Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of S. cacaliifolia Essential Oil
2.2. Antifungal Effect of Salvia cacaliifolia
2.3. Anti-Inflammatory Potential of S. cacaliifolia
2.4. Wound Healing Properties of S. cacaliifolia Essential Oil
2.5. Anti-Senescence Potential of S. cacaliifolia Essential Oil
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material
5.2. Essential Oil Analysis
5.3. Antifungal Activity
5.3.1. Fungal Strains
5.3.2. Macrodilution Broth Assay
5.4. Anti-Inflammatory Activity
5.4.1. Cell Culture
5.4.2. Nitric Oxide Production
5.4.3. Expression of Pro-Inflammatory Proteins, iNOS and COX-2
5.5. Cell Migration
5.5.1. Cell Culture
5.5.2. Cell Migration Assay
5.6. Cell Viability
5.7. Etoposide-Induced Senescence
5.8. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharm. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Cooper, E.A. Update in Antifungal Therapy of Dermatophytosis. Mycopathologia 2008, 166, 353–367. [Google Scholar] [CrossRef]
- Matiz, C.; Friedlander, S.F. Subcutaneous Tissue Infections and Abscesses. In Principles and Practice of Pediatric Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2012; pp. 454–462.e3. [Google Scholar]
- de Oliveira, C.B.; Vasconcellos, C.; Sakai-Valente, N.Y.; Sotto, M.N.; Luiz, F.G.; Belda Júnior, W.; de Sousa, M.d.G.T.; Benard, G.; Criado, P.R. Toll-like Receptors (TLR) 2 and 4 Expression of Keratinocytes from Patients with Localized and Disseminated Dermatophytosis. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celestrino, G.A.; Reis, A.P.C.; Criado, P.R.; Benard, G.; Sousa, M.G.T. Trichophyton Rubrum Elicits Phagocytic and Pro-Inflammatory Responses in Human Monocytes Through Toll-Like Receptor 2. Front. Microbiol. 2019, 10, 2589. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.-C. The Non-Canonical NF-B Pathway in Immunity and Inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, S. Protective Manifestation of Herbonanoceuticals as Antifungals: A Possible Drug Can-didate for Dermatophytic Infection. Health Sci. Rep. 2022, 5. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical Composition and Antifungal Activity of the Essential Oils of Lavandula Viridis LHér. J. Med. Microbiol. 2011, 60, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Rossi, N.M.; Bitencourt, T.A.; Peres, N.T.A.; Lang, E.A.S.; Gomes, E.V.; Quaresemin, N.R.; Martins, M.P.; Lopes, L.; Rossi, A. Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Front. Microbiol. 2018, 9, 1108. [Google Scholar] [CrossRef]
- Mourad, A.; Perfect, J.R. The War on Cryptococcosis: A Review of the Antifungal Arsenal. Mem. Inst. Oswaldo. Cruz. 2018, 113, e170391. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.W.; Kontoyiannis, D.P.; Cornely, O.A.; Perfect, J.R.; Walsh, T.J. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J. Infect. Dis. 2017, 216, S474–S483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonkeman, H.E.; van de Laar, M.A.F.J. Nonsteroidal Anti-Inflammatory Drugs: Adverse Effects and Their Prevention. Semin. Arthritis. Rheum. 2010, 39, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Edris, A.E. Pharmaceutical and Therapeutic Potentials of Essential Oils and Their Individual Volatile Con-stituents: A Review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of the Clove Essential Oil from Syzygium Aromaticum on Candida, Aspergillus and Dermatophyte Species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef]
- Pinto, E.; Hrimpeng, K.; Lopes, G.; Vaz, S.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of Ferulago Capillaris Essential Oil against Candida, Cryptococcus, Aspergillus and Dermatophyte Species. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1311–1320. [Google Scholar] [CrossRef]
- Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Gonçalves, M.J.; Costa-de-Oliveira, S.; Cavaleiro, C.; Palmeira, A.; Ro-drigues, A.; Martinez-de-Oliveira, J. Antifungal Activity of the Essential Oil of Thymus Pulegioides on Can-dida, Aspergillus and Dermatophyte Species. J. Med. Microbiol. 2006, 55, 1367–1373. [Google Scholar] [CrossRef] [Green Version]
- Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, An-tioxidant and Anti-Inflammatory Activities of Oenanthe Crocata L. Essential Oil. Food Cheml. Toxicol. 2013, 62, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Alves-Silva, J.M.; Alves, M.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. New Insights on the An-ti-Inflammatory Potential and Safety Profile of Thymus Carnosus and Thymus Camphoratus Essential Oils and Their Main Compounds. J. Ethnopharmacol. 2018, 225, 10–17. [Google Scholar] [CrossRef]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) Is Not Monophyletic: Implications for the Systematics, Radiation, and Ecological Specializations of Salvia and Tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-Y.; Ming, Q.-L.; Rahman, K.; Han, T.; Qin, L.-P. Salvia Miltiorrhiza: Traditional Medicinal Uses, Chemistry, and Pharmacology. Chin. J. Nat. Med. 2015, 13, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia Officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Afonso, A.F.; Alves-Silva, J.M.; Pereira, O.R.; Cardoso, S.M. Beneficial Effects of Salvia Plants: Correlation with Bioactive Components. In Recent Progress in Medicinal Plants Volume 44: Phytotherapeutics III; Govil, J.N., Pathak, M., Eds.; Studium Press: New Delhi, India, 2016; pp. 161–198. [Google Scholar]
- Salimikia, I.; Aryanpour, M.; Abdollahi, M.; Abdolghaffari, A.; Samadi, N.; Monsef-Esfahani, H. Phytochem-ical and Wound Healing Effects of Methanolic Extract of Salvia Multicaulis Vahl. in Rat. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef] [Green Version]
- Gali-Muhtasib, H.; Hilan, C.; Khater, C. Traditional Uses of Salvia Libanotica (East Mediterranean Sage) and the Effects of Its Essential Oils. J. Ethnopharmacol. 2000, 71, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, M.; Hamidpour, R.; Hamidpour, S.; Shahlari, M. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses Such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. J. Tradit. Complement. Med. 2014, 4, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Askari, S.F.; Avan, R.; Tayarani-Najaran, Z.; Sahebkar, A.; Eghbali, S. Iranian Salvia Species: A Phytochemi-cal and Pharmacological Update. Phytochemistry 2021, 183, 112619. [Google Scholar] [CrossRef]
- Davidse, G.; Sousa Sánchez, M.; Knapp, S.D.; Chian Cabrera, F. Rubiaceae a Verbenaceae. 4(2): I–Xvi, 1–533. In Flora Mesoamericana; Davidse, G., Sousa Sánchez, M., Knapp, S.D., Chian Cabrera, F., Eds.; Missouri Bota-nical Garden: St. Louis, MO, USA, 2012; pp. 402–403. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST/EPA/NIH Mass Spectral Library 2005. Available online: https://chemdata.nist.gov/ (accessed on 4 December 2022).
- Guijarro-Muñoz, I.; Compte, M.; Álvarez-Cienfuegos, A.; Álvarez-Vallina, L.; Sanz, L. Lipopolysaccharide Activates Toll-like Receptor 4 (TLR4)-Mediated NF-ΚB Signaling Pathway and Proinflammatory Response in Human Pericytes. J. Biol. Chem. 2014, 289, 2457–2468. [Google Scholar] [CrossRef] [Green Version]
- Scrima, M.; Melito, C.; Merola, F.; Iorio, A.; Vito, N.; Giori, A.M.; Ferravante, A. Evaluation of Wound Healing Activity of Salvia Haenkei Hydroalcoholic Aerial Part Extract on in Vitro and in Vivo Experimental Models. Clin. Cosmet. Investig. Derm. 2020, 13, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Farahpour, M.R.; Pirkhezr, E.; Ashrafian, A.; Sonboli, A. Accelerated Healing by Topical Administration of Salvia Officinalis Essential Oil on Pseudomonas Aeruginosa and Staphylococcus Aureus Infected Wound Model. Biomed. Pharmacother. 2020, 128, 110120. [Google Scholar] [CrossRef]
- Matic, I.; Revandkar, A.; Chen, J.; Bisio, A.; Dall’Acqua, S.; Cocetta, V.; Brun, P.; Mancino, G.; Milanese, M.; Mattei, M.; et al. Identification of Salvia Haenkei as Gerosuppressant Agent by Using an Integrated Senes-cence-Screening Assay. Aging 2016, 8, 3223–3240. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Shin, S.H.; Lee, E.K.; Kim, D.H.; Kim, M.-J.; Roh, S.-S.; Yokozawa, T.; Chung, H.Y. Magnesium Lithospermate B from Salvia Miltiorrhiza BUNGE Ameliorates Aging-Induced Renal Inflammation and Senescence via NADPH Oxidase-Mediated Reactive Oxygen Generation. Phytother. Res. 2017, 31, 721–728. [Google Scholar] [CrossRef]
- Najar, B.; Mecacci, G.; Nardi, V.; Cervelli, C.; Nardoni, S.; Mancianti, F.; Ebani, V.V.; Giannecchini, S.; Pistelli, L. Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia Spp. Essential Oils Cul-tivated in Uniform Conditions. Molecules 2021, 26, 2826. [Google Scholar] [CrossRef] [PubMed]
- Abu-Darwish, M.S.; Cabral, C.; Ali, Z.; Wang, M.; Khan, S.I.; Jacob, M.R.; Jain, S.K.; Tekwani, B.L.; Zulfiqar, F.; Khan, I.A.; et al. Salvia Ceratophylla L. from South of Jordan: New Insights on Chemical Composition and Biological Activities. Nat. Prod. Bioprospect. 2020, 10, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Taarit, M.B.; Msaada, K.; Hosni, K.; Chahed, T.; Marzouk, B. Essential Oil Composition of Salvia Verbenaca Growing Wild in Tunisia. J. Food Biochem. 2010, 34, 142–151. [Google Scholar] [CrossRef]
- Viljoen, A.M.; Gono-Bwalya, A.; Kamatou, G.P.P.; Başer, K.H.C.; Demirci, B. The Essential Oil Composition and Chemotaxonomy of Salvia Stenophylla and Its Allies S. Repens and S. Runcinata. J. Essent. Oil Res. 2006, 18, 37–45. [Google Scholar] [CrossRef]
- Pinto, E.; Salgueiro, L.R.; Cavaleiro, C.; Palmeira, A.; Gonçalves, M.J. In Vitro Susceptibility of Some Species of Yeasts and Filamentous Fungi to Essential Oils of Salvia Officinalis. Ind. Crop. Prod. 2007, 26, 135–141. [Google Scholar] [CrossRef]
- Tosun, A.; Khan, S.; Kim, Y.; Calín-Sánchez, A.; Hysenaj, X.; Carbonell-Barrachina, A. Essential Oil Composi-tion and Anti-Inflammatory Activity of Salvia Officinalis L (Lamiaceae) in Murin Macrophages. Trop. J. Pharm. Res. 2014, 13, 937. [Google Scholar] [CrossRef] [Green Version]
- Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-bdour, T.H.; Sal-gueiro, L. Essential Oil of Common Sage (Salvia Officinalis L.) from Jordan: Assessment of Safety in Mamma-lian Cells and Its Antifungal and Anti-Inflammatory Potential. Biomed. Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Leporini, M.; Bonesi, M.; Loizzo, M.R.; Passalacqua, N.G.; Tundis, R. The Essential Oil of Salvia Rosmarinus Spenn. from Italy as a Source of Health-Promoting Compounds: Chemical Profile and Antioxidant and Cho-linesterase Inhibitory Activity. Plants 2020, 9, 798. [Google Scholar] [CrossRef]
- Choi, J.K.; Oh, H.-M.; Lee, S.; Kwon, T.K.; Shin, T.-Y.; Rho, M.-C.; Kim, S.-H. Salvia Plebeia Suppresses Atopic Dermatitis-Like Skin Lesions. Am. J. Chin. Med. 2014, 42, 967–985. [Google Scholar] [CrossRef]
- Fahed, L.; Stien, D.; Ouaini, N.; Eparvier, V.; el Beyrouthy, M. Chemical Diversity and Antimicrobial Activity of Salvia Multicaulis Vahl Essential Oils. Chem. Biodivers. 2016, 13, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Juliano, C.; Marchetti, M.; Campagna, P.; Usai, M. Antimicrobial Activity and Chemical Composition of Essential Oil from Helichrysum Microphyllum Cambess. Subsp. Tyrrhenicum Bacch., Brullo & Giusso Collected in South-West Sardinia. Saudi. J. Biol. Sci. 2019, 26, 897–905. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, L.; Chen, J.; Sui, J.; Yi, G.; Wu, J.; Ma, Y. Correlation between Chemical Composition and Anti-fungal Activity of Clausena Lansium Essential Oil against Candida spp. Molecules 2019, 24, 1394. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Vásquez, L.; Ruiz Mesia, L.; Caballero Ceferino, H.D.; Ruiz Mesia, W.; Andrés, M.F.; Díaz, C.E.; Gonza-lez-Coloma, A. Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Brilhante, R.S.N.; Cordeiro, R.A.; Nascimento, N.R.F.; Kerntopf, M.R.; Sidrim, J.J.C.; Rocha, M.F.G. Antifungal Activity of Essential Oils of Croton Species from the Brazilian Caatinga Biome. J. Appl. Microbiol. 2008, 104, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Mathela, C.; Joshi, S. Antioxidant and Antibacterial Activities of the Leaf Essential Oil and Its Constituents Furanodienone and Curzerenone from Lindera Pulcherrima (Nees.) Benth. Ex Hook. f. Pharmacogno. Res. 2012, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Serra, E.; Hidalgo-Bastida, L.; Verran, J.; Williams, D.; Malic, S. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans. Pathogens 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Burstein, V.L.; Beccacece, I.; Guasconi, L.; Mena, C.J.; Cervi, L.; Chiapello, L.S. Skin Immunity to Dermato-phytes: From Experimental Infection Models to Human Disease. Front. Immunol. 2020, 11, 605644. [Google Scholar] [CrossRef]
- Genčić, M.S.; Aksić, J.M.; Živković Stošić, M.Z.; Randjelović, P.J.; Stojanović, N.M.; Stojanović-Radić, Z.Z.; Radulović, N.S. Linking the Antimicrobial and Anti-Inflammatory Effects of Immortelle Essential Oil with Its Chemical Composition—The Interplay between the Major and Minor Constituents. Food Chem. Toxicol. 2021, 158, 112666. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Ljujić, J.; Vulić, J.; Zheljazkov, V.D.; Pezo, L.; Varga, A.; Tumbas Šaponjac, V. Helichrysum Ital-icum (Roth) G. Don Essential Oil from Serbia: Chemical Composition, Classification and Biological Activi-ty—May It Be a Suitable New Crop for Serbia? Agronomy 2021, 11, 1282. [Google Scholar] [CrossRef]
- Amorim, J.L.; Simas, D.L.R.; Pinheiro, M.M.G.; Moreno, D.S.A.; Alviano, C.S.; da Silva, A.J.R.; Dias Fernandes, P. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species. PLoS ONE 2016, 11, e0153643. [Google Scholar] [CrossRef] [Green Version]
- Ascari, J.; de Oliveira, M.S.; Nunes, D.S.; Granato, D.; Scharf, D.R.; Simionatto, E.; Otuki, M.; Soley, B.; Heiden, G. Chemical Composition, Antioxidant and Anti-Inflammatory Activities of the Essential Oils from Male and Female Specimens of Baccharis Punctulata (Asteraceae). J. Ethnopharmacol. 2019, 234, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Singh, S.; Kapoor, I.P.S.; Singh, G.; Isidorov, V.; Szczepaniak, L. Chemical Composition and Anti-oxidant Activities of Essential Oil and Oleoresins from Curcuma Zedoaria Rhizomes, Part-74. Food Biosci. 2013, 3, 42–48. [Google Scholar] [CrossRef]
- Jena, S.; Ray, A.; Banerjee, A.; Sahoo, A.; Nasim, N.; Sahoo, S.; Kar, B.; Patnaik, J.; Panda, P.C.; Nayak, S. Chemical Composition and Antioxidant Activity of Essential Oil from Leaves and Rhizomes of Curcuma Angustifolia Roxb. Nat. Prod. Res. 2017, 31, 2188–2191. [Google Scholar] [CrossRef]
- Andjić, M.; Božin, B.; Draginić, N.; Kočović, A.; Jeremić, J.N.; Tomović, M.; Milojević Šamanović, A.; Kladar, N.; Čapo, I.; Jakovljević, V.; et al. Formulation and Evaluation of Helichrysum Italicum Essential Oil-Based Topical Formulations for Wound Healing in Diabetic Rats. Pharmaceuticals 2021, 14, 813. [Google Scholar] [CrossRef]
- Ahlina, F.N.; Nugraheni, N.; Salsabila, I.A.; Haryanti, S.; Da’i, M.; Meiyanto, E. Revealing the Reversal Effect of Galangal (Alpinia Galanga L.) Extract Against Oxidative Stress in Metastatic Breast Cancer Cells and Normal Fibroblast Cells Intended as a Co- Chemotherapeutic and Anti-Ageing Agent. Asian Pac. J. Cancer Prev. 2020, 21, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Council of Europe. European Pharmacopoeia, 7th ed.; Directorate for the Quality of Medicines & HealthCare of the Council of Europe: Strasbourg, France, 2010; ISBN 978-92-871-6700-2. [Google Scholar]
- van den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Tempera-ture Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard M38-A2, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; ISBN 1-56238-668-9. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard M27-A3, 3rd ed.; Clinical and Laboratory Standards Institute: Wanye, PA, USA, 2008; ISBN 1-56238-666-2. [Google Scholar]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Piras, A.; Maccioni, A.; Falconieri, D.; Porcedda, S.; Gonçalves, M.J.; Alves-Silva, J.M.; Silva, A.; Cruz, M.T.; Salgueiro, L.; Maxia, A. Chemical Composition and Biological Activity of Essential Oil of Teucrium Scordium L. Subsp. Scordioides (Schreb.) Arcang. (Lamiaceae) from Sardinia Island (Italy). Nat. Prod. Res. 2021, 36, 5828–5835. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, S.; Ranzato, E. Scratch Wound Healing Assay. In Epidermal Cells: Methods in Molecular Biology; Turksen, K., Ed.; Humana: New York, NY, USA, 2019; Volume 2109, pp. 225–229. [Google Scholar]
RI | Compound | S. cacaliifolia (% Peak Area, Mean ± SD) |
---|---|---|
1039 | (Z)-β-Ocimene | 0.24 ± 0.004 |
1050 | (E)-β-Ocimene | 1.02 ± 0.019 |
1375 | α-Copaene | 0.34 ± 0.004 |
1383 | β-Bourbonene | 0.22 ± 0.026 |
1390 | β-Elemene | 0.40 ± 0.002 |
1400 | iso-Italicene | 0.54 ± 0.005 |
1409 | α-Cedrene | 0.49 ± 0.021 |
1417 | β-Cedrene | 1.41 ± 0.008 |
1457 | (E)-β-Farnesene | 0.39 ± 0.009 |
1460 | allo-Aromadendrene | 3.02 ± 0.018 |
1462 | cis-Cadina-1(6),4-diene | 0.84 ± 0.005 |
1480 | γ-Curcumene | 27.64 ± 0.195 |
1483 | Germacrene D | 4.47 ± 0.043 |
1495 | Bicyclogermacrene | 8.54 ± 0.074 |
1510 | β-Bisabolene | 18.01 ± 0.033 |
1512 | β-Curcumene | 1.46 ± 0.060 |
1522 | δ-Cadinene | 0.68 ± 0.003 |
1537 | α-Copaen-11-ol | 0.68 ± 0.005 |
1555 | Germacrene B | 0.98 ± 0.014 |
1575 | α-Cedrene epoxide | 1.40 ± 0.018 |
1603 | Curzerenone | 7.68 ± 0.055 |
1652 | Atractylone | 0.68 ± 0.012 |
1683 | α-Bisabolol | 0.93 ± 0.016 |
1693 | Germacrone | 1.02 ± 0.014 |
Total identified | 83.07 ± 0.112 | |
Hydrocarbon monoterpenes | 1.26 ± 0.024 | |
Hydrocarbon sesquiterpenes | 70.10 ± 0.119 | |
Oxygenated sesquiterpenes | 11.71 ± 0.032 |
Strains | S. cacaliifolia Essential Oil | |
---|---|---|
MIC a | MLC a | |
Trichophyton mentagrophytes FF7 | 0.16 | 0.16 |
T. rubrum CECT 2794 | 0.16 | 0.64 |
T. mentagrophytes var. interdigitale CECT 2958 | 0.32 | 0.32 |
T. verrucosum CECT 2992 | 1.25 | 2.5 |
Microsporum canis FF1 | 0.32 | 0.32 |
M. gypseum CECT 2908 | 0.32 | 1.25 |
Epidermophyton floccosum FF9 | 0.32 | 0.32 |
Cryptococcus neoformans YPO186 | 0.64 | 1.25 |
Candida albicans ATCC 10231 | >2.5 | >2.5 |
C. tropicalis YPO128 | >2.5 | >2.5 |
C. krusei LF33 | >2.5 | >2.5 |
C. guillermondii MAT23 | 2.5 | >2.5 |
C. parapsilosis ATCC 90018 | >2.5 | >2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves-Silva, J.M.; Cocco, E.; Piras, A.; Gonçalves, M.J.; Silva, A.; Falconieri, D.; Porcedda, S.; Cruz, M.T.; Maxia, A.; Salgueiro, L. Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil. Plants 2023, 12, 359. https://doi.org/10.3390/plants12020359
Alves-Silva JM, Cocco E, Piras A, Gonçalves MJ, Silva A, Falconieri D, Porcedda S, Cruz MT, Maxia A, Salgueiro L. Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil. Plants. 2023; 12(2):359. https://doi.org/10.3390/plants12020359
Chicago/Turabian StyleAlves-Silva, Jorge M., Emma Cocco, Alessandra Piras, Maria José Gonçalves, Ana Silva, Danilo Falconieri, Silvia Porcedda, Maria Teresa Cruz, Andrea Maxia, and Lígia Salgueiro. 2023. "Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil" Plants 12, no. 2: 359. https://doi.org/10.3390/plants12020359
APA StyleAlves-Silva, J. M., Cocco, E., Piras, A., Gonçalves, M. J., Silva, A., Falconieri, D., Porcedda, S., Cruz, M. T., Maxia, A., & Salgueiro, L. (2023). Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil. Plants, 12(2), 359. https://doi.org/10.3390/plants12020359