.; Fu, Y.H.; Liu, S.N.; Chen, M.L.; Li, Y.J.; Sun, Q.Z.; Chang, H.Q.; Zhou, W.L.; et al. Pathway and driving forces of selenite absorption in wheat leaf blades. Plant Soil Environ. 2019, 65, 609–614. [Google Scholar] [CrossRef]
- Carignato, A.; Vázquez-Piqué, J.; Tapias, R.; Ruiz, F.; Fernández, M. Variability and Plasticity in Cuticular Transpiration and Leaf Permeability Allow Differentiation of Eucalyptus Clones at an Early Age. Forests 2020, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Moravcevic, D.; Krstic, M.; Gvozdanovic-Varga, J.; Kostic, Z.A.; Vujosevic, A.; Kilibarda, S.; Vukovic, S. The content of metals and metalloids in bulbs of different genotypes of Allium species. In Book of Abstracts, Proceedings of the 11th International Symposium of Agricultural Sciences “AgroReS 2022", Trebinje, Bosnia and Herzegovina, 26–28 May 2022; University of Banja Luka, Faculty of Agriculture: Banja Luka, Bosnia and Herzegovina, 2022. [Google Scholar]
- Kothari, D.; Lee, W.-D.; Kim, S.-K. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants 2020, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, L.; Feduraev, P.; Styran, T.; Golovin, A.; Katserov, D.; Nebreeva, S.; Maslennikov, P. Biomass, Phenolic Compounds, Essential Oil Content, and Antioxidant Properties of Hyssop (Hyssopus officinalis L.) Grown in Hydroponics as Affected by Treatment Type and Selenium Concentration. Horticulturae 2022, 8, 1037. [Google Scholar] [CrossRef]
- Astaneh, R.K.; Bolandnazar, S.; Nahandi, F.Z.; Oustan, S. Effect of selenium application on phenylalanine ammonia-lyase (PAL) activity, phenol leakage and total phenolic content in garlic (Allium sativum L.) under NaCl stress. Inf. Process. Agric. 2018, 5, 339–344. [Google Scholar] [CrossRef]
- Golubkina, N.; Zamana, S.; Seredin, T.; Poluboyarinov, P.; Sokolov, S.; Baranova, H.; Krivenkov, L.; Pietrantonio, L.; Caruso, G. Effect of Selenium Biofortification and Beneficial Microorganism Inoculation on Yield, Quality and Antioxidant Properties of Shallot Bulbs. Plants 2019, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, K.; Bolandnazar, S.; Tabatabaei, S.J.; Pirdashti, H.; Arzanlou, M.; Ebrahimzadeh, M.A.; Fathi, H. Antioxidant properties of garlic as affected by selenium and humic acid treatments. N. Z. J. Crop Hortic. Sci. 2015, 43, 173–181. [Google Scholar] [CrossRef]
- Chomchan, R.; Siripongvutikorn, S.; Puttarak, P. Selenium bio-fortification: An alternative to improve phytochemicals and bioactivities of plant foods. Funct. Foods Health Dis. 2017, 7, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Soil Map Serbia—Pedoloska Karta Jugoslavije. Available online: https://esdac.jrc.ec.europa.eu/content/soil-map-serbia-pedoloska-karta-jugoslavije (accessed on 29 August 2022).
- Singh, S.; Latare, A. Determination of soil reaction (pH), soluble salts (EC) and redox potential (Eh) of soil. In Soil Analysis; Singh, S.K., Biswas, D.R., Srinivasamurthy, A.C., Datta, P.S., Jayasree, G., Jha, P., Sharma, K.S., Katkar, N.R., Raverkar, P.K., Ghosh, K.A., Eds.; Indian Society of Soil Science: New Delhi, India, 2019; p. 654. [Google Scholar]
- Kogut, B.M. Assessment of the humus content in arable soils of Russia. Eurasian Soil Sci. 2012, 45, 843–851. [Google Scholar] [CrossRef]
- Marchetti, A.; Piccini, C.; Francaviglia, R.; Mabit, L. Spatial Distribution of Soil Organic Matter Using Geostatistics: A Key Indicator to Assess Soil Degradation Status in Central Italy. Pedosphere 2012, 22, 230–242. [Google Scholar] [CrossRef]
- Lebedev, S.A.; Gunina, G.N.; Ashinov, Y.N.; Kravchenko, P.N. Ecological Conditions of Soils in the Republic of Adygea. In The Republic of Adygea Environment. The Handbook of Environmental Chemistry; Bedanokov, M.K., Lebedev, S.A., Kostianoy, A.G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 106, pp. 145–166. [Google Scholar] [CrossRef]
- Pachura, P.; Ociepa-Kubicka, A.; Skowron-Grabowska, B. Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Desalination Water Treat. 2016, 57, 1469–1477. [Google Scholar] [CrossRef]
- Köleli, N.; Demir, A.; Kantar, C.; Atag, G.A.; Kusvuran, K.; Binzet, R. Chapter 22—Heavy Metal Accumulation in Serpentine Flora of Mersin-Findikpinari (Turkey)—Role of Ethylenediamine Tetraacetic Acid in Facilitating Extraction of Nickel. In Soil Remediation and Plants; Hakeem, K.R., Sabir, M., Ozturk, M., Murmet, A.R., Eds.; Elsevier Science: Oxford, UK; Amsterdam, The Netherlands, 2015; pp. 629–659. [Google Scholar]
- Odili, E.F.; Njoku, L.K.; Soyoye, A. Heavy Metals in Soils and Plants around Industries in Agbara Industrial Estate, Ogun State, Nigeria. J. Environ. Prot. Sci. 2018, 6, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Kilibarda, S.N.; Vuković, S.Z.; Milinčić, D.D.; Mačukanović-Jocić, M.P.; Jarić, S.; Kostić, A.Ž. Phytochemical and Antioxidant Properties of Athamanta turbith (L.) Brot Collected from Serbia. Biol. Life Sci. Forum 2022, 11, 30. [Google Scholar] [CrossRef]
- RStudio Team. Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2022; Available online: http://www.rstudio.com/ (accessed on 23 September 2022).
Element | Measured Value in the Soil (mg kg−1) | Recommended Range in the Soil (mg kg−1) with References |
---|---|---|
Al | 17,200.00 | 10,000.00–30,000.00 [23] |
As | 8.62 | 29.00 [24] |
B | 14.04 | 10.00–100.00 [25] |
Ba | 141.63 | 160.00 [24] |
Ca | 24,950.50 | 1700.00–104,000.00 [26] |
Cd | 0.16 | 0.80 [24] |
Co | 9.90 | 4.5–12.00 [25] |
Cr | 21.39 | 100.00 [24] |
Cu | 48.52 | 8.00–80.00 [25] |
Fe | 29,300.00 | 1000.00–49,000.00 [25] |
K | 2739.50 | 300.00–32,000.00 [27] |
Li | 25.59 | 7.00–200.00 [28] |
Mg | 10,733.04 | 2000.00–12,600.00 [26] |
Mn | 658.40 | 40.00–900.00 [29] |
Na | 365.35 | 1340.00–15,800.00 [26] |
Ni | 37.07 | 5.00–90.00 [25] |
P | 1052.48 | 500.00–800.00 [27] |
Pb | 20.20 | 85.00 [24] |
S | 578.22 | 100.00–1000.00 [27] |
Se | <1.00 | 0.70 [24] |
Sr | 48.51 | 40.00–250.00 [25] |
Zn | 121.80 | 10.00–300.00 [25] |
Season I | Season II | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Doses of Se Fertilizer | Element | Doses of Se Fertilizer | ||||||
Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | ||
Al | 5.60 ± 0.26 c * | 8.67 ± 0.27 a | 6.41 ± 0.23 b | 5.31 ± 0.20 c | Al | 2.04 ± 0.04 b | 2.20 ± 0.05 b | 2.42 ± 0.13 a | 2.81 ± 0.07 a |
As | n.d. ** | n.d. | 0.01 ± 0.00 | n.d. | As | n.d. | n.d. | n.d. | n.d. |
B | 3.24 ± 0.16 b | 3.81 ± 0.14 a | 2.03 ± 0.02 d | 2.31 ± 0.10 c | B | 1.11 ± 0.06 b | 1.19 ± 0.05 b | 0.98 ± 0.01 c | 1.37 ± 0.06 a |
Ba | 1.53 ± 0.06 b | 1.81 ± 0.08 a | 1.64 ± 0.07 ab | 1.75 ± 0.07 a | Ba | 2.16 ± 0.06 a | 1.90 ± 0.06 b | 2.08 ± 0.04 a | 1.67 ± 0.09 c |
Ca | 873.91 ± 34.15 c | 1414.51 ± 59.13 a | 1058.07 ± 47.32 b | 1031.02 ± 46.25 b | Ca | 699.43 ± 23.22 c | 723.87 ± 27.18 c | 851.29 ± 12.02 b | 927.03 ± 14.50 a |
Cd | 0.02 ± 0.00 a | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.00 a | Cd | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Co | n.d. | n.d. | n.d. | n.d. | Co | n.d. | n.d. | n.d. | n.d. |
Cr | 0.06 ± 0.00 b | 0.08 ± 0.00 a | 0.06 ± 0.00 b | 0.08 ± 0.00 a | Cr | 0.04 ± 0.00 a | 0.04 ± 0.00 a | 0.03 ± 0.00 b | 0.04 ± 0.00 a |
Cu | 0.70 ± 0.02 a | 0.67 ± 0.02 a | 0.53 ± 0.03 b | 0.55 ± 0.02 b | Cu | 0.54 ± 0.01 c | 0.54 ± 0.01 c | 0.56 ± 0.01 b | 0.58 ± 0.01 a |
Fe | 7.77 ± 0.34 c | 11.37 ± 0.38 a | 8.66 ± 0.26 b | 8.06 ± 0.05 bc | Fe | 4.95 ± 0.10 d | 5.19 ± 0.04 c | 6.06 ± 0.02 b | 6.49 ± 0.07 a |
K | 3142.86 ± 29.21 b | 2955.25 ± 32.96 c | 3456.52 ± 21.13 a | 3038.58 ± 22.77 c | K | 4884.29 ± 25.04 a | 4641.24 ± 34.21 c | 4774.29 ± 24.79 b | 4524.71 ± 21.34 d |
Li | 0.04 ± 0.00 c | 0.07 ± 0.00 a | 0.05 ± 0.00 b | 0.05 ± 0.00 b | Li | 0.03 ± 0.00 c | 0.04 ± 0.00 b | 0.04 ± 0.00 b | 0.05 ± 0.00 a |
Mg | 354.35 ± 14.95 bc | 319.75 ± 14.25 c | 354.97 ± 17.52 b | 404.17 ± 17.34 a | Mg | 268.14 ± 10.11 c | 292.66 ± 12.70 c | 346.86 ± 10.96 a | 312.94 ± 9.96 b |
Mn | 1.94 ± 0.05 a | 1.64 ± 0.08 b | 1.63 ± 0.07 b | 1.63 ± 0.06 b | Mn | 1.03 ± 0.06 b | 1.06 ± 0.03 b | 1.28 ± 0.03 a | 1.19 ± 0.03 a |
Na | 18.77 ± 0.54 b | 19.58 ± 0.30 b | 14.11 ± 0.37 c | 21.42 ± 0.42 a | Na | n.d. | 1.20 ± 0.03 c | 3.26 ± 0.03 a | 1.30 ± 0.03 b |
Ni | 0.07 ± 0.00 b | 0.06 ± 0.00 c | 0.08 ± 0.00 a | 0.04 ± 0.00 d | Ni | 0.06 ± 0.00 b | 0.02 ± 0.00 c | 0.07 ± 0.00 a | 0.02 ± 0.00 c |
P | 642.24 ± 28.47 c | 582.87 ± 24.63 c | 893.48 ± 34.27 a | 749.69 ± 34.53 b | P | 698.43 ± 10.23 c | 727.97 ± 10.63 b | 682.71 ± 10.76 c | 1027.76 ± 11.70 a |
Pb | 0.03 ± 0.00 c | 0.07 ± 0.00 a | 0.02 ± 0.00 d | 0.05 ± 0.00 b | Pb | n.d. | n.d. | n.d. | n.d. |
S | 868.17 ± 39.53 a | 677.16 ± 30.95 bc | 638.04 ± 28.31 c | 732.87 ± 23.26 b | S | 721.00 ± 26.61 ab | 721.75 ± 33.44 ab | 764.57 ± 18.44 a | 669.91 ± 21.23 b |
Se | 0.04 ± 0.00 d | 0.13 ± 0.01 c | 0.50 ± 0.02 b | 0.57 ± 0.03 a | Se | 0.18 ± 0.01 d | 0.47 ± 0.02 c | 0.82 ± 0.02 b | 2.52 ± 0.05 a |
Sr | 2.59 ± 0.12 b | 3.15 ± 0.05 a | 2.76 ± 0.10 b | 2.88 ± 0.09 b | Sr | 2.63 ± 0.04 b | 2.72 ± 0.12 b | 2.92 ± 0.05 a | 2.56 ± 0.12 b |
Zn | 2.61 ± 0.13 ab | 2.11 ± 0.09 c | 2.85 ± 0.12 a | 2.57 ± 0.12 b | Zn | 2.17 ± 0.11 b | 2.64 ± 0.12 a | 2.20 ± 0.05 b | 2.82 ± 0.09 a |
Season I | Season II | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Doses of Se Fertilizer | Element | Doses of Se Fertilizer | ||||||
Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | ||
Al | 3.26 × 10−4 | 0.0005 | 0.0004 | 0.0003 | Al | 1.19 × 10−4 | 0.0001 | 0.0001 | 0.0002 |
As | n.d. * | n.d. | 0.00 | n.d. | As | n.d. | n.d. | n.d. | n.d. |
B | 0.2310 | 0.2717 | 0.1447 | 0.1648 | B | 0.0793 | 0.0847 | 0.0698 | 0.0977 |
Ba | 0.0108 | 0.0128 | 0.0116 | 0.0123 | Ba | 0.0153 | 0.0134 | 0.0147 | 0.0118 |
Ca | 0.3502 | 0.5668 | 0.4240 | 0.4132 | Ca | 0.2803 | 0.2901 | 0.3411 | 0.3715 |
Cd | 0.110 | 0.088 | 0.104 | 0.116 | Cd | 0.0795 | 0.0620 | 0.0689 | 0.0822 |
Co | n.d. | n.d. | n.d. | n.d. | Co | n.d. | n.d. | n.d. | n.d. |
Cr | 0.0029 | 0.0037 | 0.0027 | 0.0037 | Cr | 0.0017 | 0.0018 | 0.0013 | 0.0019 |
Cu | 0.0145 | 0.0139 | 0.0110 | 0.0114 | Cu | 0.0110 | 0.0111 | 0.0116 | 0.0119 |
Fe | 0.0003 | 0.0004 | 0.0003 | 0.0003 | Fe | 0.0002 | 0.0002 | 0.0002 | 0.0002 |
K | 1.1472 | 1.0788 | 1.2617 | 1.1092 | K | 1.7829 | 1.6942 | 1.7428 | 1.6517 |
Li | 0.0016 | 0.0025 | 0.0018 | 0.0018 | Li | 0.0014 | 0.0014 | 0.0017 | 0.0018 |
Mg | 0.0330 | 0.0298 | 0.0331 | 0.0377 | Mg | 0.0250 | 0.0273 | 0.0323 | 0.0292 |
Mn | 0.0029 | 0.0025 | 0.0025 | 0.0025 | Mn | 0.0016 | 0.0016 | 0.0019 | 0.0018 |
Na | 0.0514 | 0.0536 | 0.0386 | 0.0586 | Na | n.d. | 0.0033 | 0.0089 | 0.0036 |
Ni | 0.0020 | 0.0017 | 0.0021 | 0.0010 | Ni | 0.0015 | 0.0005 | 0.0019 | 0.0004 |
P | 0.6102 | 0.5538 | 0.8489 | 0.7123 | P | 0.6636 | 0.6917 | 0.6487 | 0.9765 |
Pb | 0.0013 | 0.0036 | 0.0011 | 0.0026 | Pb | n.d. | n.d. | n.d. | n.d. |
S | 1.5015 | 1.1711 | 1.1035 | 1.2675 | S | 1.2469 | 1.2482 | 1.3223 | 1.1586 |
Se | n.d. | n.d. | n.d. | n.d. | Se | n.d. | n.d. | n.d. | n.d. |
Sr | 0.0534 | 0.0649 | 0.0569 | 0.0593 | Sr | 0.0542 | 0.0561 | 0.0602 | 0.0527 |
Zn | 0.0215 | 0.0173 | 0.0234 | 0.0211 | Zn | 0.0178 | 0.0217 | 0.0181 | 0.0231 |
Season I | Season II | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Doses of Se Fertilizer | Element | Doses of Se Fertilizer | ||||||
Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | ||
Al | 14.58 ± 0.46 b* | 13.23 ± 0.24 c | 17.02 ± 0.52 a | 9.95 ± 0.23 d | Al | 9.84 ± 0.36 b | 5.98 ± 0.21 c | 17.08 ± 0.05 a | 4.68 ± 0.23 d |
As | n.d. ** | n.d. | n.d. | n.d. | As | n.d. | n.d. | n.d. | n.d. |
B | 2.87 ± 0.11 b | 3.46 ± 0.16 a | 2.76 ± 0.11 b | 2.72 ± 0.10 b | B | 0.86 ± 0.02 a | 0.62 ± 0.00 c | 0.77 ± 0.03 b | 0.59 ± 0.01 c |
Ba | 1.50 ± 0.07 a | 1.43 ± 0.05 a | 1.41 ± 0.07 a | 1.58 ± 0.06 a | Ba | 1.09 ± 0.00 b | 0.92 ± 0.03 c | 1.14 ± 0.02 a | 1.06 ± 0.03 b |
Ca | 1800.93 ± 72.85 ab | 1900.62 ± 91.45 a | 1677.02 ± 50.23 b | 1858.70 ± 77.08 ab | Ca | 1681.69 ± 48.32 a | 1473.99 ± 46.62 b | 1792.13 ± 79.46 a | 1528.27 ± 64.86 b |
Cd | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | Cd | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Co | n.d. | n.d. | n.d. | n.d. | Co | n.d. | n.d. | n.d. | n.d. |
Cr | 0.09 ± 0.00 a | 0.09 ± 0.00 a | 0.09 ± 0.00 aa | 0.05 ± 0.00 b | Cr | 0.09 ± 0.00 b | 0.05 ± 0.00 c | 0.11 ± 0.00 a | 0.09 ± 0.00 b |
Cu | 0.65 ± 0.03 b | 0.67 ± 0.03 b | 0.76 ± 0.03 a | 0.55 ± 0.03 c | Cu | 0.35 ± 0.01 a | 0.30 ± 0.02 c | 0.31 ± 0.02 bc | 0.33 ± 0.00 ab |
Fe | 17.82 ± 0.63 b | 17.47 ± 0.40 b | 19.64 ± 0.73 a | 12.38 ± 0.33 c | Fe | 11.13 ± 0.00 b | 8.36 ± 0.21 c | 20.77 ± 0.06 a | 8.37 ± 0.02 c |
K | 2560.19 ± 116.37 a | 2414.60 ± 108.79 a | 2586.96 ± 102.79 a | 2450.31 ± 96.38 a | K | 2271.80 ± 21.78 a | 2117.05 ± 16.16 bc | 2129.21 ± 7.84 b | 2069.94 ± 19.16 c |
Li | 0.09 ± 0.00 a | 0.09 ± 0.00 aa | 0.08 ± 0.00 b | 0.08 ± 0.00 b | Li | 0.09 ± 0.00 b | 0.08 ± 0.00 b | 0.11 ± 0.00 a | 0.07 ± 0.00 c |
Mg | 231.02 ± 6.97 ab | 248.45 ± 10.55 a | 224.84 ± 10.19 ab | 214.29 ± 9.83 b | Mg | 238.08 ± 3.74 a | 184.97 ± 4.15 c | 198.60 ± 4.98 b | 193.75 ± 3.05 bc |
Mn | 1.87 ± 0.07 b | 2.35 ± 0.07 a | 2.18 ± 0.11 a | 1.85 ± 0.09 b | Mn | 1.19 ± 0.05 b | 1.11 ± 0.02 c | 1.42 ± 0.03 a | 1.19 ± 0.04 b |
Na | 14.71 ± 0.52 a | 12.25 ± 0.16 b | 15.14 ± 0.46 a | 12.59 ± 0.16 b | Na | 5.77 ± 0.05 a | 4.02 ± 0.27 b | 4.10 ± 0.05 b | 4.37 ± 0.04 b |
Ni | 0.13 ± 0.01 b | 0.24 ± 0.01 a | 0.14 ± 0.01 b | 0.15 ± 0.01 b | Ni | 0.25 ± 0.01 a | 0.02 ± 0.00 d | 0.16 ± 0.01 b | 0.04 ± 0.00 c |
P | 628.70 ± 23.94 b | 746.58 ± 22.05 a | 661.02 ± 21.22 b | 657.61 ± 22.73 b | P | 366.72 ± 9.73 a | 327.60 ± 2.86 b | 296.63 ± 8.96 c | 367.86 ± 5.36 a |
Pb | 0.05 ± 0.00 b | 0.06 ± 0.00 a | 0.05 ± 0.00 b | 0.01 ± 0.00 c | Pb | n.d. | n.d. | n.d. | n.d. |
S | 737.96 ± 26.09 b | 727.80 ± 20.00 b | 790.37 ± 17.06 a | 787.58 ± 19.69 a | S | 428.63 ± 8.13 b | 436.71 ± 4.82 b | 466.57 ± 5.34 a | 451.04 ± 13.64 a |
Se | 0.03 ± 0.00 d | 1.12 ± 0.05 c | 2.70 ± 0.12 b | 4.10 ± 0.13 a | Se | 0.51 ± 0.01 d | 0.73 ± 0.03 c | 0.89 ± 0.01 b | 1.53 ± 0.07 a |
Sr | 4.76 ± 0.22 a | 4.59 ± 0.16 a | 4.47 ± 0.22 a | 4.83 ± 0.15 a | Sr | 4.20 ± 0.08 b | 4.08 ± 0.09 b | 4.75 ± 0.21 a | 4.43 ± 0.11 a |
Zn | 2.85 ± 0.11 b | 3.12 ± 0.15 a | 2.86 ± 0.09 b | 2.85 ± 0.13 b | Zn | 1.22 ± 0.06 b | 0.98 ± 0.03 c | 1.22 ± 0.08 b | 1.27 ± 0.04 a |
Season I | Season II | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Doses of Se Fertilizer | Element | Doses of Se Fertilizer | ||||||
Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | Control | 10 g ha−1 | 20 g ha−1 | 30 g ha−1 | ||
Al | 8.47 × 10−4 | 0.0008 | 0.0010 | 0.0006 | Al | 5.72 × 10−4 | 0.0003 | 0.0010 | 0.0003 |
As | n.d. * | n.d. | n.d. | n.d. | As | n.d. | n.d. | n.d. | n.d. |
B | 0.2044 | 0.2465 | 0.1969 | 0.1939 | B | 0.0609 | 0.0444 | 0.0548 | 0.0423 |
Ba | 0.0106 | 0.0101 | 0.0100 | 0.0111 | Ba | 0.0077 | 0.0065 | 0.0081 | 0.0075 |
Ca | 0.0722 | 0.0762 | 0.0672 | 0.0745 | Ca | 0.0674 | 0.0591 | 0.0718 | 0.0613 |
Cd | 0.1867 | 0.2008 | 0.1978 | 0.1685 | Cd | 0.1224 | 0.0940 | 0.1162 | 0.1210 |
Co | n.d. | n.d. | n.d. | n.d. | Co | n.d. | n.d. | n.d. | n.d. |
Cr | 0.0041 | 0.0040 | 0.0041 | 0.0024 | Cr | 0.0040 | 0.0024 | 0.0053 | 0.0041 |
Cu | 0.0134 | 0.0148 | 0.0157 | 0.0114 | Cu | 0.0072 | 0.0061 | 0.0063 | 0.0068 |
Fe | 0.0006 | 0.0006 | 0.0007 | 0.0004 | Fe | 0.0004 | 0.0003 | 0.0007 | 0.0003 |
K | 0.9345 | 0.8814 | 0.9443 | 0.8944 | K | 0.8293 | 0.7728 | 0.7772 | 0.7556 |
Li | 0.0034 | 0.0037 | 0.0033 | 0.0032 | Li | 0.0034 | 0.0030 | 0.0042 | 0.0029 |
Mg | 0.0215 | 0.0231 | 0.0209 | 0.0200 | Mg | 0.0222 | 0.0172 | 0.0185 | 0.0181 |
Mn | 0.0028 | 0.0036 | 0.0033 | 0.0028 | Mn | 0.0018 | 0.0017 | 0.0022 | 0.0018 |
Na | 0.0403 | 0.0335 | 0.0414 | 0.0345 | Na | 0.0158 | 0.0110 | 0.0112 | 0.0120 |
Ni | 0.0036 | 0.0065 | 0.0037 | 0.0040 | Ni | 0.0067 | 0.0005 | 0.0042 | 0.0011 |
P | 0.5974 | 0.7094 | 0.6281 | 0.6248 | P | 0.3484 | 0.3113 | 0.2818 | 0.3495 |
Pb | 0.0022 | 0.0028 | 0.0025 | 0.0004 | Pb | n.d. | n.d. | n.d. | n.d. |
S | 1.2763 | 1.2587 | 1.3669 | 1.3621 | S | 0.7413 | 0.7553 | 0.8069 | 0.7801 |
Se | n.d. | n.d. | n.d. | n.d. | Se | n.d. | n.d. | n.d. | n.d. |
Sr | 0.0981 | 0.0945 | 0.0922 | 0.0996 | Sr | 0.0865 | 0.0841 | 0.0980 | 0.0914 |
Zn | 0.0234 | 0.0256 | 0.0235 | 0.0234 | Zn | 0.0100 | 0.0081 | 0.0100 | 0.0105 |
Properties of Soil Sample | pHH2O | pHKCl | Total Humus (%) | CaCO3 (%) | NO3-–N (mg kg−1) | NH4+–N (mg kg−1) | P2O5 (mg 100 g−1) | K2O (mg 100 g−1) | C:N |
7.81 | 7.20 | 3.12 | 3.2 | 31.5 | 7.0 | 208.0 | 46.0 | 9.8:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuković, S.; Moravčević, D.; Gvozdanović-Varga, J.; Dojčinović, B.; Vujošević, A.; Pećinar, I.; Kilibarda, S.; Kostić, A.Ž. Elemental Profile, General Phytochemical Composition and Bioaccumulation Abilities of Selected Allium Species Biofortified with Selenium under Open Field Conditions. Plants 2023, 12, 349. https://doi.org/10.3390/plants12020349
Vuković S, Moravčević D, Gvozdanović-Varga J, Dojčinović B, Vujošević A, Pećinar I, Kilibarda S, Kostić AŽ. Elemental Profile, General Phytochemical Composition and Bioaccumulation Abilities of Selected Allium Species Biofortified with Selenium under Open Field Conditions. Plants. 2023; 12(2):349. https://doi.org/10.3390/plants12020349
Chicago/Turabian StyleVuković, Sandra, Djordje Moravčević, Jelica Gvozdanović-Varga, Biljana Dojčinović, Ana Vujošević, Ilinka Pećinar, Sofija Kilibarda, and Aleksandar Ž. Kostić. 2023. "Elemental Profile, General Phytochemical Composition and Bioaccumulation Abilities of Selected Allium Species Biofortified with Selenium under Open Field Conditions" Plants 12, no. 2: 349. https://doi.org/10.3390/plants12020349
APA StyleVuković, S., Moravčević, D., Gvozdanović-Varga, J., Dojčinović, B., Vujošević, A., Pećinar, I., Kilibarda, S., & Kostić, A. Ž. (2023). Elemental Profile, General Phytochemical Composition and Bioaccumulation Abilities of Selected Allium Species Biofortified with Selenium under Open Field Conditions. Plants, 12(2), 349. https://doi.org/10.3390/plants12020349