Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross
Abstract
:1. Introduction
2. Results
2.1. Seed Characteristics
2.2. Microbial Diversity
2.3. Alpha Diversity
2.4. Beta Diversity
3. Discussion
4. Materials and Methods
4.1. Seed Source and Collection of Pecan Seedling Material
4.2. Genomic DNA Extraction
4.3. Next Generation Sequencing and Microbiome Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manchester, S.R. Fossil History of the Juglandaceae; Ph.D. Dissertation; Indiana University: Bloomington, IN, USA, 1981. [Google Scholar]
- Peterson, J.K. Carya illinoensis (Wangenh.) K. Koch pecan. Silv. N. A. 1990, 2, 205–210. [Google Scholar]
- Grauke, L.J. Pecan seed stock selection—Regional implications. Proc. SE Pecan Grow. Assoc. 2010, 103, 42–50. [Google Scholar]
- Grauke, L.J.; Thompson, T. Pecans and hickories. In Fruit Breeding; Janick, J., Moore, J.N., Eds.; John Wiley & Sons: New York, NY, USA, 1996; Volume 3, pp. 185–239. [Google Scholar]
- Lovell, J.T.; Bentley, N.B.; Bhattarai, G.; Jenkins, J.W.; Sreedasyam, A.; Alarcon, Y.; Bock, C.; Boston, L.B.; Carlson, J.; Cervantes, K.; et al. Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.E.; Grauke, L.J.; Reid, W. ’Lakota’ pecan. HortScience 2008, 43, 250–251. [Google Scholar] [CrossRef]
- Wang, X.; Rhein, H.S.; Jenkins, J.; Schmutz, J.; Grimwood, J.; Grauke, L.J.; Randall, J.J. Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations. Tree Genet. Genomes 2020, 16, 1–14. [Google Scholar] [CrossRef]
- Jenkins, J.; Wilson, B.; Grimwood, J.; Schmutz, J.; Grauke, L.J. Towards a reference pecan genome sequence. ActaHort 2015, 101–108. [Google Scholar] [CrossRef]
- Bock, C.H.; Brenneman, T.B.; Wood, B.W.; Stevenson, K.L. Challenges of managing disease in tall orchard trees-pecan scab, a case study. CAB Rev. 2016, 12, 1–18. [Google Scholar] [CrossRef]
- Winter, D.J.; Charlton, N.D.; Krom, N.; Shiller, J.; Bock, C.H.; Cox, M.P.; Young, C.A. Chromosome-level reference genome of Venturia effusa, causative agent of pecan scab. Mol. Plant-Microbe Interact. 2020, 33, 149–152. [Google Scholar] [CrossRef]
- Standish, J.R.; Brenneman, T.B.; Bock, C.H.; Stevenson, K.L. Fungicide resistance in Venturia effusa, cause of pecan scab: Current status and practical implications. Phytopathology 2021, 111, 244–252. [Google Scholar] [CrossRef]
- Northey, P.; Parsons, J.L.; USDA, National Agricultural Statistics Service. Crop Production. 2020. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/tm70mv177/9z903r85j/fx71bc91m/crop1220.pdf (accessed on 15 February 2022).
- Hancock, D.W.; Harris, G.H.; Franks, R.W.; Morgan, S.P.; Green, T.W. Soil and Fertilizer Management Considerations for Forage Systems in Georgia. UGA Extension. Available online: https://extension.uga.edu/publications/detail.html?number=B1346&title=Soil%20and%20Fertilizer%20Management%20Considerations%20for%20Forage%20Systems%20in%20Georgia#Provinces (accessed on 3 May 2022).
- Coastal Plain Experiment Station. University of Georgia Weather Network. Available online: http://weather.uga.edu/?variable=PR&site=TIFTON (accessed on 3 May 2022).
- Soils of Texas. Texas Almanac. 2021. Available online: https://www.texasalmanac.com/articles/soils-of-texas (accessed on 15 February 2022).
- U.S. Department of Agriculture Natural Resources Conservation Service, Soil Survey of Burleson County, Texas. 2005. Available online: http://www.nrcs.usda.gov (accessed on 15 February 2022).
- U.S. Climate Data. Weather averages Burleson, Texas. Available online: https://www.usclimatedata.com/climate/burleson/texas/united-states/ustx0184 (accessed on 15 February 2022).
- Marks, G.C.; Soil Conservation Service. United States Department of Agriculture. Soil survey of Brown and Mills counties, Texas. 1980. Available online: https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/texas/TX602/0/Brown.pdf (accessed on 15 February 2022).
- U.S. Climate Data. Weather averages Browswood, Texas. Available online: https://www.usclimatedata.com/climate/brownwood/texas/united-states/ustx0167 (accessed on 15 February 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated; GebrüderBorntraeger: Stuttgart, Germany, 2006. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Brenneman, T.; Brock, J.; Culpepper, A.S.; Hudson, W.; Mitchem, W.; Wells, L.; Acebes, A.; Sawyer, A. 2021 Commercial Pecan Spray Guide; University of Georgia Extension: Athens, GA, USA, 2021. [Google Scholar]
- Cummins, M.; Noble Research Institute. What is a phytobiome? 2020. Available online: https://www.noble.org/news/publications/legacy/2020/spring/what-is-a-phytobiome/ (accessed on 15 February 2022).
- Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.; McHardy, A.C.; Dangl, J.L.; Knight, R.; Ley, R.; et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 2015, 17, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.B.; Heuberger, A.L.; Broeckling, C.D.; Jahn, C.E. Non-targeted metabolomics reveals sorghum rhizosphere-associated exudates are influenced by the belowground interaction of substrate and sorghum genotype. Int. J. Mol. Sci. 2019, 20, 431. [Google Scholar] [CrossRef] [PubMed]
- Schlemper, T.R.; Leite, M.F.; Lucheta, A.R.; Shimels, M.; Bouwmeester, H.J.; van Veen, J.A.; Kuramae, E.E. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol. 2017, 93, 8. [Google Scholar] [CrossRef] [PubMed]
- Morales Moreira, Z.P.; Helgason, B.L.; Germida, J.J. Environment has a stronger effect than host plant genotype in shaping spring Brassica napus seed microbiomes. Phytobiomes J. 2021, 5, 220–230. [Google Scholar] [CrossRef]
- Cregger, M.A.; Veach, A.; Yang, Z.K.; Crouch, M.J.; Vilgalys, R.; Tuskan, G.A.; Schadt, C.W. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Wagner, M.R.; Lundberg, D.S.; Del Rio, T.G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Cervantes, K.; Hilton, A.E.; Stamler, R.A.; Heerema, R.J.; Bock, C.; Wang, X.; Jo, Y.-K.; Grauke, L.J.; Randall, J.J. Evidence for Seed Transmission of Xylella fastidiosa in Pecan (Carya illinoinensis). Front. Plant Sci. 2022, 13, 780335. [Google Scholar] [CrossRef]
- Randall, J.J.; Cervantes, K.; Ray, D.K.; Sanchez, A.; Mason, K.; Fisk, J.N.; Soneji, J.R.; Sanchez, L.; Grauke, L.J.; Wang, X. Insights into the impact of geography and genetics on the microbiome of Carya illinoinensis. Acta Hortic. 2021, 235–240. [Google Scholar] [CrossRef]
- Knorr, K.; Jørgensen, L.N.; Nicolaisen, M. Fungicides have complex effects on the wheat phyllosphere mycobiome. PLOS ONE 2019, 14, e0213176. [Google Scholar] [CrossRef]
- Prior, R.; Mittelbach, M.; Begerow, D. Impact of three different fungicides on fungal epi-and endophytic communities of common bean (Phaseolus vulgaris) and broad bean (Vicia faba). J. Environ. Sci. Health Part B 2017, 52, 376–386. [Google Scholar] [CrossRef]
- Karlsson, I.; Friberg, H.; Steinberg, C.; Persson, P. Fungicide effects on fungal community composition in the wheat phyllosphere. PloS ONE 2014, 9, e111786. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, A.; Wisniewski, M.; Schena, L.; Tack, A.J. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ. Microbiol. 2021, 23, 2199–2214. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.B.; Simoneau, P.; Barret, M.; Mitter, B.; Compant, S. Editorial special issue: The soil, the seed, the microbes and the plant. Plant Soil 2018, 422, 1–5. [Google Scholar] [CrossRef]
- Barret, M.; Guimbaud, J.F.; Darrasse, A.; Jacques, M.A. Plant microbiota affects seed transmission of phytopathogenic microorganisms. Mol. Plant Pathol. 2016, 17, 791. [Google Scholar] [CrossRef]
- Fort, T.; Pauvert, C.; Zanne, A.E.; Ovaskainen, O.; Caignard, T.; Barret, M.; Compant, S.; Hampe, A.; Delzon, S.; Vacher, C. Maternal effects shape the seed mycobiome in Quercus petraea. New Phytol. 2021, 230, 1594–1608. [Google Scholar] [CrossRef]
- Hill, N.S.; Brown, E. Endophyte viability in seedling tall fescue treated with fungicides. Crop Sci. 2000, 40, 1490–1491. [Google Scholar] [CrossRef]
- Leyronas, C.; Meriaux, B.; Raynal, G. Chemical control of Neotyphodium spp. endophytes in perennial ryegrass and tall fescue seeds. Crop Sci. 2006, 46, 98–104. [Google Scholar] [CrossRef]
- Chynoweth, R.; Rolston, M.; Kelly, M.; Grbavac, N. Control of blind seed disease (Gloeotinia temulenta) in perennial ryegrass (Lolium perenne) seed crops and implications for endophyte transmission. Agron. NZ 2012, 42, 141–148. [Google Scholar]
- Lugtenberg, B.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, 12. [Google Scholar] [CrossRef]
- Nettles, R.; Watkins, J.; Ricks, K.; Boyer, M.; Licht, M.; Atwood, L.W.; Peoples, M.; Smith, R.G.; Mortensen, D.A.; Koide, R.T. Influence of pesticide seed treatments on rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize and soybean. Appl. Soil Ecol. 2016, 102, 61–69. [Google Scholar] [CrossRef]
- Thiergart, T.; Durán, P.; Ellis, T.; Vannier, N.; Garrido-Oter, R.; Kemen, E.; Roux, D.; Alonso-Blanco, C.; Schulze-Lefert, P.; Hacquard, S. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 2020, 4, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Bock, C.H.; Oliver, J.E.; Chen, C.; Hotchkiss, M.H.; Stevenson, K.L.; Wang, X.; Grauke, L.J.; Hilton, A.E.; Jo, Y.-K.; Randall, J.J. Pecan bacterial leaf scorch, caused by Xylella fastidiosa, is endemic in Georgia pecan orchards. Plant Health Prog. 2018, 19, 284–287. [Google Scholar] [CrossRef]
- Kumar, M.; Brar, A.; Yadav, M.; Chawade, A.; Vivekanand, V.; Pareek, N. Chitinases—Potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 2018, 8, 88. [Google Scholar] [CrossRef]
- Saber, W.I.; Ghoneem, K.M.; Al-Askar, A.A.; Rashad, Y.M.; Ali, A.A.; Rashad, E.M. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol. Hung. 2015, 66, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, A.; Luhová, L.; Sedlářová, M.; Jančová, D. The role of enzymes in plant-fungal pathogens interactions/Die Rolle der Enzyme in den Beziehungen zwischen Pflanzen und pilzlichen Erregern. Z. Für Pflanzenkrankh. Und Pflanzenschutz/J. Plant Dis. Prot. 2001, 108, 89–111. [Google Scholar]
- Mittelstrass, J.; Sperone, F.G.; Horton, M.W. Using transects to disentangle the environmental drivers of plant-microbiome assembly. Plant Cell Environ. 2021, 44, 3745–3755. [Google Scholar] [CrossRef]
- Redford, A.J.; Bowers, R.M.; Knight, R.; Linhart, Y.; Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 2010, 12, 2885–2893. [Google Scholar] [CrossRef]
- Brachi, B.; Filiault, D.; Darme, P.; Mentec, M.L.; Kerdaffrec, E.; Rabanal, F.; Anastasio, A.; Box, M.; Duncan, S.; Morton, T.; et al. Plant genes influence microbial hubs that shape beneficial leaf communities. Biorxiv 2017, 181198. [Google Scholar]
- Thoms, D.; Liang, Y.; Haney, C.H. Maintaining symbiotic homeostasis: How do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol. Plant-Microbe Interact. 2021, 34, 462–469. [Google Scholar] [CrossRef]
- Garbeva, P.V.; Van Veen, J.A.; Van Elsas, J.D. MICROBIAL DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243. [Google Scholar] [CrossRef]
- Moroenyane, I.; Tremblay, J.; Yergeau, E. Soybean microbiome recovery after disruption is modulated by the seed and not the soil microbiome. Phytobiomes J. 2021, 5, 418–431. [Google Scholar] [CrossRef]
- Chesneau, G.; Torres-Cortes, G.; Briand, M.; Darrasse, A.; Preveaux, A.; Marais, C.; Marie-Agnès, J.; Shade, A.; Barret, M. Temporal dynamics of bacterial communities during seed development and maturation. FEMS Microbiol. Ecol. 2020, 96, fiaa190. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.E.; Antonielli, L.; Mitter, B.; Trognitz, F.; Sessitsch, A. Heritability and functional importance of the Setaria viridis bacterial seed microbiome. Phytobiomes J. 2020, 4, 40–52. [Google Scholar] [CrossRef]
- Wang, M.; Eyre, A.W.; Thon, M.R.; Oh, Y.; Dean, R.A. Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Front. Microbiol. 2020, 11, 2183. [Google Scholar] [CrossRef]
- Cervantes, K.; Heerema, R.J.; Randall, J.J. The core microbiome of Carya illinoinensis (pecan) seedlings of different maternal pecan cultivars from the same orchard. Front. Microbiomes 2022, 1. Available online: https://www.frontiersin.org/articles/10.3389/frmbi.2022.1003112 (accessed on 11 November 2022). [CrossRef]
- Grauke, L.J.; Agricultural Research Service. United States Department of Agriculture. Pecan nut quality. Crop Germplasm Research. 2016. Available online: https://www.ars.usda.gov/plains-area/college-station-tx/southern-plains-agricultural-research-center/crop-germplasm-research/docs/pecannutquality/ (accessed on 15 February 2022).
- Team, R.C.; R Foundation for Statistical Computing. R: A language and environment for statistical computing. 2021. Available online: https://www.R-project.org/ (accessed on 30 September 2022).
State | Year Crossed | Maternal | Pollen | Stratified | Maternal Accession | Seed Number | Nut | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (mm) 1 | Width (mm) 2 | Height (mm) 3 | Weight (g) | Volume (g) 4 | Density (g) 5 | |||||||
Georgia (GA) | 2017 | ‘Lakota’ | ‘Oaxaca’ | Dec 2017 | Lenny1 | 55 | 41.71 | 23.3 | 20.74 | 7.76 | 9.71 | 0.8 |
Lenny1 | 134 | 40.61 | 23.55 | 20.84 | 7.36 | 9.22 | 0.8 | |||||
Lenny2 | 275 | 41.39 | 23.89 | 22.18 | 8.59 | 10.7 | 0.8 | |||||
PVG 14-7 | 556 | 44.72 | 23.94 | 21.76 | 7.48 | 11.45 | 0.65 | |||||
PVG 14-7 | 482 | 46.98 | 24.35 | 21.67 | 5.93 | 11.69 | 0.51 | |||||
Texas (TX) | 2017 | ‘Lakota’ | ‘Oaxaca’ | Dec 2017 | BRW 153-38 | 846 | 42.76 | 20.92 | 21.43 | 7.45 | 9.27 | 0.8 |
CSD 7-4 | 918 | 35.38 | 22.83 | 22.41 | 7.63 | 9.53 | 0.8 | |||||
CSD 7-4 | 915 | 37.94 | 23.08 | 21.37 | 7.38 | 9.24 | 0.8 | |||||
CSD 14-8 | 1034 | 36.17 | 22.94 | 22.74 | 7.67 | 9.54 | 0.8 | |||||
CSD 14-8 | 1020 | 38.38 | 20.44 | 20.39 | 5.21 | 8.11 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes, K.; Velasco-Cruz, C.; Grauke, L.J.; Wang, X.; Conner, P.; Wells, L.; Bock, C.H.; Pisani, C.; Randall, J.J. Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross. Plants 2023, 12, 360. https://doi.org/10.3390/plants12020360
Cervantes K, Velasco-Cruz C, Grauke LJ, Wang X, Conner P, Wells L, Bock CH, Pisani C, Randall JJ. Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross. Plants. 2023; 12(2):360. https://doi.org/10.3390/plants12020360
Chicago/Turabian StyleCervantes, Kimberly, Ciro Velasco-Cruz, L. J. Grauke, Xinwang Wang, Patrick Conner, Lenny Wells, Clive H. Bock, Cristina Pisani, and Jennifer J. Randall. 2023. "Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross" Plants 12, no. 2: 360. https://doi.org/10.3390/plants12020360
APA StyleCervantes, K., Velasco-Cruz, C., Grauke, L. J., Wang, X., Conner, P., Wells, L., Bock, C. H., Pisani, C., & Randall, J. J. (2023). Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross. Plants, 12(2), 360. https://doi.org/10.3390/plants12020360